用户名: 密码: 验证码:
烧结余热能高效发电研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国将节能减排定为钢铁工业重点研究目标之一,而高效回收和充分利用钢铁工业余热是未来钢铁生产深层次节能的突破口。随着国家大型钢铁项目的立项和节能减排的迫切要求,烧结工序中烧结机尾风箱烟气和烧结矿显热的高效回收与发电是亟待攻克的难题。论文以钢铁工业中烧结工序为研究对象,根据场协同原理和能量梯级利用方法,进行了烧结余热高效回收理论研究、烧结矿显热梯级回收实验研究、烧结余热高效回收装置及工艺研发和烧结余热电站优化选型与优化调度。四部分内容既相互独立又相互支撑、相互印证。主要科学问题涉及:
     1.建立烧结矿输送和冷却两个过程的换热模型,基于烧结能流图,揭示输送通道和冷却机内热质输运效应;根据对流传热优化的场协同原理,进行烧结矿气固换热机理分析,研发了立式冷却机和双螺旋冷却机,揭示中低温余热能传递中品位提升的科学本质。
     2.利用正交实验法进行烧结矿显热梯级回收实验,研究不同粒径、料厚、冷却凤量和进口风温下冷却机的换热特性,揭示烧结矿操作工艺和设备参数等因素对冷却机废气冷却速率和热源参数的影响,为冷却机的优化操作、设计和改进提供依据。
     3.根据协同回收和梯级利用方法,研发三进气余热锅炉和双工质热源余热锅炉,以期全面提升烧结余热回收装置的性能和效率,达到烧结余热热耗散最小的目标。进行烧结机及冷却机-余热锅炉-汽轮机热功转换的科学基础与循环协同规律研究,提出了烧结双余热源集成发电和旋冷机梯级发电先进工艺方案。
     4.以净发电功率为优化目标值,依据梯级利用方法,建立烧结余热电站热力计算和优化模型,进行热力系统及设备的优化选型。研究废气系统与汽水系统的耦合机制及冷却机适应烧结机制变化的响应策略,提出了单位烧结矿余热发电指标优化调度的方法,以达到对烧结余热电站运行的优化调度。
     论文从热能传递和转换的角度开展了烧结余热高效发电应用基础研究,开发了冷却机强化换热技术、烧结矿显热提取技术、烧结余热梯级回收技术和烧结余热电站优化选型四项关键技术。其研究成果为中低品位工业余热高效回收基础科学问题的研究提供了理论参考,也为钢铁工业节能减排提供了技术保障。
Energy-efficient and emission-reducing has been taken as one of the important research targets in iron and steel industry in China, and efficient recovery and full use of the waste heat in iron and steel industry will be as the breakthrough of deep-level energy conservation in iron and steel production. With project selection of major iron and steel project and urgent demand in energy-efficient and emission-reducing in China, efficient recovery and power generation of sensible heat of flue gas from sintering machine tail bellows and sinter ore in sintering process is an urgent problem to overcome. In this dissertation, the sintering process in iron and steel industry is taken as the research object. And based on field synergy principle and energy cascade utilization method, lots of work including theoretical study on efficient recovery of sintering waste heat, experimental study on sensible heat cascade recovery of sinter, development of efficient recovery device and process about sintering waste heat and optimal selection and scheduling of sintering waste heat power station is done. Above four parts, they are independent of each other, support each other and prove each other. The major scientific issues involved are as follows:
     1. Heat transfer model of two processes including sinter conveying and sinter cooling is established. Based on the sintering energy flow diagram, thermomass transport effect on transport pathways and in cooler is revealed. According to field synergy principle of convective heat transfer optimization, the mechanism of sinter gas-solid heat transfer is analyzed, vertical sinter cooler and double-helix sinter cooler are developed, and the scientific essence of improvement of medium-low temperature waste heat grade is revealed.
