用户名: 密码: 验证码:
基于高光谱遥感的水稻氮素营养参数监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物生长遥感的光谱参数与定量模型是作物生长实时监测与精确诊断研究的重要内容。数字农业技术的发展迫切需要低成本、高密度、高精度和高可靠性的作物氮素营养信息获取技术。而地空遥感技术的农业应用使大面积快速监测作物长势及估测化学组分成为可能。本研究的目的是以水稻为研究对象,基于地面ASD高光谱、CROPSCAN多光谱信息和星载高(多)光谱影像数据,综合运用高光谱信提取技术、遥感影像解译技术、水稻生理生态测试技术,系统分析不同年份、不同试验条件下水稻冠层高(多)光谱反射特征及其与氮素营养指标的相关关系,比较不同宽窄波段指数预测水稻氮营养状况的效果,构建地—空不同尺度下水稻氮素营养状况相关指标的敏感光谱特征参量及定量估测模型。预期研究结果有助于确立基于地面和空间高光谱技术进行水稻氮素营养和生长状况实时监测的关键技术。
     首先系统分析了水稻的红边区域光谱、红边位置特征和红边面积形状特征及其与冠层叶片氮素状况的关系。结果表明,水稻红边区域光谱受施氮水平和品种影响较大,导数光谱在红边区域的700nm、720nm和730nm附近出现“三峰”现象。经典的红边位置由于“三峰”特征现象而导致其对水稻氮浓度变化不敏感,不适合水稻氮素状况的定量监测。倒高斯模型、线性内插方法和线性外推法构造的红边位置随水稻氮浓度连续变化,能用于水稻氮浓度的定量监测;另外,基于695nm,700nnm和705nm等3个波段的拉格朗日算法也可应用于水稻冠层叶片氮浓度的估测。比较不同红边位置发现,改进型线性外推法在水稻冠层叶片氮浓度监测应用上较其他几种算法有较明显优势,是适合于水稻冠层叶片氮浓度监测的最佳红边位置拟合方法。同时,基于两两峰值波段划分所得红边子面积所构成的比值(双峰对称度)、归一化差值(归一化对称度)参数与氮浓度之间的关系密切,是2种良好的估测水稻叶层氮浓度的红边面积形状参数,其中,双峰对称度DPS(A675-700,A675-755),即由675-700nm区域面积与675-755nm区域面积的比值,以及双峰归一化指数(?)DPS(A675-700, A700.755),即由675-700nm区域面积和700-755nm区域面积构成的归一化值,对水稻叶层氮浓度的估测效果最好,因而可用于不同水稻品种和生长条件下的叶层氮浓度估测。而光谱参数DPS (A720-730, A700-720)可用于预测水稻叶层的氮积累量。
     定量研究了水稻冠层高光谱反射率对叶层氮素状况的敏感性,确立了叶层氮素状况与冠层高光谱植被指数的定量关系。结果显示,对水稻氮状况反应最敏感的波段是红光665-675nm、蓝光490-500nm和红边区域波段680-760nm。两波段植被指数与水稻叶层氮浓度相关最好的是绿光波段组合,为550-600nm与500-550nm;三波段植被指数的入选波段为蓝光波段组合或红边波段与蓝光波段组合。两波段植被指数中与叶层氮浓度相关性最好的是比值指数R(533,565)。三波段组合植被指数显著提高了对叶层氮浓度的预测性,新型蓝光氮指数R434/(R496+R401)和R705/(R717+R491)的模型预测精度和普适性较R(533,565)显著提高。同时,通过分析已有的色素或氮素相关植被指数与水稻叶层氮浓度的关系,发现部分两波段和三波段植被指数在水稻上有较好的应用,其中两波段植被指数有ZM、GM-2、RI-1dB、RI-2dB和NDRE,三波段植被指数有mND705和PRIc,且三波段植被指数表现优于两波段指数。然而,与本文所得新型蓝光氮指数R434/(R496+R401)和R705/(R717+R491)相比,已有光谱参数的预测性和普适性均较低,说明R434/(R496+R401)和R705/(R717+R491)是一种良好的水稻叶层氮浓度新型估测参数。结果还显示,比值植被指数RVI(827,742)可以有效预测不同生长条件下水稻叶片氮积累量的动态变化。
     基于ASD高光谱数据,系统模拟了不同光谱分辨率对350-1000nm波段范围水稻冠层反射光谱、敏感植被指数的效应,比较了ASD和Cropscan两种传感器在水稻叶层氮浓度估测中的差异。结果表明,光谱分辨率在20nm以内时,对冠层反射光谱影响较小,而当光谱分辨率低于50nm后则显著影响冠层光谱反射率,主要体现在红谷变浅,绿峰变矮,红边陡峭程度变小。不同叶片氮浓度条件下,光谱分辨率对近红外光谱影响较小,对可见光影响较大,红光区区分不同氮水平的能力逐渐降低,200nm分辨率内绿光区均可较好的区分不同氮水平。近红外波段(NIR)与红边(Red edge)、红光(Red)和绿光(Green)波段组成的比值、归一化差值和差值指数值随光谱分辨率的降低均呈下降趋势。其中NIR与Red edge、 Red组成的植被指数值低于20nm分辨率后下降趋势较明显,但20nm内数值变化较小;而RI(NIR,Green)和NI(NIR,Green)在200nnm分辨率内均较稳定,之后才逐渐下降,但DI(NIR,Green)在低于20nm分辨率时降趋势较明显。另外,水稻氮敏感参数R434/(R496+R401)、R705/(R717+R491)和R533/R565随光谱分辨率的变化均较平缓,在300nm分辨率内值变化较小,说明这些参数对不同分辨率传感器有一定的普适性。
     通过分析不同光谱分辨率反射光谱的两波段组合指数与水稻冠层叶片氮浓度的关系,发现光谱分辨率在10nm以内,对波段组合范围及其与氮浓度的相关关系没有显著影响;当分辨率降低到15nm后,与氮素相关显著的波段组合区域开始减少,至150nnm分辨率,相关显著的波段组合仅剩绿绿组合;而小于150nm分辨率后,则变为绿蓝或蓝蓝组合,同时相关性显著降低。光谱分辨率对不同的植被指数影响程度不一样。如对于归一化指数ND(760,710),近红外参考波段760nm波段的分辨率在3-200nm间对预测效果影响不大,而红边波段710nm,则要求分辨率在20nnm内才具有较好效果。对于绿光波段比值指数R(533,565),当565nm的分辨率在50nm以内、533nm分辨率在25nnm以内时,两波段任意分辨率的组合均有较好预测效果,超出此范围,特定的分辨率组合才能获得较好预测效果。另外,比较Cropscan与ASD两种传感器的光谱反射率的差异显示,不同波长范围的宽窄波段反射率可能除了受光谱分辨率的影响外,还受施氮水平、水稻品种及生育时期等因素的影响。水稻生育前后期,两种传感器的差异较大,而在水稻旺盛生长期(抽穗期)差异较小。总体上看,可见光和短波红外波段的宽窄传感器的反射率差异较大,同时也易受施氮水平、品种和生育期的影响。另外,基于ASD窄波段的预测精度仅稍高于基于Cropscan的预测效果,但前者对拔节前(未封行)氮浓度拟合较差,而对封行后氮浓度拟合好于后者。
