用户名: 密码: 验证码:
深海热液区管状蠕虫的分子特征及对虾microRNA的初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海热液区是地球上典型的极端环境,尽管环境条件极其严酷,但以化能自养微生物为基础的自养自给的共生体系却蕴育了这里生机勃勃的生物世界。极端的环境使这里的生物形成了独特的防御与适应性机制,引发了科学家们对诸如生命起源、演化、生物耐受极端环境的机制等一系列重大生物学问题的思考;同时代谢过程中形成的各种生物活性物质也使其成为潜在的生物资源宝库。
     本研究以深海热液区Juan de Fuca Ridge的典型生物管状蠕虫Ridgeiapiscesae为研究对象,运用SMART技术构建了其cDNA文库,各项指标均符合文库质量标准:文库的容量为5.71×10~6个克隆,平均插入片段大小~1.0kbp。在此基础上,我们随机挑取879个文库克隆进行EST测序。序列分析表明这些序列代表199个基因,根据功能特点这些基因包括基础代谢相关蛋白、细胞骨架及膜相关蛋白、环境适应性与防御相关蛋白、细胞增殖相关蛋白、细胞信号传导相关蛋白、DNA的复制、转录及蛋白翻译相关蛋白等,比较全面的反映了管状蠕虫Ridgeia piscease的分子特征。序列分析还表明,与适应性和防御性相关的基因显示了基因的多样性。其中,几丁质结合蛋白最具多样性,不仅几丁质酶水解区和几丁质结合区相互独立,而且几丁质结合区也显示丰富的多样性,由不同的几丁质结合区共组成了23种不同的几丁质结合蛋白;EST测序分析中还发现两个溶菌酶基因带有双功能区,可能具有双重功能;此外,肌红蛋白基因也显示了序列的多样性。管状蠕虫Ridgeia picesae的这些基因特点将有助于我们了解生物对极端环境的适应性机制,同时也有利于我们开发其中潜在的基因资源。
     microRNA是真核生物中一类内源性的具有调控功能的非编码RNA,广泛参与生长发育、器官形成、细胞增殖与凋亡、病毒防御等各个过程。对虾作为一种重要的经济动物,对其相关microRNA的分子特征还知之甚少。
     本研究对日本囊对虾Marsupenaeus japonicus microRNA途径中相关的分子特征进行了初步探索。Argonaute是microRNA途径中的重要蛋白之一,microRNA通过以Argonaute为核心的RISC复合体(RNA-induced silencing complex)对目标基因进行调控。因此,我们首先从日本囊对虾中克隆得到这一关键蛋白Argonaute——Mjago,并对其分子特征进行相关研究。序列分析表明Mjago含有Argonaute蛋白家族特有的PAZ和PIWI保守结构域,并且其与节肢动物的Argonaute 1,尤其与斑节对虾Penaeus monodon的Argonaute 1具有极高的同源性。对不同组织Mjago转录水平的检测发现,该基因在对虾各个组织中均有转录,尤其以血细胞中的转录水平最高。进一步的研究发现,Mjago的转录水平与WSSV病毒感染密切相关,在病毒感染后其转录水平上升,在感染48小时后转录水平达到最高,随后转录水平又逐渐下降。
     在Mjago研究的基础上,我们进而开展了对日本囊对虾microRNA相关分子特征的研究。为了从免疫角度对日本囊对虾microRNA进行研究,我们以WSSV感染的血细胞为材料,从中分离并克隆小RNA。运用较为灵敏的PCR鉴定方法,从中我们鉴定得到35个microRNA。序列分析表明血细胞中部分microRNA表现出了表达丰度的差异性及进化上的保守性,其与已知物种中的microRNA具有极高的同源性,尤其是进化关系上十分接近的果蝇、家蚕等节肢动物来源的microRNA。进一步,我们运用半定量PCR方法检测所鉴定microRNA在WSSV病毒感染过程中表达水平的变化情况,结果表明部分microRNA的表达水平在病毒感染过程中发生了变化。
     日本囊对虾Mjago和microRNA的初步研究表明microRNA途径中的相关分子与WSSV的病毒感染存在着紧密的联系。对这些分子进行深入的研究将有助于我们认识microRNA在对虾免疫中的分子机制,为对虾的抗病毒免疫研究提供新线索,从而拓展对虾的免疫调节机制,丰富无脊椎动物的免疫学研究。
Although the condition of the deep-sea hydrothermal vent is harsh,a vigorousecosystem is supported by the symbiosis between the chemoautotrophicmicroorganisms and their hostes.The creasures living there have possessed the uniquemechanism to adapt to the extreme environment.The special ecosystem is not onlypotential biological resource,but also arises the though of scientists about the lifeorigin,evolution,adaptation to the extreme environments and so on.
     Ridgeia piscesae,living around the hydrothermal vent of Juan de Fuca Ridge,isan ideal model for studying the adaptative mechanism to extreme environment.Forinsights of its molecular characteristics,a SMART cDNA library of 5.71×10~6 cloneswas constructed.The average length of the inserted cDNA fragments is about 1.0 kbp.A total of 879 clones were picked at random and sequenced.199 genes wereidentified for the first time.They were found to be related to basal metabolism,cytoskeleton and membrane proteins,adaptation and defense,cell proliferation,signaltransduction,DNA replication,transcription and translation and so on.Among them,we found 23 various chitin-binding proteins consist of different chitin bindingdomains and a chitinase that only contain a domain of GH18 (glycosyl hydrolasesfamily 18).Additionally,high polymorphism also exists in other genes,such asmyohemerythrin,lysozyme that maybe a muti-funtional gene.The gene-expressionprofile might help to further understand the molecular basis of tube worm physiology.It will also lay a good foundation for functional studies on the adaptation to extremeenvironments and help to make use of them.
     MicroRNAs (miRNAs)are a class of small noncoding RNA that are 20-22nucleotides (nts)and function as regulators of gene expression.They were extensivelystudied and it was found that they were involved in various developmental andphysiological processes,such as cell differentiation,proliferation,apoptosis,development,virus defense and so on.Shrimp is one of the most important species inthe aquaculture.However,few studies about microRNA in shrimp were performed.