     2. Combined with orthogonal experimental method, the experiment of sinter sensible heat cascade recovery is done. Heat transfer characteristic in different particle size, material thickness, cooling air volume and air temperature of the cooler inlet is discussed. The influence of sinter operation process and equipment parameters and other factors on cooling rate of cooler exhaust gas and heat source parameters is revealed. Above work can provide basis for the optimization operation, design and improvement of the cooler.
     3. According to the method of collaborative heat recovery and cascade utilization, the three-inlet HRSG and dual-source HRSG are developed to enhance comprehensively the performance and efficiency of the sintering waste heat recovery device, and to achieve the goal of minimizing the sintering waste heat dissipation. The dissertation researches scientific basis and circulation collaborative law of convertion from heat to mechanical energy among sintering machine and cooler, waste heat boiler and steam turbine, then puts forward advanced progress program about sintering double waste heat source integrated power generation and helical cooler cascade power generation.
     4. Net power output is taken as the optimization target. According to the method of cascade utilization, this dissertation builds thermodynamic calculation and optimization model of sintering waste heat power station, and makes optimized selection of thermal system and equipment, at the same time, researches coupling mechanism of exhaust system and steam-water system and response strategy of cooler adapting to sintering mechanism change, then provides the optimal dispatch method about unit sinter waste heat power generation indicators to achieve optimized scheduling to sintering waste heat power station operation.
     At the view of heat transfer and conversion, this dissertation carries out applied basic research on efficient power generation of sintering waste heat, and develops four key technologies includes the technology of cooler heat transfer enhancement, technology of sinter sensible heat extraction, technology of cascade recovery of sintering waste heat, technology of optimizated selection of sintering waste heat power station. The research results provide theoretical reference for basic science problem research about low-medium grade industrial waste heat efficient recovery, and also offer technical assurance for energy-efficient and emission-reducing in the iron and steel industry.
引文
[1]袁建丽,韩巍,金红光,等.新型塔式太阳能热发电系统集成研究[J].中国电机工程学报,2010,30(29):115-121
    [2]林汝谋,金红光,蔡睿贤.新一代能源动力系统的研究方向与进展[J].动力工程,2003,23(3):2370-2376
    [3]冶金工业部长沙黑色冶金矿山设计研究院.烧结设计手册[M].北京:冶金工业出版社,2008:1-13
    [4]刘智平.干熄焦技术及其应用[J].钢铁研究,2004,(1):58-62
    [5]Wang F J, Chiou J S, Wub P C. Economic feasibility of waste heat to power conversion[J]. Applied Energy,2007,84(4):442-454
    [6]Qiu K, Hayden A C S. Performance analysis and modeling of energy from waste combined cycles[J]. Applied Thermal Engineering,2009, 29(14-15):3049-3055