     分析确立了水稻叶片色素含量状况、叶面积指数(LAI)、叶片光合速率与冠层高光谱参数的关系及定量监测模型。结果表明,与CHLa和CHLa+b浓度相关较好的原始光谱比值指数是红边波段714nm和近红外波段760nm组成的RI(714,760);归一化指数和差值指数均为绿光波段组合,ND(543,565)和DI(562,543).与CHLa浓度相关较好的导数光谱指数为导数比值指数R(D_(744),D_(761))和归一化指数ND(D_(748),D_(761))。与原始光谱植被指数相比,导数比值和归一化指数与CHL浓度的拟合决定系数大幅提高。三波段组合而成的植被指数(修正型归一化指数gmND705)与水稻冠层叶片叶绿素浓度呈极显著相关关系,相关程度显著高于2波段植被指数。而与CHLa和CHLa+b密度相关较好的波段组合均为红边末端波段743nm和近红外波段822nm组成的植被指数。比值指数RI(743,822)、归一化指数ND(743,822)和均与水稻叶层叶绿素密度呈极显著直线负相关关系。与叶层CHL密度直线相关程度最高导数光谱指数是归一化指数ND(D511,D771)和差值指数DI(D549,D779)。在CHL密度估测中,与原始光谱指数相比,导数光谱指数并未提高相关性。综合比较基于不同植被参数的叶绿素状况模型预测的R2、RMSE和RE值,发现绿色改进型线归一化指数gmND705用于预测叶绿素a和叶绿素a+b浓度,归一化指数ND(743,822)用于预测叶绿素a和叶绿素a+b密度的效果最佳。另外,原始光谱组成的2波段差值指数形式估测水稻叶面积指数效果最好,其次为比值和归一化植被指数。同样,一阶导数光谱组成的2波段差值形式与LAI的组合相关性显著高于比值和归一化两种形式,相关最好的植被参数是红光和近红外光组成的导数差值指数DVI(D676,D778),但总体上导数光谱指数不如原始光谱指数与LAI关系密切。独立试验数据的检验结果表明,以差值指数DVI(854,760)为变量建立的水稻LAI监测模型可有效地用于水稻LAI的估测。另外,比值指数R(810,680)可以较好地监测不同水氮条件下水稻叶片的光合特征。
     综合研究了不同氮素水平下水稻地面冠层高光谱数据、星载高光谱影像(Hyperion)和多光谱影像数据(TM和ALOS)特征及其与水稻叶层氮状况的定量关系。结果表明,大气显著影响水稻冠层地面光谱反射率,大气影响使可见光反射率值变大,使短波红外部分波段反射率值变小。FLAASH大气校正模型对Hyperion和TM卫星图像、经验线性法对ALOS图像有良好的大气校正结果。通过地、空不同水平估测水稻叶层氮素状况的高光谱参数基本一致,Hyperion光谱与水稻叶层氮浓度相关较好的植被参数有绿光修正归一化指数gmND(760,710)、改进型线性外推红边位置、比值植被指数RVI(884,690)和归一化植被指数NDVI(884,690).与Hyperion相比,TM和ALOS无法获取红边参数等高光谱参数,但由篮、红和近红外等三个波段组合而成的蓝色修正归一化植被指数(R830-R660)/(R830+R660-2×R485)和(R_(825)-R_(650))/(R_(825)+R_(650)-2×R_(460))与氮浓度相关性相关明显高于2波段(?)DVI(NIR,R),且与Hyperion的估测精度类似。另外,Hyperion光谱与水稻叶层氮积累量相关较好的植被参数是RI(830,742),而TM和ALOS均为ND(NIR,Green),这2个参数可作为大尺度水稻叶层氮积累量估测的适宜参数。ALOS在水稻氮素状况的光谱参数估测能力上与TM类似,但其空间分辨率更高,在植被生长监测上展示良好的应用前景。
The spectral parameters and monitoring models in remote sensing studies are of key importance for information acquisition and diagnosis on crop growth status. At present, development of digital agriculture presents an urgent need for low-cost, reliable, consistent and precise techniques for monitoring nitrogen status in crop plants. Recent success of remote sensing in agricultural application has made it possible to rapidly monitor growth status and biochemical components in large-area field crops. Implication of various ground-based and space-borne remote sensed information and instruments is receiving more and more attention in existing research. This study was undertaken to make a systematic analysis on the characteristics of the reflectance spectra, compare prediction ability of nitrogen status with vegetation indices based on narrow and wide bands, and develop key spectral indices and quantitative models for nitrogen parameter estimation at ground and space levels, based on canopy hyper-spectral (multi-spectral) and image spectral reflectance of field-grown rice with varied nitrogen levels and rice varieties in different years. This would help to establish the key technology for real-time monitoring of plant nitrogen status with ground and satellite hyper-spectral sensors in rice production.