     In this study,we present the molecular characteristics of the molecules in themicroRNA pathway from Marsupenaeus japonicus.Argonaute is one of the mostimportant components in this pathway,which constitutes the RISC (RNA-inducedsilencing complex)with other partners and guides microRNAs to regulate theexpression of the target genes.Firstly,we present the molecular characteristics of theargonaute named Mjago from M.japonicus.Sequence analysis revealed that Mjagohad the conserved domains of the argonaute family:PAZ and PIWI.And it had theclose evolutionary relationship with argonaute 1 from arthropod,especially theargonaute 1 of Penaeus monodon.As shown in RT-PCR,Mjago appeared in everytissues examined and had the highest transcriptional level in the hemocyte.Moreover,during the white spot syndrome virus (WSSV)infection,it is found that thetranscriptional level of Mjago increased rapidly,but reduced after 48 h post infection.
     Furthermore,the study on the molecular characteristics of microRNA from M.japonicus was performed.For investigation on their relationship to the shrimpimmunity,the WSSV infected hemocytes were collected for isolation and clone ofsmall RNA.35 microRNAs were identified by the PCR method.Sequence analysisrevealed that some microRNAs shown the differential expression and evolutionalconservation.They have high homology with the microRNAs from other organisms,especially the arthropod,such as Drosophila melanogaster,Bombyx mori and so on.The result of semi-quantitative PCR showed that the expression of some microRNA changed during the WSSV infection.
     The study revealed that the molecules of the microRNA pathway from M.japonicus had the close relationship with the WSSV infection.Further study on theirindividual functions will be helpful to understand the molecular mechanism ofmicroRNA in the shrimp immunity and provide a clue for researches on shrimpimmunity against virus.
引文
[1]Lonsdale P.Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers [J].Deep-sea Res,1977,24:857-863.
    [2]Prieur D,Erauso G,Jeanthon,C.Hyperthermophilic life at deep-sea hydrothermal vents [J].Planet Space Sci,1995,43:115-122.
    [3]庞艳春,林丽,朱利东,陈志刚,李益民,熊永柱,付修根.热液喷口生物群的研究现状[J].成都理工学院学报,2002,29(4):448-452.
    [4]季敏,翟世奎.现代海底典型热液活动区地形环境特征分析[J].海洋学报,2005,27(6):46-55.
    [5]Van Dover DL,German CR,Speer KG,Parson LM,Vrijenhoek RC.Evolution and biogeography of deep-sea vent and seep invertebrates [J].Science,2002,295:1253-1257.
    [6]冯军,李江海,牛向龙.现代海底热液微生物群落及其地质意义[J].地球科学进展,2005,20(7):732-739.
    [7]Reysenbach AL,Cady SI.Microbiology of ancient and modem hydrothermal systems [J].Trends in Microbiology,2001,9:79-86.
    [8]Tivey MK.Generation of seafloor hydrothermal vent fluids and associated mineral deposits [J].Oceanography,2007,20(1):50-65.
    [9]http://www.indiana.edu/%7Eg 105lab/images/gaia_chapter_13/vent communities.htm
    [10]Jollivet D.Specific and genetic diversity at deep-sea hydrothermal vents:an overview [J].1996,5(12):1619-1653.
    [11]Miroshnichenko ML.Thermophilic microbial communities of deep-sea hydrothermal vents [J].Microbiology,2004,73(1):1-13.
    [12]付伟,周永章,杨志军,张澄博,杨小强,何俊国,杨海生,罗春科.现代海底热水活动的系统性研究及其科学意义[J].地球科学进展,2005,20(1):81-88.
    [13]Von Damm KL.Controls on the chemistry and temporal variability of seafloor hydrothermal fluids.Seafloor HydrothermalSystems:Physical,Chemical,Biological and Geological Interactions [M].Eds by Humphris SE,Zierenberg RA,Mulhneaux LS and Thomson RE.Washington DC:American Geophysical Union,1995,222-247.
    [14]Van Dover DL.The ecology of deep-sea hydrothermal vents [M].Princeton,New Jersey,USA:Princeton university press,2000.
    [15]Prieur D.Microbiology of deep-sea hydrothermal vents [J].Mar Biotech,1997,15:242-244.
    [16]Pradillon F,Shillito B,Young CM,Gaill F.Deep-sea ecology:Developmental arrest in vent worm embryos [J].Nature,2001,413:698-699.
    [17]李日辉,侯贵卿.深海热液喷口生物群的研究进展[J].海洋地质与第四纪地质,1999,19(4):103-108.
    [18]王丽玲,林景星,胡建芳.深海热液喷口生物群落研究进展[J].地球科学进展,2008,23(6):604-612.
    [19]Fortin D,Ferris FG,Scott SD.Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific Ocean [J].Am Mineral,1998,83:1399-1408.
    [20]相建海.海洋生物学[M].北京:科学出版社,2003.
    [21]Lutz RA.The biology of deep-sea vents and seeps [J].Oceanus,1991/92,34:75-83.
    [22]http://www.divediscover.whoi.edu/biology/ventbio-infomod.html
    [23]Deming JW,Baross JA.Deep-sea smokers:windows to a subsurface biosphere [J]?Geochim Cosmochim Acta,1993,57(14):3219-3230.
    [24]Hedrick DB,Pledger RD,White DC,Baross JA.In situ microbial ecology of hydrothermal vent sediments [J].FEMS Microbiol Rev,1992,101(1):1-10.
    [25]Miroshnichenko LM,Bonch-Osmolovskaya AE.Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents [J].Extremophile,2006,10:85-96.
    [26]Kashefi K,Lovley RD.Extending the upper temperature limit for life [J].Science,2003,301:934.
    [27]Jannasch HW.The chemosynthetic support of life and the microbial diversity at deep-sea hydrothermal vents [J].Proc R Soc Lond,1985,225:277-297.
    [28]Zierenberg RA,Schiffman P.Microbial control of silver mineralization at a seafloor hydrothermal site on the northern Gorda Ridge [J].Nature,1990,348:155-157.
    [29]戴永定.生物矿物学[M]北京:石油工业出版社,1994:303-321.
    [30]Geslin C,Le Romancer M,Gaillard M,Erauso G,Prieur D.Observation of virus-like particles in high temperature enrichment cultures for deep-sea hydrothermal vents [J].Res Microbiol,2003,154(4):303-307.
    [31]Alice CO,Curtis AS.High abundances of viruses in a deep-sea hydrothermal vent system indicates viral mediated microbial mortality [J].Deep-sea Res Pt Ⅰ,2005,52:1515-1527.
    [32]Danovaro R,Dell'Anno A,Corinaldesi C,Magagnini M,Noble R,Tamburini C,Weinbauer M.Major viral impact on the functioning of benthic deep-sea ecosystems [J].Nature,2008,454:1084-1087.