    [7]Georges Descombes, Serge Boudigues. Modelling of waste heat recovery for combined heat and power applications[J]. Applied Thermal Engineering,2009, 29(13):2610-2616
    [8]汤学忠.热能转换与利用(第二版)[M].北京:冶金工业出版社,2004:19-64
    [9]Guo Z C, Fu Z X. Current Situation of Energy Consumption and Measures Taken for Energy Saving in the Iron and Steel Industry in China[J]. Energy, 2010,35(11):4356-4360
    [10]杜涛,蔡九菊.钢铁企业物质流、能量流和污染物流研究[J].钢铁,2006,41(4):82-87
    [11]李冬庆.烧结冷却机余热发电系统及其关键技术[J].烧结球团,2010,35(6):5-12
    [12]蔡九菊,王建军,陈春霞,等.钢铁企业余热资源的回收与利用[J].钢铁,2007,42(6):1-7
    [13]蔡九菊,董辉,杜涛,等.烧结过程余热资源分级回收与梯级利用研究[J].钢铁,2011,46(4):88-92
    [14]王绍文,杨景玲,赵锐锐,等.冶金工业节能减排技术指南[M].北京:化学工业出版社,2008:42-56
    [15]Petr Stehlik. Heat transfer as an important subject in waste-to-energy systems[J]. Applied Thermal Engineering,2007,27(10):1658-1670
    [16]路晓雯.烧结余热发电系统(?)分析及蒸汽参数优化[D].唐山:河北理工大学,201 0
    [17]Feng Yang, Xiugan Yuan, Guiping Lin. Waste heat recovery using heat pipe heat exchanger for heating automobile using exhaust gas[J]. Applied Thermal Engineering,2003,23(3):367-372
    [18]Bebar L, Martinak P, Hajek J, et al. Waste to energy in the field of thermal processing of waste[J]. Applied Thermal Engineering,2002,22(8):897-906
    [19]张福滨.纯低温余热发电强制闪蒸技术的应用浅析[J].水泥,2006,(12):29-31
    [20]Mehmet Kanoglu, Ibrahim Dincer, Marc A Rosen. Understanding energy and exergy efficiencies for improved energy management in power plants[J]. Energy Policy,2007,35(7):3967-3978
    [21]蔡九菊,杜涛,陈春霞,等.钢铁企业余热资源的回收利用及关键技术研究[C].2007中国钢铁年会,成都,2007
    [22]王建军,蔡九菊,陈春霞,等.我国钢铁工业余热余能调研报告[J].工业加热,2007,36(2):1-3
    [23]丁毅,史德明.马钢烧结带冷机余热发电[J].冶金能源,2007,26(1):49-53
    [24]冯卫强,于淑梅,郭江龙.低温废热高效回收系统的(?)优化[J].电站辅机,2004,91(4):26-29
    [25]王国顺.单压余热锅炉闪蒸技术的研究[J].电站系统工程,2005,21(5):19-21
    [26]Yiping Dai, Jiangfeng Wang, Lin Gao. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery[J]. Energy Conversion and Management,2009,50(3):576-582
    [27]Donghong Wei, Xuesheng Lu, Zhen Lu, et al. Performance analysis and optimization of organic rankine cycle for waste heat recovery[J]. Energy Conversion & Management,2007,48(4):1113-1119
    [28]Jamialahmadi M, Steinhagen H M, lzadpanah M R. Pressure drop, gas hold-up and heat transfer during single and two-phase flow through porous media[J]. International Journal of Heat and Fluid Flow,2005,26(1):156-172
    [29]Peixue Jiang, Guangshu Si, Meng Li, et al. Experimental and numerical investigation of forced convection heat transfer of air in non-sintered porous media[J]. Experimental Thermal and Fluid Science,2004,28(6):545-555
    [30]Cheng-Ting Hsu, Gia-Yeh Huang, Hsu-Shen Chu, et al. Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators[J]. Applied Energy,2011,88(4):1291-1297
    [31]姚秀平.燃气轮机及其联合循环发电[M].北京:中国电力出版社,2004:96-124
    [32]Manuel Valders, Jose L Rapun. Optimization of heat recovery steam generators for combined cycle gas turbines power plants[J]. Applied Thermal Engineering, 2001,21(11):1149-1159
    [33]Lin Gao, Hongguang Jin, Zelong Liu, et al. Exergy analysis of coal-based polygeneration system for power and chemical production[J]. Energy,2004, 29(12):2359-2371