     Firstly, a systematic analysis was made on the characteristics of the first-derivative reflectance spectra in red edge area, and the quantitative relationship of red edge position (REP) and red edge area shape parameters to canopy leaf nitrogen concentrations under varied nitrogen rates and rice varieties in different field experiments. The results showed that spectrum in red edge area was significantly affected by different nitrogen levels and different rice varieties, and "three-peak" feature could be observed with the first derivative spectrum at about700nm,720nm and730nm bands, respectively. Traditional REP was not sensitive to canopy leaf nitrogen concentration because of the three-peak feature, but REPs based on inverted Gaussian fitting technique, linear four-point interpolation technique, linear extrapolation method and adjusted linear extrapolation method generated continuous REP data, and could be used to estimate canopy leaf nitrogen concentration. Besides, REP from a three-point Lagrangian interpolation with three first-derivatives bands (695nm, 700nm and705nm) also had a good relationship with canopy leaf nitrogen concentration. Comparison of these REP revealed that the adjusted linear extrapolation method (755FD73o+675FD700)/(FD730+FD700) had the best prediction performance on canopy leaf nitrogen concentration, with a relative simple algorithm, so it is a proper REP parameter for estimating canopy leaf nitrogen concentration in rice.
     In addition, the peak heights of the3peak bands changed alternatively with different nitrogen levels, so child areas and shapes surrounded by the first derivative spectra curve and x coordinate changed accordingly. Double peak symmetry (DPS) based on the ratio of2different red edge child areas divided by "peak band line", and normalized double peak symmetry (NDPS) with normalization of the2different red edge child areas were significantly related to canopy leaf nitrogen concentrations in rice. Results of model calibration and validation indicated that DPS(A675-700,A675-755) and NDPS(A675-700, A675-755), ratio and normalized difference of area in675-700nm to675-755nm red edge region, respectively, performed best in estimating canopy leaf nitrogen concentration, so these two spectral indices were good red edge area shape parameters for monitoring canopy leaf nitrogen concentration in rice. Furthermore, the spectral parameter DPS(A72o-730A700-720) was found to be a good indicator for leaf nitrogen accumulation in rice.
     Then, the sensitivity of reflectance spectra to canopy leaf nitrogen status was examined, and the quantitative relationships of different hyper-spectral vegetation indices to canopy leaf nitrogen concentrations were evaluated. The results showed that the reflectance of red region (665-675nm), blue region (490-500nm) and red edge region (680-760nm) was highly sensitive to canopy leaf nitrogen status. Two bands-based vegetation indices combined with550-600nm and500-550nm in green region had good relationships with canopy leaf nitrogen concentrations, and ratio index R(533,565) exhibited the best performance in all two bands vegetation indices. Yet prediction ability of nitrogen concentration was significantly improved using three bands vegetation indices. Novel three bands indices, blue nitrogen indices R434/(R496+R401) and R705/(R717+R491) were developed for monitoring canopy leaf nitrogen concentration, and the test results indicated that R434/(R496+R401) and R705/(R717+R491) had better prediction precision and suitable application than R(533,565). In addition, some reported vegetation indices also had good relationships to canopy leaf nitrogen concentrations, such as two bands indices ZM, GM-2, RI-1dB, RI-2dB, NDRE and three bands indices mND705, PRIc, with three band indices better than two band indices, although less satisfactory prediction than blue nitrogen indices and R.705/(R705+R491). Comparison of all previous indices and present indices indicated that novel blue nitrogen indices R434/(R496+R401) and R705/(R717+R491) had the best prediction capability for estimating canopy leaf nitrogen concentration in rice. Besides, RVI(827,742) was identified as a good indicator for leaf nitrogen accumulation in rice.
     A knowledge on the responses of reflectance spectra and vegetation indices to bandwidth can contribute to proper selection of sensitive bands and development of spectral indices for nitrogen status monitoring. Effects of different bandwidths on canopy reflectance spectra in the range of350to1000nm bands and sensitive vegetation indices were studied with simulated spectra based on ASD data, and then prediction powers of canopy nitrogen concentrations based on two different remote sensors, ASD and Cropscan were compared. The results showed that there was less effect on reflectance spectra if bandwidth was within20nm, on the contrary, when it was larger than50nm, several phenomena happened that the red vale turned shallow, green peak got lower and slope of red edge reached flat. Bandwidth had smaller impact on visible light and larger effect on near infrared light under different nitrogen levels, discrimination power of nitrogen levels based on red light decreased with reduced spectral resolution, but green light could well discriminate nitrogen levels within200nm spectral resolution. Ratio indices, normalized indices and differential indices developed from reflectance of NIR and red edge, red and green bands also decreased with reduced spectral resolution, especially when bandwidth was broader than20nm. Yet RI(NIR,Green) and NI(NIR,Green) just had similar values when bandwidth was narrower than200nm. Several sensitive vegetation indices such as R434/(R496+R401), R705/(R717+R491) and R533/R565were found to be very stable within300nm bandwidth, thus indicating a wide applicability with different remote sensors.
     Relationships between canopy leaf nitrogen concentration and spectral indices composed of arbitrary two bands with different spectral resolution in the region of350to1000nm were also explored. The results indicated that the band combinations with good correlation to nitrogen status were constant within10nm bandwidth, and then reduced in number. For the purpose of reliable estimation of nitrogen status, the bandwidths of vegetation index such as ND (760,710) maybe diverse. The200nm bandwidth for760nm contributed identically to nitrogen estimation, but20nm bandwidth was requested for710nm, and different vegetation indices exhibited different powers. Comparison of Cropscan and ASD sensors indicated that reflectance spectra were not only controlled by bandwidth, but also by applied nitrogen levels, cultivar types and growth stages. The ASD sensor had higher prediction power than Cropscan sensor with the same vegetation index at the growth stages with higher coverage, whereas vice versa at growth stages with lower population coverage.