    [33]Tunnicliffe V,Fowler CMR,Mcarthur AG.Plate tectonic history and hot vent biogeography.Tectonic,magmatic,hydrothermal and biological segmentation of mid-ocean ridges [M].Eds by Macleod et a].London:Geological Society,]996:225-238.
    [34]Desbruyeres D,Segonzac M,Bright M.Handbook of deep-sea hydrothermal vent fauna [M].Austria:Denisia 18,2006.
    [35]王春生,杨俊毅,张东声,朱利中.深海热液生物群落研究综述[J].厦门大学学报(自然科学版),2006,45(sup 2):141-149.
    [36]Hand SC.Trophosome ultrastructure and the characterization of isolated bacteriocytes from invertebrate sulfur bacteria symbiosis [J].Biol Bull,1987.173:260-276.
    [37]Felbeck H,Childress JH,Somero GN.Calvin-Benson cycle and sulfide oxidation enzymes in animals from sulfide rich habitats [J].Nature,1981,293:291-293.
    [38]Minic Z,Herve G.Biochemical and enzymological aspects of the symbiosis between the deep-sea tubeworm Riftia pachyptila and its bacterial endosymbiont [J].Eur J Biochem,2004,271:3093-3102.
    [39]Dubilier,N.,Mulders,C.,Ferdelman,T.,et al.Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm [J].Nature,2001,411:298-302.
    [40]夏建新,李畅,马彦芳.深海底热液活动研究热点[J].地质力学学报,2007,13(2):179-191.
    [41]Terwilliger RC,Terwilliger NB,Arp A.Thermal vent clam(Calyptogena magnifica) hemoglobin [J].Science,1983,219:981-983.
    [42]Arp AJ,Doyle ML,Di Cera E,Gill SJ.Oxygenation properties of the two co-occurring hemoglobins of the tube worm Riftia pachyptila [J].Respiration Physiology,1990,80(2-3):323-334.
    [43]Arp AJ,Childress JJ.Blood function in the hydrothermal vent vestimentiferan tube worm [J]. Science,1981,213:342-344.
    [44]Jeanthon C.Molecular ecology of hydrothermal vent microbial communities [J].Antonie van Leeuwenhoek,2000,77:117-133.
    [45]Gonzalez-Rey M,Serafim A,Company R,Bebianno M.Adaptation to metal toxicity:a comparison of hydrothermal vent and coastal shrimps [J].Mar Ecol,2007,28(1):100-107.
    [46]Ruelas-Inzunza J,Paez-Osuna F,Soto LA.Bioaccumulation of Cd,Co,Cr,Cu,Fe,Hg,Mn,Ni,Pb and Zn in trophosome and vestimentum of the tube worm Riftia pachyptila from Guaymas basin,Gulf of California [J].Deep-Sea Res Pt Ⅰ,2005,52:1319-1323.
    [47]Arp AJ,Childress JJ,Vetter RD.The sulfide-binding protein in the blood of the vestimentiferan tube-worm,Riftia pachyptila,is the extracellular hemoglobin [J].J Exp Biol,1987,128:139-158.
    [48]Zal F,Lallier FH,Wall JS,et al.The multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila [J].J Biol Chem,1996,271(15):8869-8874.
    [49]Goffredi S,Childress J,Desaulniers N,Lee R,Lallier F,Hammond D.Inorganic carbon acquisition by the hydrothermal vent tubeworm Riftia pachyptila depends upon high external PCO2 and upon proton-equivalent ion transport by the worm [J].J Exp Biol,1997,200(5):883-896.
    [50]Bettencourt R,Roch P,Stefanm S,Rosa D,Colaco A,Santos RS.Deep sea immunity Unveiling immune constituents from the hydrothermal vent mussel Bathymodiolus azoricus [J].Mar Environ Res,2007,64(2):108-127.
    [51]Bettencourt R,Dando P,Collins P,Costa V,Allam B,Serrao Santos R.Innate immunity in the deep sea hydrothermal vent mussel Bathymodiolus azoricus [J].Comp Biochem Physiol A Mol Integr Physiol,2009,152(2):278-289.
    [52]冯军,李江海,陈征,牛向龙.“海底黑烟囱”与生命起源述评[J].北京大学学报(自然科学版),2004,40(2):318-325.
    [53]张鸿翔,赵千钧,郭琳.深海热泉生物——人类的基因资源宝库[J].地球科学进展,2002,17(6):918-921.
    [54]李志棠.开发大洋生物基因资源[J].厦门科技,2002,5:57-58.
    [55]Jones ML.On the Vestimentifera,new phylum:six new species,and other taxa,from hydrothermal vents and elsewhere [J].Bull biol Soc Wash,1985,6:117-158.
    [56] Black MB, Halanych KM, Maas PAY, Hoeh WR, Hashimoto J, Desbruyeres D, Lutz RA, Vrijenhoek RC. Molecular systematics of vestimentiferan tubeworms from hydrothermal vents and cold-water seeps [J]. Mar Biol, 1997, 130: 141-149.
    [57] Tunnicliffe V. The biology of hydrothermal vents: ecology and evolution [J]. Oceanogr Mar Biol Annu Rev, 1991, 29: 319-407.
    [58] Urcuyo IA, Massoth GJ, Julian D, Fisher CR. Habitat, growth and physiological ecology of a basaltic community of Ridgeia piscesae from the Juan de Fuca Ridge [J]. Deep-Sea Res Pt Ⅰ, 2003, 50: 763-780.
    [59] Tunnicliffe V. Biogeography andevolution of hydrothermal-vent fauna in the eastern Pacific Ocean [J]. Pro R Soc B, 1988, 233: 347-366.
    [60] Southward EC, Tunnicliffe V, Black M. Revision of the species of Ridgeia from northeast Pacific hydrothermal vents, with a redescription of Ridgeia piscesae Jones (Pogonophora: Obturata=Vestimentifera) [J]. Can J Zool, 1995, 73: 282-295.
    [61] Southward EC, Tunnicliffe V, Black MB, Dixon DR, Dixon LRJ. Ocean-ridge segmentation and vent tubeworms (Vestimentifera) in the NE Pacific. Tectonic, Magmatic, Hydrothermal and Biological Segmentation of Mid-Ocean Ridges [J]. 1996, 118: 211-224.
