用户名: 密码: 验证码:
X80管线钢氢助解理断裂规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用电化学充氢和慢应变速率拉伸试验相结合的方法,对X80管线钢氢致开裂问题进行研究,得到了氢在材料中的扩散行为以及经不同加载速率和不同电流密度充氢后,X80管线钢材料强度和塑性退化的规律。
     研究结果表明:X80管线钢在0.5mol/L H2SO4溶液中电化学充氢时,延长充氢时间或增加充氢电流密度,可提高管线钢吸收氢的量。充氢48小时后吸收的可扩散氢含量基本达到稳定值,材料中可扩散氢含量与充氢电流密度满足关系式:
     动态充氢条件下,降低加载速率或增大充氢电流密度,X80管线钢的强度和塑性均降低,加载速率降至5×10-4 mm/min使得材料塑性降低88.84%。X80管线钢断裂强度随可扩散氢含量的对数线性降低:裂尖临界氢浓度与充氢电流密度满足关系式:断裂强度与裂尖临界氢浓度满足关系式:
     动态充氢断口同时出现韧窝、准解理和解理断口形貌,随试样中氢含量增加,韧窝尺寸变小、变浅,断口表面变平整,解理断裂所占的比重变大,断口以准解理、解理断裂为主。
The behaviors of X80 pipeline steel hydrogen-induced cracking(HIC) was investigated by electrochemistry hydrogen charging and slow strain rate tensile testing. The diffuse behaviors of hydrogen and the mechanical properties of X80 pipeline steel under different loading rates and different current densities was studied.
     The results shows:X80 pipeline steel after electrochemistry hydrogen charging in 0.5mol/LH2SO4 solution, with the charging time and current densities was increased, the hydrogen concentration increased. The hydrogen concentration in a linear relationship with current densities:
     Under dynamic hydrogen charging, with the loading rates was decreased or current densities was increased, the plastic and strength of X80 pipeline steel was decreased. The fracture strength of X80 pipeline steel decreased linearly with logarithm of the hydrogen concentration:
     The hydrogen-induced fracture had the appearance of dimples and cleavage facets, with the increase of hydrogen content, dimples became smaller and lighter. Fracture surface exhibits typical cleavage morphology.
     The criticality hydrogen concentration on crack tip increased linear with square root of the current densities: The fracture strength decreased linear with square root of the criticality hydrogen concentration:
引文
[1]黄志潜.X80级管线钢在高压大流量输气管道上的应用与发展前景[J].焊管,2005,28(2):1-9
    [2]庄传晶,冯耀荣,霍春勇,等.国内X80级管线钢的发展及今后的研究方向[J].焊管,2005,28(2):10-14
    [3]张旺峰,梁永芳,朱金华.石油专用管材的氢致开裂研究[J].西安公路交通大学学报,1998,18(3):28-30
    [4]董旭,胡士信.西气东输工程及其管道防腐蚀概况[J].材料保护,2001,34(12):1-3
    [5]冯耀荣,李鹤林.石油管材的氢致裂纹与滞后断裂[J].石油机械,1997,25(12):46-48
    [6]帅建,我国输气管道应力腐蚀开裂的调查和研究[J].油气储运,2006,25(4):22-26
    [7]尹成先,X70管线钢氢致开裂及应力腐蚀行为研究[D].西安建筑科技大学,2003
    [8]马秋荣,霍春勇,冯耀荣,国外X80管道钢管的研究与应用现状[J].油气储运,2000,19(11):9-11
    [9]李晓刚,郭兴蓬.材料腐蚀与防护[M].长沙:中南大学出版社,2009
    [10]刘道新.材料的腐蚀与防护[M].西安:西北大学出版社,2006
    [1]]肖纪美.应力作用下的金属腐蚀[M].北京:化学工业出版社,1990
    [12]鲜宁.典型管线钢应力腐蚀行为评定与控制方法的研究[D].西北工业大学,2007
    [13]孙希太,杨永弟.金属机械性能[M].北京:机械工业出版社,1982
    [14]吴萌顺.金属腐蚀研究[M].北京:冶金工业出版社,1993
    [15]Maocheng Yan, Yongji Wong. Study on hydrogen absorption of pipeline steel under cathodic charging[J]. Corrosion Science 48(2006) 432-444