     Further, the relationships of leaf chlorophyll status, leaf area index and leaf photosynthesis to hyper-spectral reflectance and derivative parameters were quantified for deriving monitoring models on leaf pigment status with key hyper-spectral indices in rice. The results indicated that ratio index RI(714,760), normalized index ND(543,565) and difference index DI(562,543) had good relationships with chlorophyll a or chlorophyll a+b concentrations. The first derivative spectral ratio and normalized indices R(D744,D761) and ND(D748,D761) had better relationships with chlorophyll a or chlorophyll a+b concentrations than RI(714,760), ND(543,565) and DI(562,543), and the similar results were obtained with three bands index gmND705. The correlation results showed that vegetation indices composed of spectral reflectance of bottom band in red edge area743nm and NIR band822nm were significantly related to chlorophyll density, and both RI(743,822) and ND(743,822) had negative linear relationships with canopy leaf chlorophyll density. The first derivative spectral normalized and difference indices ND(D511,D771) and DI(D549,D779) also had better relationships with chlorophyll density, although not much improved over the RI(743,822) and ND(743,822). Green modified normalized index gmND705was good indicator for canopy leaf chlorophyll concentration, and normalized index ND(743,822) for chlorophyll density estimation from comparison of determination coefficients, RMSEs and REs of monitoring models with different vegetation indices. In addition, good relationships existed between LAI and vegetation indices, the correlation sequence of LAI to different index types was DVI>RVI>NDVI which consisted of spectral reflectance or the first derivative spectra. The best vegetation index for LAI monitoring were found to be the difference index of850nm to760nm DVI(854,760) and the first derivative difference index of676nm to778nm DVI(D676,D778), respectively. The vegetation index composed of spectral reflectance was better than that of the first derivative spectra for LAI monitoring in rice. Testing of the monitoring models with independent dataset also proved that the spectral index of DVI(854,760) gave accurate LAI estimation, so can be considered as a good indicator for LAI monitoring in rice. In addition, ratio index R(810,680) can be used to monitor leaf photosynthetic characteristics at different growth stages of rice.
     Finally, an integrative analysis was made on the characteristics of reflectance spectra of ASD, Hyperion, TM and ALOS, and on the quantitative relationships of spectral parameters to canopy leaf nitrogen concentrations under different nitrogen levels. The results showed that real spectral reflectance in rice was significantly influenced by atmosphere, which caused the reflectance of VIS to increase and NIR to decrease. Atmospheric correction model FLAASH and empirical line calibration were good methods for Hyperion, TM and ALOS, respectively. The hyper-spectral parameters for canopy leaf nitrogen estimation were essentially consistent at ground and space levels, and green modified normalized difference index gmND(760,710), adjusted linear extrapolation red edge position, RVI(884,690) and NDVI(884,690) were good predictors for canopy leaf nitrogen concentrations in rice. As compared to Hyperion data, hyper-spectral parameters such as REP could not be extracted from TM and ALOS data, but blue modified normalized vegetation index (RNIR-RR)/(RNIR+RR-2×RB) composed of reflectance of blue, red and NIR was better than NDVI(NIR,R) for canopy leaf nitrogen concentration evaluation with the same prediction precision. In addition, RI(830,742) and ND(NIR,Green) derived from Hyperion and TM or ALOS respectively were two good parameters for estimation of canopy nitrogen accumulation at ground or space level. Since ALOS had the similar ability of estimating canopy leaf nitrogen concentration as TM with higher spatial resolution, it could be quite promising for plant growth monitoring in the future.
引文
1. A1_Abbas AH, Barr R, Hall SD. Spectra of normal and nutrient-deficient maize leaves. Agronomy Journal,1974,66:16-20.
    2. Allen WA, Richardson AJ. Interaction of light with a plant canopy. Journal of the Optical Society of America,1968,58:1023-1028.
    3. Banninger C. Changes in canopy leaf area index and biochemical constituents of a spruce forest as measured by the AIS-2 airborne imaging spectrometer. IGARSS'89, Vancouver, IEEE Transactions on Geoscience and Remote Sensing,1989,4:2085~-2089.
    4. Basnet B, Apan A, Kelly R, Jensen T, Strong W, Butler D. Relating satellite imagery with grain protein content. In Spatial Sciences 2003 Conference,23-26 September,2003, pages 1-11, Canberra, Australia.
    5. Berk A, Bernstein LS, Anderson GP, Acharya PK, Robertson DC, Chetwynd JH and Adler-Golden SM. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sensing of Environment,1998,65:367-375.
    6. Blackmer TM, James SS, Gary E. Nitrogen deficiency detection using reflected short-wave radiation from irrigated corn canopies. Agronomy Journal,1996,88:1-5.
    7. Blackmer TM, Schepers JS, Varvel GE. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agronomy Journal.1994,86:934-938.
    8. Boegh E, Soegaard H, Broge N, Hasager CB, Jensen NO, Schelde K, Thomsen A. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment,2002,81:179-193.
    9. Campbell RJ, Mobley KN, Marini RP. Growing conditions alter the relationship between SPAD-501 values and apple leaf chlorophyll. Horticulture Science,1990,25:330-331.
    10. Card DH, Peterson DL, Matson PA. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sensing of Environment,1988,26:123-247.
    11. Chubachi NR, Asanol, Oikava T. The diagnosis of nitrogen of rice plants using chlorophyll meter. Japanese Journal of Soil Science and Plant Nutrition,1986,57:109-193.
    12. Curran PJ, Dungan JL, Peterson DL. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry. Testing the Kokaly and Clark methodologies. Remote Sensing of Environment,2001,76:349-359.
    13. Curran PJ, Windham WR, Gholz HL. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiology,1995,15:203-206
    14. Curran PJ. Remote sensing of foliar chemistry. Remote Sensing of Environment,1989,30: 271-278.
    15. Dall'Olmo G, Gitelson AA, Rundquist DC, Leavitt B, Barrow T, Holz JC. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sensing of Environment,2005,96:176-187.
    16. Daughtry CST, Walthall CL, Kim MS, Colstoun EB, Mcmurtrey JE. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment,2000, 74:229-239.