    [62] Black MB, Trivedi A, Maas PAY, Lutz RA, Vrijenhoek RC. Population genetics and biogeography of vestimentiferan tube worms [J]. Deep-Sea Res Pt II, 1998, 45: 365-382.
    [63] Carney SL, Peoples JR, Fisher CR, Schaeffer SW. AFLP analyses of genomic DNA reveal no differentiation between two different phenotypes of the vestimentiferan tubeworm, Ridgeia piscesae [J]. Cah Biol Mar, 2002, 43: 363-366.
    [64] Black MB, Lutz RA, Vrijenhoek RC. Gene flow among vestimentiferan tubeworm (Riftia pachyptila) populations from hydrothermal vents of the eastern Pacific [J]. Mar Biol, 1994, 120: 33-39.
    [65] Zhivotovsky LA, Feldman MW, Bergman A. On the evolution of phenotypic plasticity in a spatially heterogeneous environment [J]. Evolution, 1996, 50: 547-558.
    [66] Carney SL, Flores JF, Orobona KM, Butterfield DA, Fisher CR, Schaeffer SW. Environmental differences in hemoglobin gene expression in the hydrothermal vent tubeworm, Ridgeia piscesae [J]. Comp Biochem Physiol B, 2007,146 (3): 326-337.
    [67] Minic Z, Herve G. Biochemical and enzymological aspects of the symbiosis between the deep-sea tubeworm Riftia pachyptila and its bacterial endosymbiont [J]. Eur J Biochem, 2004, 271(15): 3093-3102.
    [68] Renosto F, Martin RL, Borrell JL, Nelson DC, Segel IH. ATP sulfurylase from trophosome tissue of Riftia pachyptila (hydrothermal vent tube worm) [J]. Arch Biochem Biophys, 1991, 290: 66-78.
    [69] Beynon JD, MacRae IJ, Huston SL, Nelson DC, Segel IH, Fisher AJ. Crystal structure of ATP sulfurylase from the bacterial symbiont of the hydrothermal vent tubeworm Riftia pachyptila [J]. Biochemistry, 2001, 40, 14509-14517.
    [70] Laue BE, Nelson DC. Characterization of the gene encoding the autotrophic ATP sulfurylase from the bacterial endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila [J]. J Bacteriol, 1994, 176: 3723-3729.
    [71] Felbeck H, Jarchow J. Carbon release from purified chemoautotrophic bacterial symbionts of the hydrothermal vent tubeworm Riftia pachyptila [J]. Physiol Zool, 1998, 71: 294-302.
    [72] Lilley MD, Butterfield DA, Olson EJ, Lupton JE, Macko SA, McDuff RE. Anomalous CH_4 and NH~(4+) concentrations at an unsedimented mid-ocean-ridge hydrothermal system [J]. Nature, 1993,364:45-47.
    [73] Hentschel U, Felbeck H. Nitrate respiration in the hydrothermal vent tubeworm Riftia pachyptila [J]. Nature, 1993, 366: 338-340.
    [74] Lee RW, Robinson JJ, Cavanaugh CM. Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: expression of host and symbiont glutamine synthetase [J]. J Exp Biol, 1999, 202: 289-300.
    [75] Girguis PR, Lee RW, Desaulniers N, Childress JJ, Pospesel M, Felbeck H, Zal F. Fate of nitrate acquired by the tubeworm Riftia pachyptila [J]. Appl Environ Microbiol, 2000, 66: 2783-2790.
    [76] Minic Z, Simon V, Penverne B, Gaill F, Herve G. Contribution of the bacterial endosymbiont to the biosynthesis of pyrimidine nucleotides in the deep-sea tube worm Riftia pachyptila [J]. J Biol Chem, 2001, 276: 23777-23784.
    [77] Stewart FJ, Newton IL, Cavanaugh CM. Chemosynthetic endosymbioses: adaptations to oxic-anoxic interfaces [J]. Trends Microbiol, 2005, 13(9): 439-448.
    [78] Bailly X, Vinogradov S. The sulfide binding function of annelid hemoglobins: relic of an old biosystem [J]? J Inorg Biochem, 2005, 99: 142-150.
    [79] Hourdez S, Weber RE. Molecular and functional adaptations in deep-sea hemoglobins [J]. J Inorg Biochem, 2005, 99: 130-141.
    [80] Bailly X, Jollivet D, Vanin S, Deutsch J, Zal F, Lallier F, Toulmond A. Evolution of the sulfide-binding function within the globin multigenic family of the deep-sea hydrothermal vent tubeworm Riftia pachyptila [J]. Mol Biol Evol, 2002, 19: 1421-1433.
    [81] Flores JF, Fisher CR, Carney SL, Green BN, Freytag JK, Schaeffer SW, Royer WE Jr. Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin [J]. Proc Natl Acad Sci USA, 2005, 102(8): 2713-2718.
    [82] De Cian MC, Bailly X, Morales J, Strub JM, Van Dorsselaer A, Lallier FH. Characterization of carbonic anhydrases from Riftia pachyptila, a symbiotic invertebrate from deep-sea hydrothermal vents [J]. Proteins, 2003, 51(3): 327-339.
    [83] De Cian MC, Andersen AC, Bailly X, Lallier FH. Expression and localization of carbonic anhydrase and ATPases in the symbiotic tubeworm Riftia pachyptila [J]. J Exp Biol, 2003, 206(Pt 2):399-409.
    [84] Chamoy L, Nicolai M, Ravaux J, Quennedey B, Gaill F, Delachambre J. A novel chitin-binding protein from the vestimentiferan Riftia pachyptila interacts specifically with beta-chitin. Cloning, expression, and characterization [J]. J Biol Chem, 2001, 276(11): 8051-8058.
    [85] Sanchez S, Hourdez S, Lallier FH. Identification of proteins involved in the functioning of Riftia pachyptila symbiosis by Subtractive Suppression Hybridization [J]. BMC Genomics, 2007,8:337.
    [86] Henry RP. Multiple roles of carbonic anhydrase in cellular transport and metabolism [J]. Annu Rev Physiol, 1996, 58: 523-538.
    [87] De Cian M-C, Andersen AC, Bailly X, Lallier FH. Expression and localization of carbonic anhydrase and ATPases in the symbiotic tubeworm Riftia pachyptila [J]. J Exp Biol, 2003, 206: 399-409.
    [88] Shen Z, Jacobs-Lorena M. Evolution of Chitin-Binding Proteins in Invertebrates [J]. J Mol Evol, 1999,48:341-347.