    [34]Zaltash A, Petrov A Y, Rizy D T, et al. Laboratory R&D on integrated energy systems[J]. Applied Thermal Engineering,2006,26(l):28-35
    [35]董辉,力杰,罗远秋,等.烧结矿冷却过程的实验研究[J].东北大学学报,2010,31(5):689-692
    [36]罗远秋.烧结矿冷却过程实验与数值模拟研究[D].沈阳:东北大学,2009
    [37]Castro J, Oliva A, Perez-Segarra C D, et al. Modelling of the heat exchangers of a small capacity, hot water driven, air-cooled H2O-LiBr absorption cooling machine[J]. International Journal of Refrigeration,2008,31(1):75-86
    [38]朱家玲,刘国强,张伟.利用第二类吸收式热泵回收地热余热的模拟研究[J].太阳能学报,2007,28(7):745-750
    [39]Cuizhen Zhang, Mo Yang, Mei Lu, et al. Experimental research on LiBr refrigeration-Heat pump system applied in CCHP system[J]. Applied Thermal Engineering,2011,31(17):3706-3712
    [40]岳勇,陈金荣,卞国强.某余热锅炉启动问题分析及措施[J].锅炉技术2006,37:58-60
    [41]李辰砂,梁吉,李淞平,等.利用吸收式热泵回收工业废热技术[J].化工装备技术,2001,22(1):20-26
    [42]张长江.溴化锂吸收式技术在余热利用领域中的应用[J].上海电力,2009,(4):269-273
    [43]李崇祥.节能原理与技术[M].西安:西安交通大学出版社,2004:1-46
    [44]国家自然科学基金委员会工程与材料科学部.工程热物理与能源利用[M].北京:科学出版社,2006:23-56
    [45]Jiangfeng Wang, Yiping Dai, Lin Gao. Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry[J]. Applied Energy,2009,86(6):941-948
    [46]胡长庆,师学峰,张玉柱,等.烧结余热回收发电关键技术[J].钢铁,2011,46(1):86-91
    [47]Pinelli M, Bucci G. Numerical based design of exhaust gas system in a cogeneration power plant[J]. Applied Energy,2009,86(6):857-866
    [48]金红光,林汝谋.能的综合梯级利用与燃气轮机总能利用[M].北京:科学出版社,2008:65-89
    [49]谢泽民.宝钢1、3号烧结机设置余热回收装置[J].钢铁,2003,38(11):62-65
    [50]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006:259-280
    [51]Licinio M Ferreira, Jose A M Castro, Alirio E Rodrigues. An analytical and experimental study of heat transfer in fixed bed[J]. International Journal of Mass Transfer,2002,45(5):951-961
    [52]Jang J Y, Chiu Y W.3-D Transient conjugated heat transfer and fluid flow analysis for the cooling process of sintered bed[J]. Applied Thermal Engineering,2009,29(14-15):2895-2903
    [53]冯绍航,徐德龙,李辉,等.篦冷机中气固两相换热过程的模拟研究[J].西安建筑科技大学学报(自然科学版),2007,39(2):224-229
    [54]张欣,温治,楼国锋,等.高温烧结矿气-固换热过程数值模拟及参数分析[J].北京科技大学学报,2011,33(3):339-345
    [55]夏婕.一种新型冷却技术中应用多孔介质的机理研究[D].南京:南京航空航天大学,2006
    [56]林宗虎,汪军,李瑞阳,等.强化传热技术[M].北京:化学工业出版社,2006:34-63
    [57]陈群,吴晶,任建勋.对流换热过程的热力优化与传热优化[J].工程热物理学报,2008,29(2):271-274
    [58]陈振乾,施明恒.顶部放热的矩形空间多孔介质中自然对流[J].东南大学学报,1997,27(5):133-137
    [59]Mohamad A A. Heat transfer enhancements in heat exchangers fitted with porous media Part I:constant wall temperature[J]. International Journal of Thermal Sciences,2003,42(4):385-395
    [60]杨勃.具有多孔介质壁面的流道中流动与热质传递的数值模拟[D].大连: 大连理工大学,2005
    [61]Revnic C, Grosan T, Pop I, et al. Free convection in a square cavity filled with a bidisperse porous medium[J]. International Journal of Thermal Sciences, 2009,48(10):1876-1883
    [62]Ruben Juanes. Nonequilibrium effects in models of three-phase flow in porous media [J]. Advances in Water Resources,2009,31(4):661-673
    [63]Yasin Varol, Hakan F Oztop, loan Pop, et al. Natural convection in a diagonally divided square cavity filled with a porous medium[J]. International Journal of Thermal Sciences,2009,48(7):1405-1415