    [16]张利,印仁和.测氢扩散系数的电化学交流法研究[J].电化学,2002,8(3):348-350
    [17]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2008
    [18]陈固邦,杜则裕.排液法测定熔敷金属中扩散氢的研究[J].焊接学报,1984,5(4):188-191
    [19]F. Zucchi, V. Grassi. Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic artificial sea water in the presence of sulphide ions[J]. Corrosion Science 48 (2006) 522-530
    [20]Zhang T Y, Zheng Y P, Acta Mater[J]. Corrosion Science,1998,46:5023
    [21]褚武扬,乔利杰.断裂与环境断裂[M].北京:科学出版社,2000
    [22]徐坚,孙秀奎.GH718合金氢渗透特性的研究[J].中国腐蚀与防护学报,1994,8(2):151-154
    [23]胡庚祥,蔡殉.材料科学基础[M].上海:上海交通大学出版社,2000
    [24]Hertzberg R W.Deformation and Fracture Mechanics of Engineering Materials [M].2nd Edition,New York:Wiley,1983
    [25]原显霞,徐则欣.电化学阻抗法侧定金属氢化物电极中氢的扩散系数[J].电化学,2001,7(3):321-324
    [26]C.J. McMahon Jr. Hydrogen-induced intergranular fracture of steel[J]Engineering Fracture Mechanicss 68 (2001)773-788
    [27]张涛,孙新岭.管道钢X80氢渗透研究[J].后勤工程学院学报,2003,1:16-19
    [28]张涛,姚远.管线钢氢致附加应力与氢致门槛应力的相关性[J].金属学报,2002,38(3):844-848
    [29]Douglas M. Symons. A comparison of internal hydrogen embrittlement and hydrogen environment embrittlement of X-750[J]Engineering Fracture Mechanics 68(2001) 751-771
    [30]张统一,褚武扬.氢致表观应力下降的原因[J].中国科学,1986,3:316-320
    [31]Maier H J,Popp W,Kaesche H.Effect of hydrogen on ductile fracture of a spheroidized low alloy steel[J].Mater.Sci.Eng.,1995,A 191:17-26
    [32]赵颖,王荣.X70管线钢电化学充氢后的力学行为研究[J].中国腐蚀与防护学报,2004,24(5):293-296
    [33]匡震邦,顾海澄.材料的力学性能[M].北京:高等教育出版社,1998
    [34]C.J. McMahon Jr. Hydrogen-induced intergranular fracture of steel[J]Engineering Fracture Mechanicss 68 (2001)773-788.
    [35]郑文龙,于青.钢的环境敏感断裂[M].北京:化学工业出版社,1988
    [36]张涛,龙军.管线钢氢致断裂门槛应力与氢渗透的相关性[J].机械工程材料,2003,27(10):14-17
    [37]Hirth J P.Effect of hydrogen on the properties of iron and steel[J].Metall.Trans.A.,1980,11A:861-890
    [38]王荣.氢对X70管线钢预置裂纹试样断裂性能的影响[J].中国腐蚀与防护学报,2008,28(2):81-85
    [39]杨兆艳.阴极极化对海水中907钢氢脆敏感性影响研究[M].中国海洋大学,2009
    [40]孙小立,冯耀荣.X80级管线钢的组织与力学性能[J].特殊钢,2006,27(3):11-14
    [41]Henry QHorstmann D.Macrofractography and Microfractography[M].Beijing:Mechanical Industry Press,1990
    [42]钟群鹏,赵子华.断口学[M].北京:高等教育出版社,2005
    [43]Rong Wang. Effects of hydrogen on the fracture roughness of X70 pipeline steel[J] Corrosion Science,2008,00618.
    [44]MCMeeking RM.J Mech Ohys Solids 1997;25:357.
    [45]R.P. Gangloff, Crack Tip Modeling of hydrogen environment embrittlement:Application to fracture mechanics life prediction, Mater. Sci. Eng. A 103 (1988)157-166.
    [46]S.L. Lee, D.J. Unger, A decohesion model of hydrogen assisted cracking, Eng. Fract. Mech.31 (1988)647-660.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700