    [89] Manson FDC, Fletcher TC, Gooday GW. Localization of chitinolytic enzymes in blood of turbot, Scophthalmus maximus, and their possible roles in defence [J]. J Fish Biol, 1992, 40: 919-927.
    [90] Lindsay GJH, Gooday GW. Chitinolytic enzymes and the bacterial microfiora in the digestive tract of cod, Gadus morhua [J]. J Fish Biol, 1985, 26: 255-265.
    [91] Jolles P, Jolles J. What's new in lysozyme research? Always a model system, today as yesterday [J]. Mol Cell Biochem, 1984, 63: 165-189.
    [92] Grinde B. Lysozyme from rainbow trout, Salmo gairdneri Richardson, as an antibacterial agent against fish pathogens [J]. J Fish Dis, 1989, 12: 95-104.
    [93] Zavalova L, Lukyanov S, Baskova I, Snezhkov E, Akopov S, Berezhnoy S, Bogdanova E, Barsova E, Sverdlov ED. Genes from the medicinal leech (Hirudo medicinalis) coding for unusual enzymes that specifically cleave endo-epsilon (gamma-Glu)-Lys isopeptide bonds and help to dissolve blood clots [J]. Mol Gen Genet, 1996, 253: 20-25.
    [94] Vanin S, Negrisolo E, Bailly X, Bubacco L, Beltramini M, Salvato B. Molecular Evolution and Phylogeny of Sipunculan Hemerythrins [J]. J Mol Evol, 2006, 62: 32-41.
    [95] Xiong J, Phillips RS, Kurtz DMJr, Jin S, Ai J, Sanders-Loehr J. The O_2 binding pocket of myohemerythrin: role of a conserved leucine [J]. Biochemistry, 2000, 39: 8526-8536.
    [96] Farmer CS, Kurtz DMJr, Liu ZJ, Wang BC, Rose J, Ai J, Sanders-Loehr J. The crystal structures of Phascolopsis gouldii wild type and L98Y methemerythrins: structural and functional alterations of the O_2 binding pocket [J]. J Biol Inorg Chem, 2001, 6: 418-429.
    [97] Delaney JR, Robigou V, McDuff RE, Tivey MK. Geology of a vigorous hydrothermal system on the Endeavour segment, Juan de Fuca Ridge [J]. J Geophys Res, 1992, 97: 19663-19682.
    [98] Butterfield D, McDuff RE, Mottl M, Lilley MD, Lupton JE, Massoth GJ. Gradients in the composition of hydrothermal fluids from the Endeavour segment vent field: phase separation and brine loss [J]. J Geophys Res, 1994, 99: 9561-9583.
    [99] Tivey MK, Stakes DS, Cook TL, Hannington MD, Petersen S. A model for growth of steep-sided vent structures on the Endeavour segment of the Juan de Fuca Ridge: results of a petrologic and geochemical study [J]. J Geophys Res, 1999, 104: 22859-22883.
    [100] Kawabata S, Nagayama R, Hirata M, Shigenaga T, Agarwala KL, Saito T, Cho J, Nakajima H, Takagi T, Iwanaga S. Tachycitin, a small granular component in horseshoe crab hemocytes, is an antimicrobial protein with chitin-binding activity [J]. J Biochem, 1996, 120: 1253-1260.
    [101] Carney SL, Flores JF, Orobona KM, Butterfield DA, Fisher CR, Schaeffer SW. Environmental differences in hemoglobin gene expression in the hydrothermal vent tubeworm, Ridgeia piscesae [J]. Comp Biochem Physiol B, 2007, 146: 326-337.
    [1]陈国福,黄捷,宋晓玲.对虾免疫机能研究概况[J].水产学报,2004,28(2):209-215.
    [2]杨丛海.中国对虾养殖现状及健康养殖管理的发展.虾类养殖研究[M].张本主编.北京:海洋出版社,2002,36-41.
    [3]陈弘成.台湾和东南亚虾类养殖现状、技术、输出和展望.虾类养殖研究[M].张本主编.北京:海洋出版社,2002,8-14.
    [4]刘瑞玉.中国海水养殖的持续发展.虾类养殖研究[M].张本主编.北京:海洋出版社,2002,3-7.
    [5]Lighter DV,Redman RM,Bell TA.Infectious hypodermal(IHHNV) and a newly recognized virus disease of penaeid shrimp [J].J Invertebr Pathol,1983,42:62-72.
    [6]Kroll RM,Hawlcins WE,Overstreet RR.Rickettsial and mollicute infectious in hepatopancreatic cells of cultured Pacific white shrimp(Penaeus vannamei) [J].J Invertebr Pathol,1991,57:3622-3660.
    [7]Mohney LL,Lighter DV,Bell TA.Anepizootic of vibriosis in Ecuedorian pond-reared Penaeus vannamei Boone(Crustacea Decapoda) [J].World aquaculture,1994,soc,25.
    [8]Hasson KW,Lighter DV,Poulos BT,Redman RM,White BL,Brock JA,Bonami JR.Taura syndrome in Penaeus vammmei demonstration of a viral etiology [J].Dis Aquat Org,1995,23:115-126.
    [9]Flegel TW.Special topic review,major viral diseases of the black tiger praw(Penaeus monodon) in Thailand [J].World J of Microbiol Biotechno 1.1997,13:433-442.
    [10]Liu H,S(o|¨)derh(a|¨)ll K,Jiravanichpaisal P.Antiviral immunity in crustaceans [J].Fish Shellfish Immunol,2009,[Epub ahead of print].
    [11]王雷,李光友.甲壳动物的体液免疫研究进展[J].海洋科学,1992,3:18-19.
    [12]Sequeira T,Tavares D.Is there any kind of adaptive immunity in invertebrates [J]?Aquaculture.2000,191:247-258.
    [13]徐海圣,徐步进.甲壳动物细胞及体液免疫机理的研究进展[J].大连水产学院学报,2001,16(1):49-56.
    [14]李光,樊景凤,林凤翱,梁玉波.对虾的免疫机制及其疾病免疫预防的研究进展[J].水 产科学,2007,26(1):56-60.
    [15]樊廷俊.对虾非特异性免疫与对虾疾病监控的研究进展[J].海洋科学,2002,4(26):26-31.
    [16]S(o|¨)derhall K,Cerenius L.Crustacean immunity [J].Ann Rev Fish Dis,1992,2:3-23.