    [64]Virto L, Carbonell M, Castilla R, et al. Heating of saturated porous media in practice Several cause of local thermal non-equilibrium[J]. International Journal of Heat and Mass Transfer,2009,52(23-24):5412-5422
    [65]李志信,过增元.对流传热优化的场协同原理[M].北京:科学出版社,2010: 60-69
    [66]程伟良,韩晓娟,孙宏玉.质量传递过程中的场协同作用[J].中国电机工程学报,2005,25(13):105-108
    [67]Niksiar A, Rahimi A. A study on deviation of noncatalytic gas-solid reaction models due to heat effects and changing of solid structure[J]. Powder Technology,2009,193(1):101-109
    [68]Chueh C C, Secanell M, Bangerth W, et al. Multi-level adaptive simulation of transient two-phase flow in heterogeneous porous media[J]. Computers and Fluids,2010,39(9):1585-1596
    [69]Peixue Jiang, Meng Li, Tianjian Lu, et al. Experimental research on convection heat transfer in sintered porous plate channels[J]. International Journal of Heat and Mass Transfer,2004,47(10-11):2085-2096
    [70]Jiang Peixue, Xu Yijun, Jing Lv, et al. Experimental investigation of convection heat transfer of CO2 at super-critical pressures in vertical mini-tubes and in porous media[J]. Applied Thermal Engineering,2004, 24(8-9):1255-1270
    [71]Heggs P J, Fixed beds. Heat Exchanger Design Handbook[M]. Hemisphere Pub. Corp,1983
    [72]周筠清.冶金过程热物理[M].北京:北京科技大学,1995
    [73]Lagueer O, Amara S B, Flick D. Heat transfer between wall and packed bed crossed by low velocity airflow[J]. Applied Thermal Engineering,2006, 26(16):1951-1960
    [74]Caputo A C, Carsarelli G, Pelagagge P M. Analysis of heat recovery in gas-solid moving beds using a simulation approach[J]. Applied Thermal Engineering,1996,16(1):89-99
    [75]Alazmi B, Vafai k. Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer[J]. International Journal of Heat and Mass Transfer,2001,44(9):1735-1749
    [76]张家元,张小辉,周孑民,等.烧结矿冷却过程正交模拟优化试验研究[J].钢铁,2011,46(7):86-89
    [77]张小辉,张家元,戴传德,等.烧结矿冷却过程数值仿真与优化[J].化工学报,2011,62(11):3081-3087
    [78]王唯威.分形多孔介质内导热与流动数值模拟研究[D].北京:中国科学院,2006
    [79]赖坤.烧结环冷机流场与温度场数值模拟[D].昆明:昆明理工大学,2009
    [80]Leong J C, Jin K W, Shiau J S, et al. Effect of sinter layer porosity distribution on flow and temperature fields in a sinter cooler[J]. International Journal of Minerals, Metallurgy and Materials,2009,16(3):265-272
    [81]Christof Meile, Kagan Tuncay. Scale dependence of reaction rates in porous media[J]. Advances in Water Resources,2006,29(1):62-71
    [82]Hetsroni G, Gurevich M, Rozenblit R. Sintered porous medium heat sink for cooling of high-power mini-devices[J]. International Journal of Heat and Fluid Flow,2006,27(2):259-266
    [83]张欣,温治,楼国峰,等.高温烧结矿气-固换热过程数值模拟及参数分析[J].北京科技大学学报,2011,33(3):339-345
    [84]徐剑凤,彭琦,付加林,等.火电厂热力系统(?)分析[J].能源工程,2001,(17):21-24
    [85]董厚忱.(?)分析与锅炉设计[J].动力工程,2008,28(1):1-5
    [86]Alessandro Franco, Nicola giannini. A general method for the optimum design of heat recovery steam generators [J]. Energy,2006,31(15):3342-3361
    [87]Mohamad A A. Heat transfer enhancements in heat exchangers fitted with porous media Part Ⅰ:constant wall temperature[J]. International Journal of Thermal Sciences,2003,42(4):385-395