    17. Demetriades-shah TH, Steven MD, Clark JA. High resolution derivative spectral in remote sensing. Remote Sensing of Environment,1990,33:55-64.
    18. Ehsani MR, Upadhyaya SK, Slaughter D, Shafii S, Pelletier M. A NIR technique for rapid determination of soil mineral nitrogen. Precision Agriculture,1999,1:217-234.
    19. Fang H, Liang S, Andres K. Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model. Remote Sensing of Environment,2003,85:257-270.
    20. Feng W, Yao X, Zhu Y, Tian YC, Cao WX. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat European Journal of Agronomy 2008,28:394-404.
    21. Fernandez S, Vidal D, Simon E, Sole SL. Radiometric characteristics of triticum aestivum cv. astral under water and nitrogen stress. International Journal of Remote Sensing,1994,15(9):1867-1884.
    22. Filella I, Penuelas J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. International Journal of Remote Sensing,1994,15:1459-1470.
    23. Foody GM, Boyd DS, Cutler MEJ. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment.2003,85:463-474
    24. Fridgen JL, Varco JJ. Dependency of cotton leaf nitrogen, chlorophyll, and reflectance on nitrogen and potassium availability. Agronomy Journal,2004,96(1):63-69.
    25. Gamon JA, Serrano L, Surfus JS. The photochemical reflectance index:an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia,1997,112:492-501.
    26. Gitelson AA, Kaufman YJ, Merzlyak MN. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment,1996,58:289-298.
    27. Gitelson AA, Merzlyak MN. Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing,1997,18:291298.
    28. Grossman YL, Ustin SL, Jacquemoud S. Critique of stepwise multiple linear regression for the extraction of leaf reflectance data. Remote Sensing of Environment,1996,56:182-193.
    29. Haboudane D, Miller JR, Tremblay N, Zarco-Tejada PJ, Dextraze L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment,2002,81:416-426.
    30. Hinzman LD, Bauer ME, Daughtry CST. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat. Remote Sensing of Environment,1986,19:47-61.
    31. Huete AR. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment,1988,25: 295-309.
    32. Jacquemoud S, Baret F. PROSPECT:a model of leaf optical properties. Remote Sensing of Environment.1990,34:75-91.
    33. Jago RA, Cutler MEJ, Curran PJ. Estimating Canopy Chlorophyll Concentration from Field and Airborne Spectra Remote Sensing of Environment.1999,68:217-224.
    34. Jensen A, Lorenzen B. Radiometric estimation of biomass and nitrogen content of barley grown at different nitrogen levels. International Journal of Remote Sensing,1990,11(10):1809-1820.
    35. Johnson LF, Hlavka CA, Peterson DL. Multivariate analysis of AVRIS data for canopy biochemistry estimation along the Oregon transect. Remote Sensing of Environment,1994,47: 216230.
    36. Jongschaap REE, Booij R. Spectral measurements at different spatial scales in potato:relating leaf, plant and canopy nitrogen status. International Journal of Applied Earth Observation an Geoinformation,2004,5:205-218.
    37. Kokaly RF, Clark RN. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 1999,67:267-287.
    38. Kokaly RF. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sensing of Environment,2001,75:153-161.
    39. Lamb DW, Steyn-Ross M, Schaare P, Hanna MM, Silvester W and Steyn-Ross A. Estimating leaf nitrogen concentration in ryegrass (Lolium spp.) pasture using the chlorophyll red-edge:theoretical modeling and experimental observations. International Journal of Remote Sensing,2002,23(18): 3619-3648.
    40. Leblanc SG, Chen JM. A windows graphic user interface (GUI) for the five-scale model for fast BRDF simulations. Remote Sensing Reviews,2001,19:293-305
    41. Letelier RM, Abbott MR. An analysis of chlorophyll fluorescence algorithms for the moderate resolution imaging spectrometer (MODIS). Remote Sensing of Environment,1996,58 (2): 215-223.
    42. Li X, Strahler AH. Geometric-optical bi-directional reflectance modeling of a conifer forest canopy. IEEE. Trans. On Geoscience and Remote Sensing,1986,24:906-919.
    43. Li X, Strahler AH. Geometric-optical modeling of a conifer forest canopy. IEEE. Trans. On Geoscience and Remote Sensing.1985,23:705-721.
    44. Li Y. Use of second derivatives of canopy reflectance for monitoring prairie vegetation over different soil backgrounds. Remote Sensing of Environment,1993,44:81-87.
    45. Merzlyak MN, Gitelson AA, Chivkunova OB, Rakitin VY. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum,106:135-141.
    46. Munden R, Curran PJ, Catt JA. The Relationship between the red edge and chlorophyll concentration in the broadbalk winter wheat experiment at rothamsted. International Journal of Remote Sensing,1994,15:705-709.
    47. Mutanga O, Skidmore AK. Hyperspectral band depth analysis for a better estimation of grass biomass (Cenchrus ciliaris) measured under controlled laboratory conditions.International Journal of Applied Earth Observation and Geoinformation.2004,5:87-96
    48. Osborne SL, Schepers JS, Francis DD, Schlemmer MR. Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements. Agronomy Journal,2002,94(6): 1215-1221.
    49. Peng SB, Garcia FV, Laza RC. Adjustment for specific leaf weight improves chlorophyll meter's estimation of rice leaf nitrogen concentration. Agronomy Journal,1993,85:987-990.
    50. Penuelas J, Baret F, Fillella I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica,31:221-230.
    51. Peterson DL, Aber JD, Matson PA, Card GH, Swanberg N, Wessman C, Spanner M A. Remote sensing of forest canopy and leaf biochemical content. Remote Sensing of Environment,1988,24: 85-108.
    52. Peterson DL, Aber JD, Matson PA. Remote sensing of forest canopy and leaf biochemical contents. Remote Sensing of Environment,1988,108(24):85-108.
    53. Pinar A. Grass chlorophyll and the reflectance red edge. International Journal of Remote Sensing, 1996,17(2):351-357.