    [17]Johansson MW,Soderhall K.Cellular defense and cell adhesion in crustaceans [J].Animal Biology,1992,1:97-107.
    [18]Martin GG.Five structure and classification of shrimp hemocytes [J].J Morph,1985,185:339-348.
    [19]Bauchau AG.Crustaceans.Invertebrate Blood Cells [M].Eds by Ratcliffe NA and Rowley AF New York:Academic Press,1980,2385-2420.
    [20]Martin H.Denfence functions of granulocytes in the rideback prawn Sicyonia ingentis [J].Invertebr Pathol,1989,53:335-346.
    [21]魏克强,许梓荣.对虾的免疫机制及其疾病预防策略的研究[J].中国兽药杂志,2004,38(9):25-29.
    [22]Han F,Zhang X.Characterization of a ras-related nuclear protein(Ran protein) up-regulated in shrimp antiviral immunity [J].Fish Shellfish Immunol,2007,23:937-944.
    [23]Stenmark H,Olkkonen VM.The Rab GTPase family [J].Genome Biol,2001,2(5):3007.
    [24]Wu W,Zhang X.Characterization of a Rab GTPase up-regulated in the shrimp Peneaus japonicus by virus infection [J].Fish Shellfish Immunol,2007,23(2):438-445.
    [25]Wu W,Zong R,Xu J,Zhang X.Antiviral phagocytosis is regulated by a novel Rab-dependent complex in shrimp Penaeusjaponicus [J].J Proteome Res,2008,7:423-431.
    [26]Wang L,Zhi B,Wu W,Zhang X.Requirement for shrimp caspase in apoptosis against virus infection [J].Dev Comp Immunol,2008,32:706-715.
    [27]Bangrak P,Graidist P,Chotigeat W,Phongdara A.Molecular cloning and expression of a mammalian homologue of a translationally controlled tumor protein(TCTP) gene from Penaeus monodon shrimp [J].J Biotechnol,2004,108:219-226.
    [28]Loker ES,Adema CM,Zhang SM,Kepler TB.Invertebrate immune systems-not homogeneous,not simple,not well understood [J].Immunol Rev,2004,198:10-4.
    [29]Sritunyalucksana K,Cerenius L,S(o|¨)derh(a|¨)ll K.Molecular cloning and characterization of prophenoloxidase in the black tiger shrimp,Penaeus monodon [J].Dev Comp Immunol, 1999,23(3): 179-86.
    [30] Roux MM, Pain A, Klimpel KR, Dhar AK. The lipopolysaccharide and beta-1,3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris) [J]. J Virol, 2002, 76(14): 7140-7149.
    [31] Cheng W, Liu CH, Tsai CH, Chen JC. Molecular cloning and characterisation of a pattern recognition molecule, lipopolysaccharide- and beta-l,3-glucan binding protein (LGBP) from the white shrimp Litopenaeus vannamei [J]. Fish Shellfish Immunol, 2005, 18(4): 297-310.
    [32] Luo T, Yang H, Li F, Zhang X, Xu X. Purification, characterization and cDNA cloning of a novel lipopolysaccharide-binding lectin from the shrimp Penaeus monodon [J]. Dev Comp Immunol, 2006, 30(7): 607-617.
    [33] Yang H, Luo T, Li F, Li S, Xu X. Purification and characterisation of a calcium-independent lectin (PjLec) from the haemolymph of the shrimp Penaeus japonicus [J]. Fish Shellfish Immunol, 2007, 22(1-2): 88-97.
    [34] de-la-Re-Vega E, Garcia-Galaz A, Diaz-Cinco ME, Sotelo-Mundo RR. White shrimp (Litopenaeus vannamei) recombinant lysozyme has antibacterial activity against Gram negative bacteria: Vibrio alginolyticus. Vibrio parahemolyticus and Vibrio cholerae [J]. Fish Shellfish Immunol, 2006, 20(3): 405-408.
    [35] Bu X, Du X, Zhou W, Zhao X, Wang J. Molecular cloning, recombinant expression and characterization of lysozyme from Chinese shrimp Fenneropenaeus chinensis [J]. Sheng Wu Gong Cheng Xue Bao, 2008, 24(5): 723-32.
    [36] Somboonwiwat K, Marcos M, Tassanakajon A, Klinbunga S, Aumelas A, Romestand B, Gueguen Y, Boze H, Moulin G, Bachere E. Recombinant expression and anti-microbial activity of anti-lipopolysaccharide factor (ALF) from the black tiger shrimp Penaeus monodon [J]. Dev Comp Immunol, 2005, 29(10): 841-851.
    [37] de la Vega E, O'Leary NA, Shockey JE, Robalino J. Payne C, Browdy CL, Warr GW, Gross PS. Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF): a broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection [J]. Mol Immunol, 2008, 45(7): 1916-1925.
    [38] Smith VJ, Fernandes JM, Kemp GD, Hauton C. Crustins: enigmatic WAP domain-containing antibacterial proteins from crustaceans [J]. Dev Comp Immunol, 2008, 32(7): 758-772.
    [39] Somprasong N, Rimphanitchayakit V, Tassanakajon A. A five-domain Kazal-type serine proteinase inhibitor from black tiger shrimp Penaeus monodon and its inhibitory activities [J]. Dev Comp Immunol, 2006, 30(11): 998-1008.
    [40] Jim(?)nez-Vega F, Vargas-Albores F. A secretory leukocyte proteinase inhibitor (SLPI)-like protein from Litopenaeus vannamei haemocytes [J]. Fish Shellfish Immunol, 2007, 23(5): 1119-1126.
    [41] Kong HJ, Cho HK, Park EM, Hong GE, Kim YO, Nam BH, Kim WJ, Lee SJ, Han HS, Jang IK, Lee CH, Cheong J, Choi TJ. Molecular cloning of Kazal-type proteinase inhibitor of the shrimp Fenneropenaeus chinensis [J]. Fish Shellfish Immunol, 2009, 26(1): 109-114.
    [42] G(?)mez-Anduro GA, Barillas-Mury CV, Peregrino-Uriarte AB, Gupta L, Gollas-Galv(?)n T, Hern(?)ndez-L(?)pez J, Yepiz-Plascencia G. The cytosolic manganese superoxide dismutase from the shrimp Litopenaeus vannamei: molecular cloning and expression [J]. Dev Comp Immunol, 2006, 30(10): 893-900.