    [88]于淑梅,傅松,陈海平.低温废热高效回收系统及其(?)评价[J].热能动力工程,2002,17(99):285-287
    [89]Bai Feifei, Zhang Zaoxiao. Integration of low-level waste heat recovery and liquefied nature gas cold energy utilization[J]. Chinese Journal of Chemical Engineering,2008,16(1):95-99
    [90]肖衍党,李晨飞,韩涛.烧结余热发电技术及系统的优化分析[J].烧结球团,2011,36(3):47-53
    [91]Butcher C J, Reddy B V. Second law analysis of a waste heat recovery based power generation system[J]. International Journal of Heat and Mass Transfer, 2007,50(11-12):2355-2363
    [92]岳伟挺,李素芬.联合循环余热锅炉蒸汽参数的优化分析[J].动力工程,2002,22(6):2064-2066
    [93]温立,李正阳,王丽莉.燃气-蒸汽联合循环余热锅炉参数优化[J].哈尔滨理工大学学报,2003,8(3):71-73
    [94]焦树建.论设计余热锅炉时必须考虑的若干问题[J].燃气轮机技术,2003,16(1):33-38,60
    [95]冯绍航.篦式冷却机的换热理论研究[D].西安:西安建筑科技大学,2004
    [96]Xing Niu, Jianlin Yu, Shuzhong Wang. Experimental study on low-temperature waste heat thermoelectric generator[J]. Journal of Power Sources,2009, 188(2):621-626
    [97]车得福,刘艳华.烟气热能梯级利用[M].北京:化学工业出版社,2006:1-14
    [98]刘业奎,王黎,严文君,等.余热多级动力回收系统及其优化[J].热能动力工程,2003,18(6):564-567,576
    [99]Yari M, Mahmoudi S M S. A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles[J]. Heat Mass Transfer,2011, 47(2):181-196
    [100]Jacek Kalina. Integrated biomass gasification combined cycle distributed generation plant with reciprocating gas engine and ORC[J]. Applied Thermal Engineering,2011,31(14-15):2829-2840
    [101]Xia S K, Lisboa M B, Serra E T, et al. Continuous cooling sintering:a new method for Bi-2223/Ag tape processing[J]. Physica C,2001,354(1):463-466
    [102]Lin Gao, Hui Wu, Hongguang Jin, et al. System study of combined cooling, heating and power system for eco-industrial parks[J]. International Journal of Energy Research,2008,32(12):1107-1118
    [103]Funahashi R. Waste Heat Recovery Using Thermoelectric Oxide Materials[J]. Science of Advanced Materials,2011,3(4):682-686
    [104]Maruoka N, Mizuochi T, Purwanto H, et al. Feasibility Study for Recovering Waste Heat in the Steelmaking Industry Using a Chemical Recuperator[J]. ISIJ International,2004,44(2):257-262
    [105]Alessandro Franco, Nicola Giannini. Optimum thermal design of modular compact heat exchangers structure for heat recovery steam generators[J]. Applied Thermal Engineering,2005,25(8-9):1293-1313
    [106]Marie Munster, Henrik Lund. Use of waste for heat, electricity and transport-Challenges when performing energy system analysis[J]. Energy,2009, 34(5):636-644
    [107]Liszka M, Manfrida G, Ziebik A. Parametric study of HRSG in case of repowered industrial CHP plant[J]. Energy Conversion and Management,2003, 44:995-1012
    [108]Ali Behbahani-nia, Mahmood Bagheri, Rasool Bahrampoury. Optimization of fire tube heat recovery steam generators for cogeneration plants through genetic algorithm[J]. Applied Thermal Engineering,2010,30(16):2378-2385
    [109]Reddy B V, Ramkiran G, Kumar K A, et al. Second law analysis of a waste heat recovery steam generator[J]. International Journal of Heat and Mass Transfer,2002,45(9):1807-1814