    54. Read JJ, Tarpley L, Mckinion JM, Reddy KR. Narrow-waveband reflectance ratios for remote estimation of nitrogen status in cotton. Journal of environmental quality,2002,31(5):1442-1452.
    55. Richardson AJ, Everitt JH, Gausman HW. Radiometric estimation of biomass and nitrogen content of Alicia grass. Remote Sensing of Environment,1983,13:179-184.
    56. Schepers JS, Francis DD, Vigil M. Comparison of corn leaf nitrogen concentration and chlorophyll meter readings. Communication of Soil Science and Plant Analysis.1992:2173-2187.
    57. Serrano L, Penuelas J, Ustin SL. Remote sensing of nitrogen and lignin in Mediterranean vegetation for AVIRIS data:Decomposing biochemical from structural signals. Remote Sensing of Environment,2002,81:355-364.
    58. Shibayama M, Akiyama T. A spectroradiometer for field use. VII. Radiometric estimation of nitrogen levels in field rice canopies. Japanese Journal of Crop Science,1986,55(4):439-445.
    59. Smith ML, Martin ME, Plourde L, Ollinger SV. Analysis of hyperspectral data for estimation of temperate forest canopy nitrogen concentration:comparison between an airborne (AVIRIS) and a spaceborne (Hyperion) sensor. IEEE Transactions on Geoscience and Remote Sensing,2003,41: 1332-1337
    60. Sripada RP, Heiniger RW, White JG, Weisz R. Aerial color infrared photography for determining late-season nitrogen requirements in corn. Agronomy Journal,2005,97:1443-1451.
    61. Stone ML, Solie JB, Raun WR, Whitney RW, Taylor SL, Ringer JD. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transaction of the ASAE,1996, 39(5):1623-1631.
    62. Suits GH The calculation of the directional reflectance of vegetative canopy. Remote Sensing of Environment 1972,2:117-125.
    63. Tarpley L, Reddy KR, Gretchen FSC. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration. Crop Science,2000,40:1814-1819.
    64. Thomas JR, Gausman HW. Leaf reflectance vs. leaf chlorophyll and carotenoid concentration for eight crops. Agronomy Journal,1977,69:799-802.
    65. Thomas JR, Oerther GF. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agronomy Journal,1972,64:11-13.
    66. Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment,1979,8:127-150.
    67. Uno Y, Prasher SO, Lacroix R, Goel PK, Karimi Y, Viau A, Patel RM. Artificial neural networks to predict corn yield from compact airborne spectrographic imager data. Computers and Electronics in Agriculture.2005,47:149-161
    68. Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling:the SAIL model. Remote Sensing of Environment,1984,16:125-141.
    69. Vogelmann JE, Rock BN, Moss DM. Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing,1993,14,1563-1575
    70. Walburg G, Bauer M, Daughtry CST. Effect of nitrogen nutrition on growth, yield and reflectance characteristics of corn canopies. Agronomy Journal,1982,74:677-683.
    71. Wang K, Shen ZQ, Wang RC. Effects of nitrogen nutrition on the spectral reflectance characteristics of rice leaf and canopy. Journal of Zhejiang Agricultural University,1998,24:93-97.
    72. Wessman CA, Aber JD, Peterson DL, Melillo JM. Foliar analysis using near infrared reflectance spectroscopy. Canada Journal of Forest Research.1988,18:6-11.
    73. Wessman CA, Aber JD, Peterson DL, Melillo JM. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems, Nature,1988,335:154-156.
    74. Wessman CA, Aber JD, Peterson DL. An evaluation of imaging spectrometry for estimating forest canopy chemistry. International Journal of Remote Sensing,1989,10:1293-1316.
    75. Williams P, Norris k (Eds.) Near-infrared technology in the agricultural and food industries. American Association of Cereal Chemists, St. Paul, MN,1987.
    76. Xue LH, Cao WX, Luo WH, Dai TB, Zhu Y. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal,2004,96(1):135-142.
    77. Yoder BJ, Pettigrew-Crosby. Predicting nitrogen and chlorophyll content and concentrations form reflectance spectra (400-2500nm) at leaf and canopy scales. Remote Sensing of Environment,1995, 53:199-211.
    78. Zarco-Tejada PJ, Miller JR, Noland TL, Mohammed GH, Sampson PH. Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(7):1491-1507.
    79. Zhao CJ, Liu LY, Wang JH, Huang WJ, Song XY, Li CJ. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress. International Journal of Applied Earth Observation and Geoinformation,2005,7(1):1-9.
    80.崔玉亭,程序,韩纯儒,李荣刚.苏南太湖流域水稻经济生态适宜施氮量研究.生态学报,2000,4:659-662.
    81.江立庚,曹卫星,甘秀芹,韦善清,徐建云,董登峰,陈念平,陆福勇,秦华东.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响.中国农业科学,2004,37(4):490-496.
    82.金军,徐大勇,蔡一霞,胡署云,葛敏,朱庆森.施氮量对水稻主要米质性状及RVA谱特征参数的影响.作物学报,2004,30(2):154-158.
    83.李小文,王锦地,1995,植被光学遥感模型与植被结构参数化,科学出版社.
    84.李映雪,朱艳,田永超,姚霞,秦晓东,曹卫星.小麦叶片氮含量与冠层反射光谱指数的定量关系.作物学报,2006,32(3):358-362.
    85.李映雪,朱艳,田永超,姚霞,秦晓东,曹卫星.小麦叶片氮积累量与冠层反射光谱指数的定量关系.作物学报,2006,32(2):203-209.
    86.李映雪.基于冠层反射光谱的小麦氮素营养与籽粒品质监测.南京农业大学博士学位论文,2005.
    87.刘立军,桑大志,刘翠莲,王志琴,杨建昌,朱庆森.实时实地氮肥管理对水稻产量和氮素利用率的影响.中国农业科学,2003,36(12):1456-1461.
    88.刘伟东,项月琴,郑兰芬,童庆禧,吴长山.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析.遥感学报,2000,4(4):279-283.