    [43] Zhang Q, Li F, Wang B, Zhang J, Liu Y, Zhou Q, Xiang J. The mitochondrial manganese superoxide dismutase gene in Chinese shrimp Fenneropenaeus chinensis: cloning, distribution and expression [J]. Dev Comp Immunol, 2007, 31(5): 429-440.
    [44] Dong B, Liu F, Gao H, Wang B, Xiang J. cDNA cloning and gene expression pattern following bacterial challenge of peroxinectin in Chinese shrimp Fenneropenaeus chinensis [J]. Mol Biol Rep, 2009, [Epub ahead of print]. [45] Luo T, Zhang X, Shao Z, Xu X. PmAV, a novel gene involved in virus resistance of shrimp Penaeus monodon [J]. FEBS Lett, 2003, 551(1-3): 53-57.
    [46] Lei K, Li F, Zhang M, Yang H, Luo T, Xu X. Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense [J]. Dev Comp Immunol, 2008, 32(7): 808-813.
    [47] Tonganunt M, Phongdara A, Chotigeat W, Fujise K. Identification and characterization of syntenin binding protein in the black tiger shrimp Penaeus monodon [J]. J Biotechnol, 2005, 120(2): 135-145.
    [48] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J]. Cell, 1993, 75: 843-854.
    [49] Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum H, D. Bartel G. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans [J]. Cell, 2006, 127(6): 1193-1207.
    [50] Landgraf P, Rusu M, Sheridan R, Sewer A, Lovino N, Aravin A et al. A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing [J]. Cell, 2007, 129(7): 1401-1414.
    [51] Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK. Identification of novel and candidate miRNAs in rice by high throughput sequencing [J]. BMC Plant Biol, 2008, 8: 25.
    [52] Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T. Identification of microRNAs of the herpesvirus family [J]. Nat Methods, 2005, 2(4): 269-276.
    [53] He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation [J]. Nat Rev Genet, 2004, 5(7): 522-531.
    [54] Bushati N, Cohen SM. microRNA Functions [J]. Annu Rev Cell Dev Biol, 2007, 23: 175-205.
    [55] Zhao Y, Srivastava D. A developmental view of microRNA function [J]. Trends Biochem Sci, 2007,32(4): 189-97.
    [56] Williams AE. Functional aspects of animal microRNAs [J]. Cell Mol Life Sci, 2008, 65(4): 545-562.
    [57] Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans [J]. Science, 2001,294:862-864.
    [58] Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans [J]. Science, 2001, 294: 858-862.
    [59] Aboobaker AA, Tomancak P, Patel N, Rubin GM, Lai EC. Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development [J]. Proc Natl Acad Sci USA, 2005, 102 (50): 18017-18022.
    [60] Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH. MicroRNA expression in zebrafish embryonic development [J]. Science, 2005, 309: 310-311.
    [61] Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs [J]. Science, 2001, 294: 853-858.
    [62] Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units [J]. Genome Res, 2004, 14(10A): 1902-1910.
    [63] Kim VN, Nam J. Genomics of microRNA [J]. Trends Genet, 2006, 22(3): 165-173.
    [64] Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase Ⅱ [J]. EMBOJ, 2004, 23(20): 4051-4060.
    [65] Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse [J]. Curr Biol, 2002, 12(9): 735-739.
    [66] Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS. A microRNA array reveals extensive regulation of microRNAs during brain development [J]. RNA, 2003, 9(10): 1274-1281.
    [67] Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR. Microarray analysis of microRNA expression in the developing mammalian brain [J]. Genome Biol, 2004, 5(9): R68.
    [68] Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs [J]. RNA, 2004, 10(12): 1957-1966.
    [69] Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, R(?)dmark O, Kim S, Kim VN. The nuclear RNase Ⅲ Drosha initiates microRNA processing [J]. Nature, 2003, 425: 415-419.
    [70] Basyuk E, Suavet F, Doglio A, Bordonne R, Bertrand E. Human let-7 stem-loop precursors harbor features of RNase Ⅲ cleavage products [J]. Nucleic Acids Res, 2003, 31: 6593-6597.
    [71] Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS. Post-transcriptional gene silencing by siRNAs and miRNAs [J]. Curr Opin Struct Biol, 2005, 15: 331-341.
    [72] Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex [J]. Nature, 2004, 432: 231-235.
    [73] Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing [J]. Genes Dev, 2004, 18: 3016-3027.
    [74] Kim VN. Small RNAs: Classification, Biogenesis, and Function [J]. Mol Cells, 2005, 19(1): 1-15.
    [75]Lund E,Güttinger S,Calado A,Dahlberg JE,Kutay U.Nuclear export of microRNA precursors [J].Science,2004,303:95-98.
    [76]Pillai RS,Bhattacharyya SN,Artus CG,Zoller T,Cougot N,Basyuk E,Bertrand E,Filipowicz W.Inhibition of translational initiation by Let-7 MicroRNA in human cells [J].Science,2005,309:1573-1576.
    [79]Zellg Y,Cullen BR.Sequence requirements for microRNA processing and function in human cells [J].RNA,2003,9:112-123.
    [80]Carmell MA,Xuan Z,Zhang MQ,Hannon G.J.The Argonaute family:tentacles that reach into RNAi,developmental control,stem cell maintenance,and tumorigenesis [J].Genes Dev,2002,16:2733-2742.
    [81]Hutvagner G,Simard MJ.Argonaute proteins:key players in RNA silencing [J].Nat Rev Mol Cell Biol,2007,9:22-32.
    [82]Peters L,Meister G.Argonaute proteins:mediators of RNA silencing [J].Mol Cell,2007,26:611-623.
    [83]H(o|¨)ck J,Meister G.The Argonaute protein family [J].Genome Biol,2008,9:210.
    [84]Baumberger N,Baulcombe DC.Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs [J].Proc Nat]Acad Sci USA,2005,102:11928-11933.
    [85]Qi Y,Denli AM,Hannon G.J.Biochemical specialization within Arabidopsis RNA silencing pathways [J].Mol Cell,2005,19:421-428.
    [86]何晨,谭军,陈薇,聂能.MicroRNA研究进展[J].生物技术通报,2006,1:18-25.
    [87]Reinhart BJ,Slack FJ,Basson M,Pasquinelli AE,Bettinger JC,Rougvie AE,Horvitz HR,Ruvkun G.The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans [J].Nature,2000,403:901-906.
    [88]Zhao Y,Samal E,Srivastava D.Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis [J].Nature,2005,436:214-220.