    [110]Mohagheghi M, Shayegan J. Thermodynamic optimization of design variables and heat exchangers layout in HRSGs for CCGT, using genetic algorithm[J]. Applied Thermal Engineering,2009,29(2-3):290-299
    [111]邹泉,朱小良.基于遗传算法的余热锅炉参数优化设计[J].动力工程,2005,25(4): 513-516
    [112]Genku Kayo, Ryozo Ooka. Building energy system optimizations with utilization of waste heat from cogenerations by means of genetic algorithm[J], Energy and Buildings,2010,42(7):985-991
    [113]白文莉,吴忠诠.纯低温水泥窑余热锅炉技术的开发[J].电站系统工程,2006,22(2):39-40
    [114]Marie-Noelle Dumont, Georges Heyen. Mathematical modelling and design of an advanced once-through heat recovery steam generator[J]. Computers and Chemical Engineering,2004,28(5):651-660
    [115]Casarosa C, Donatini F, Franco A. Thermoeconomic optimization of heat recovery steam generators operating parameters for combined plants[J]. Energy, 2004,29(3):389-414
    [116]Srinivas T, Gupta Avssks, Reddy B V. Sensitivity analysis of STIG based combined cycle with dual pressure HRSG[J]. ScienceDirect,2008, 47(9):1226-1234
    [117]陈慧,考宏涛,郭涛,等.纯低温余热发电系统中余热锅炉的热力学分析[J].动力工程学报,2010,30(2):151-155
    [118]Aljundi I H. Energy and exergy analysis of a steam power plant in Jordan[J]. Applied Thermal Engineering,2009,29(2-3):324-328
    [119]张瑞堂,傅国水,李真明,等.济钢320m2烧结机余热发电投产实践[J].烧结球团,2007,32(5):47-51
    [120]杨承,杨泽亮,蔡睿贤.基于全工况性能的冷热电联产系统效率指标比较[J].中国电机工程学报,2008,28(2):8-13
    [121]和彬彬,段立强,杨勇平.冷热电联产系统新评价准则研究[J].热能与动力工程,2009,24(5):592-596
    [122]刘庆才,陈恩鉴,王显龙,等.中低温余热锅炉蒸汽参数与最大压力的确定[J].冶金能源,2003,22(5):54-57
    [123]张福滨,赖铁钢.单压余热发电系统主蒸汽参数的选择[J].水泥,2006,(10):32-35
    [124]黄伙基.余热锅炉蒸汽系统的优化配置及其变工况运行特点[J].燃气轮机技术,2006,19(4):60-63,70
    [125]焦树建.论余热锅炉型联合循环中双压再热式余热锅炉的特性与汽轮机特性的优化匹配问题[J].燃气轮机技术,2001,14(2):14-23
    [126]潘鹤.烧结环冷机系统测试技术及优化研究[D].鞍山:辽宁科技大学,2007
    [127]Hui-yan Jiang, Yan Huo, Xiao-jie Zhou, et al. Optimization Approach of Sintering Feature Parameter Based on Fuzzy SVM[C].2008 International Symposiums, Moscow, Russia,2008
    [128]Pedro J Mago, Louay M Chamra, Kalyan Srinivasan. et al. An examination of regenerative organic Rankine cycles using dry fluids[J]. Applied Thermal Engineering,2008,28(8-9):998-1007
    [129]Tzu-Chen Hung. Waste heat recovery of organic Rankine cycle using dry fluids[J]. Energy Conversion and Management,2001,42(5):539-553
    [130]Donghong Wei, Xuesheng Lu, Zhen Lu, et al. Performance analysis and optimization of organic Rankine cycle(ORC) for waste heat recovery[J]. Energy Conversion and Management,2007,48(4):1113-1119
    [131]Mahmoud E1-Halwagi, Dustin Harell, Dennis Spriggs H. Targeting cogeneration and waste utilization through process integration[J]. Applied Energy,2009,86(6):880-887
    [132]Yiping Dai, Jiangfeng Wang, Lin Gao. Exergy analysis, parametric analysis and optimization for a novel combined power and ejector refrigeration cycle[J]. Applied Thermal Engineering,2009,29(10):1983-1990
    [133]Herena Torio, Dietrich Schmidt. Development of system concepts for improving the performance of a waste heat district heating network with exergy analysis[J]. Energy and Buildings,2010,42(10):1601-1609

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700