    89.牛铮,陈永华,隋洪智,张庆员,赵春江.叶片化学组分成像光谱遥感探测机理分析.遥感学报.2000,4(2):125-129.
    90.蒲瑞良,宫鹏.森林生物化学与CASI高光谱分辨率遥感数据的相关分析,遥感学报,1997,1(2):115-123.
    91.浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000.
    92.亓雪勇,田庆久.光学遥感大气校正研究进展.国土资源遥感.2005,4:1-6.
    93.施润和,牛铮,庄大方.叶片生化组分浓度对单叶光谱影响研究——以2100nm吸收特征的碳氮比反演为例.2005,遥感学报,9(1):1-7.
    94.孙大业.糖氮比在小麦植株营养诊断中的运用.中国农业科学,1978,(4):32-39.
    95.孙莉,陈曦,包安明,冯先伟,张清,马亚琴,王登伟.在水分胁迫下棉花冠层叶片全氮含量的高光谱遥感估算模型研究.遥感技术与应用,2005,20(3):315-320.
    96.孙羲.水稻氮素营养及其诊断.浙江农业大学学报,1981,7(2):41-50.
    97.田庆久,闵祥军.植被指数研究进展.地球科学进展.1998,13:327-333.
    98.王人潮,陈铭臻,蒋亨显.水稻遥感估产的农学机理研究.Ⅰ.不同氮素水平的水稻光谱特征及其敏感波段的选择.浙江农业大学学报,1993,19(增刊):7-14.
    99.王秀,赵春江,周汉昌,刘良云,王纪华,薛绪掌,孟志军.冬小麦生长便携式NDVI测量 仪的研制与试验.农业工程学报,2004,20(4):95-98.
    100.王秀珍,黄敬峰,李云梅,王人潮.水稻生物化学参数与高光谱遥感特征参数的相关分析.农业工程学报,2003,19(2):144-148.
    101.王秀珍,黄敬峰,李云梅,沈掌泉,王人潮.高光谱数据与水稻农学参数之间的相关分析.浙江大学学报(农业与生命科学版),2002,28(3):283-288.
    102.吴长山,项月琴,郑兰芬,童庆禧.利用高光谱数据对作物群体叶绿素密度估算的研究.遥感学报,2000,4(3):228-232.
    103.薛利红,罗卫红,曹卫星,田永超.作物水分和氮素光谱诊断研究进展.遥感学报,2003,7(1):73-80.
    104.杨建昌,王志琴,朱庆森.不同土壤水分下氮素营养对水稻产量的影响及其机理研究.中国农业科学,1996,29(4):58-66.
    105.杨敏华,刘良云,刘团结,黄文江,赵春江.小麦冠层理化参量的高光谱遥感反演试验研究.测绘学报,2002,31(4):316-321.
    106.杨敏华,赵春江,赵永超,刘良云,王纪华.用航空成像光谱数据获取小麦冠层信息的研究.中国农业科学,2002,35(6):626-631.
    107.张福锁,马文奇.肥料投入水平与养分资源高效利用的关系.土壤与环境,2000,9(2):154-157.
    108.张良培,郑兰芬,童庆禧,利用高光谱数据对生物变量进行估计,遥感学报,1997,1(2):110-113.
    109.赵春江,刘良云,周汉昌,王纪华,薛绪掌.归一化差异植被指数仪的研制与应用.光学技术,2004,30(3):324-329.
    110.赵英时等编著.遥感应用分析原理与方法北京:科学出版社,2003.6.
    111.周启发,王人潮.水稻氮素营养水平与光谱特征的关系.浙江农业大学学报,1993,19(增):40-46.
    112.邹长明,秦道珠,高菊生,陈福兴.水稻氮肥施用技术Ⅱ.看苗施用氮肥的叶片诊断指标.湖南农业大学学报(自然科学版),2001,27(1):29-31.
    [1]Analytical Spectral Devices(ASD). Inc. FieldSpec Pro User's guide.2002.
    [2]Baret F, Guyot G, Major DJ. TSAVI:a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In:Proc. IGARRS'89.12th Canadian Symposium on Remote Sensing, Vancouver, Canada,1989,13:1355-1358.
    [3]Beck. R. EO-1 user guide v.2.3. available at:http://EO1.usgs.gov.2003.
    [4]CROPSCAN Inc. Data logger controller, User's guide and technical reference. CROPSCAN Inc. Rochester, MN.2000.
    [5]Decagon Devices, Inc. AccuPAR PAR/LAI ceptometer model LP-80 Operator's Manual Version 6 http://www.decagon.com/ag_research/canopy/1p80.php.
    [6]Demetriades-Shah TH, Steven MD, Clark JA. High resolution derivative spectra in remote sensing. Remote Sensing of Environment,1990,33:55-64.
    [7]Kokaly RF, Clark RN. Spectroscopic determination of leaf biochemistry using Band-Depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 1999,67:267-287.
    [8]Lichtenthaler HK. Chlorophylls and carotenoids:the pigments of photo synthetic biomembranes. Methods Enzymol,1987,148:331-382.
    [9]Miller JR, Hare EW, Wu J. Quantitative characterization of the vegetation red edge reflectance model. International Journal of Remote Sensing,1990,11(10):1755-1773.
    [10]Research Systems Inc (RSI), ENVI User's Guide, Research Systems Inc, Version 4.3,2006.
    [11]Research Systems Inc (RSI), FLAASH Module User's Guide,2005.
    [12]Roderick M, Smith R, Lodwick G. Calibrating long-term AVHRR-derived NDVI imagery. Remote Sensing of Environment,1996,58:1-12.
    [13]李强,赵伟MATLAB数据处理与应用.北京:国防工业出版社.2001.
    [14]浦瑞良,宫鹏.高光谱遥感及应用.北京:高等教育出版社,2000.
    [15]田庆久,闵祥军.植被指数研究进展.地球科学进展,1998,13:327-333.
    [16]王秀珍,黄敬峰,李云梅,王人潮.水稻地上鲜生物量的高光谱遥感估算模型研究.作物学报,2003,29(6):815-821.