    [89]Chen JF,Mandel EM,Thomson JM,Wu Q,Callis TE,Hammond SM,Conlon FL,Wang DZ.The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentialtion [J].Nat Genet,2006,38(2):228-233.
    [90]华友佳,肖华胜.microRNA研究进展[J].生命科学,2005,17(3):278-281.
    [91] Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila [J]. Cell, 2003, 113(1): 25-36.
    [92] Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism [J]. Curr Biol, 2003, 13(9): 790-795.
    [93] 凌宏艳. 微小 RNA 研究进展 [J]. 中国动脉硬化杂志, 2008, 16(5): 409-412.
    [94] Chen XM, Splinter PL, O'Hara SP, LaRusso NF. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection [J]. J Biol Chem, 2007, 282(39): 28929-28938.
    [95] Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF- kappa B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses [J]. Proc Natl Acad Sci USA, 2006, 103: 12481-12486.
    [96] O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response [J]. Proc Natl Acad Sci USA, 2007, 104: 1604-1609.
    [97] Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, Croce CM. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock [J]. J Immunol, 2007, 179: 5082-5089.
    [98] Haasch D, Chen YW, Reilly RM, Chiou XG, Koterski S, Smith ML, Kroeger P, McWeeny K, Halbert DN, Mollison KW, Djuric SW, Trevillyan JM. T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the proto-oncogene, BIC [J]. Cell Immunol, 2002, 217: 78-86.
    [99] van den Berg A, Kroesen BJ, Kooistra K, de Jong D, Briggs J, Blokzijl T, Jacobs S, Kluiver J, Diepstra A, Maggio E, Poppema S. High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma [J]. Genes Chromosomes Cancer, 2003, 37: 20-28.
    [100] Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, Vetrie D, Okkenhaug K, Enright AJ, Dougan G, Turner M, Bradley A. Requirement of bic/microRNA-155 for normal immune function [J]. Science, 2007,316:608-611.
    [101]侯召华,张建,田志刚.MicroRNA调控固有免疫应答的分子机制[J].生物化学与生物物理进展,2008,35(10):1131-1136.
    [102]Lecellier CH,Dunoyer P,Arar K,Lehmann-Che J,Eyquem S,Himber C,Sa(?)b A,Voinnet O A cellular microRNA mediates antiviral defense in human cells [J].Science,2005,308:557-560.
    [103]Jopling CL,Yi M,Lancaster AM,Lemon SM,Sarnow P.Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA [J].Science,2005,309:1577-1581.
    [104]Sullivan CS,Grundhoff AT,Tevethia S,Pipas JM,Ganem D.SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells [J].Nature,2005,435(7042):682-686.
    [105]Hafner M,Landgraf,P,Ludwig J,Rice A.Ojo T,Lin C,Holoch D,Lim C,Tuschl T.Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing [J].Methods,2008,44:3-12.
    [106]Lim LP,Glasner ME,Yekta S,Burge CB,Bartel DP.Vertebrate microRNA genes [J].Science,2003,299:1540.
    [107]Lim LP,Lau NC,Weinstein EG,Abdelhakim A,Yekta S,Rhoades MW Burge CB,Bartel DP.The microRNAs of Caenorhabditis elegans [J].Genes Dev,2003,17(8):991-1008.
    [108]Lai EC,Tomancak P,Williams RW,Rubin GM.Computational identification of Drosophila microRNA genes [J].Genome Biol,2003,4(7):R42
    [109]Thomson JM,Parker J,Perou CM,Hammond SM.A custom microarray platform for analysis of microRNA gene expression [J].Nat Methods,2004,1(1):47-53.
    [110]Nelson PT,Baldwin DA,Scearce LM,Oberholtzer JC,Tobias JW Mourelatos Z.Microarray-based,high-throughput gene expression profiling of microRNAs [J].Nat Methods,2004,1(2):155-161.
    [111]王芳,余佳,张俊武.小RNA(MicroRNA)研究方法[J].中国生物化学与分子生物学报,2006,22(10):772-779.
    [112]Enright AJ,John B,Gaul U,Tuschl T,Sander C,Marks DS.MicroRNA targets in Drosophila [J].Genome Biol,2003,5(1):R1.
    [113]Mansfield JH,Harfe BD,Nissen R,Obenauer J,Srineel J,Chaudhuri A,Farzan-Kashani R,Zuker M,PasQuinelli AE,Ruvkun G,Sharp PA,Tabin CJ,McManus MT. MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression [J]. Nat Genet, 2004, 36(10): 1079-1083.
    [114] Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Lulli V, Morsilli O, Santoro S, Valtieri M, Calin GA, Liu CG, Sorrentino A, Croce CM, Peschle C. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation [J]. ProcNatl Acad Sci USA, 2005, 102(50): 18081-18086.
    [115] Robalino J, Browdy CL, Prior S, Metz A, Parnell P, Gross P, Warr G. Induction of antiviral immunity by double-stranded RNA in a marine invertebrate [J]. J Virol, 2004, 78(19): 10442-10448.
    [116] Westenberg M, Heinhuis B, Zuidema D, Vlak JM. siRNA injection induces sequence-independent protection in Penaeus monodon against white spot syndrome virus [J]. Virus Res, 2005, 114: 133-139.
    [117] Su J, Oanh DT, Lyons RE, Leeton L, van Hulten MC, Tan SH, Song L, Rajendran KV, Walker PJ. A key gene of the RNA interference pathway in the black tiger shrimp, Penaeus monodon: identification and functional characterisation of Dicer-1 [J]. Fish Shellfish Immunol, 2008, 24(2): 223-233.
    [118] Unajak S, Boonsaeng V, Jitrapakdee S. Isolation and characterization of cDNA encoding Argonaute, a component of RNA silencing in shrimp {Penaeus monodon) [J]. Comp Biochem Physiol B Biochem Mol Biol, 2006, 145(2): 179-187.
    [119] Dechklar M, Udomkit A, Panyim S. Characterization of Argonaute cDNA from Penaeus monodon and implication of its role in RNA interference [J]. Biochem Biophys Res Commun, 2008, 367(4): 768-774.
    [120] Dechklar M, Udomkit A, Panyim S. Characterization of Argonaute cDNA from Penaeus monodon and implication of its role in RNA interference [J]. Biochem Biophys Res Commun, 2008, 367:768-774.
    [121] Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ. Real-time quantification of microRNAs by stem-loop RT-PCR [J], Nucleic Acids Res, 2005, 33(20): e1 79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700