    [17]赵英时等编著.遥感应用分析原理与方法.北京:科学出版社,2003.
    [1]Blackmer TM, Schepers JS, Varvel GE, Walter-Shea EA. Nitrogen deficiency detection using shortwave radiation from irrigated corn canopies. Agronomy Journal.1996,88,1-5.
    [2]Bonham-Carter GF. Numerical procedures and computer program for fitting an inverted Gaussian model to vegetation reflectance data. Computers & Geosciences,1988,14(3):339-356.
    [3]Boochs F, Kupfer G, Dockter K, Kuhbauch W. Shape of the red edge as vitality indicator for plants. International Journal of Remote Sensing,1990,11,1741-1753.
    [4]Cho MA, Skidmore AK. A new technique for extracting the red edge position from hyperspectral data:The linear extrapolation method. Remote Sensing of Environment,2006,101:181-193.
    [5]Clay DE, Kim KI, Chang J, Clay S A, Dalsted K. Characterizing water and nitrogen stress in corn using remote sensing. Agronomy Journal,2006,98:579-587.
    [6]Clevers JGPW, Jong SMD, Epema GF. Derivation of the red edge index using the MERIS standard band setting. International Journal of Remote Sensing,2002,23(16):3169-3184.
    [7]Clevers JGPW, Kooistra L, Salas EAL. Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data. International Journal of Remote Sensing,2004, 25(19):3883-3895.
    [8]Collins W. Remote sensing of crop type and maturity. Photogrammetric Engineering and Remote Sensing,1978,44:43-55.
    [9]Curran PJ, Dungan JL, Gholz HL. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiology,1990,7:33-38.
    [10]Curran PJ. Remote sensing of foliar chemistry, Remote Sensing of Environment.1989,30: 271-278.
    [11]Dart B. Remote sensing of chlorophylla, chlorophyllb, chlorophylla+b, and total carotenoid content in eucalyptus leaves, Remote Sensing of Environment.1998,66:111-121.
    [12]Dawson TP, Curran PJ. A new technique for interpolating the reflectance red edge position. International Journal of Remote Sensing,1998,19(11):2133-2139.
    [13]Elvidge CD, Chen ZK. Comparison of broad-band and narrow-band red and near-Infrared vegetation indices. Remote Sensing of Environment,1995,54:38-48.
    [14]Filella I, Penuelas J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. International Journal of Remote Sensing.1994,15:1459-1470.
    [15]Gates DM, Keegan HJ, Schleter JC, Weidner VR. Spectral properties of plants. Applied Optics, 1965,4(1):11-20.
    [16]Gausman HW. Reflectance of leaf components. Remote Sensing of Environment,1977,6:1-9.
    [17]Gitelson AA, Kaufman YJ, Merzlyak MN. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment,1996,58:289-298.
    [18]Guanter L, Richter R, Moreno J. Spectral calibration of hyperspectral imagery using atmospheric absorption features. Applied Optics,2006,45(10),2360-2370.
    [19]Horler DNH, Dockray M, Barber J. The red edge of plant leaf reflectance. International Journal of Remote Sensing,1983,4:273-288.
    [20]Jordan CF. Derivation of leaf area index from quality of light on the forest floor. Ecology,1969:50: 663-666.
    [21]Maire GL, Francois C, Dufrene E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment,2004,89:1-28.
    [22]Miller JR, Hare EW, Wu J. Quantitative characterization of the vegetation red edge reflectance. An inverted-Gaussian reflectance model. International Journal of Remote Sensing,1990,11(10): 1755-1773.
    [23]Nguyen HT, Lee BW. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. European Journal of Agronomy,2006,24,349-356.
    [24]Pu R, Gong P, Biging GS, Larrieu MR. Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(4):916-921.
    [25]Richardson AJ, Everitt JH, Gausman HW. Radiometric estimation of biomass and nitrogen content of Alicia grass. Remote Sensing of Environment,1983,13:179-184.
    [26]Schlapfer D, McCubbin IB, Kindel B, Kaiser JW, Ben-Dor E. Wildfire smoke analysis using the 760 nm oxygen absorption feature.4th EARSeL Workshop on Imaging Spectroscopy, Warsaw, 2005,1-10.
    [27]Shibayama M, Akiyama T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass. Remote Sensing of Environment,1989,27: 119-127.
    [28]Shrivastava RJ, Gebelein JL. Land cover classification and economic assessment of citrus groves using remote sensing. ISPRS Journal of Photogrammetry & Remote Sensing,2007,61:341-353.
    [29]Takebe M, Yoneyama T, Inada K, Murakami T. Spectral reflectance ratio of rice canopy for estimating crop nitrogen status. Plant Soil,1990,122:295-297.
    [30]Thomas J R, Gausman H W. Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops. Agronomy Journal,1977,69:799-802.
    [31]Wang XZ, Wang RC, Huang JF. Derivative spectrum remote sensing and its application in measurement of rice agronomic parameters of rice. Transactions of the CSAE.2002,18:9-13. (in Chinese)
    [32]Welsh JP, Wood GA, Godwin RJ, Taylor JC, Earl R, Blackmore S, Knight SM. Developing strategies for spatially variable nitrogen application in cereals, part II:wheat. Biosystems Engineering,2003,84 (4):495-511.
    [33]Woodard HJ, Bly A. Relationship of nitrogen management to winter wheat yield and grain protein in South Dakota. Journal of Plant Nutrition,1998,21:217-233.
    [34]Wu CS (吴长山),Xiang YQ(项月琴),Zheng LF(郑兰芬),et al. Estimating chlorophyll density of crop canopies using hyperspectral data. Journal of Remote Sensing (遥感学报),2000,4(3): 228~232(in Chinese)
    [35]Xue LH, Cao WX, Luo WH, Dai TB, Zhu Y. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal,2004,96,135-142.
    [36]Yoder BJ, Waring RH. The normalized difference vegetation index of small Douglas-fir canopies with varying chlorophyll concentrations. Remote Sensing of Environment,1994,49(1):81-91.
    [37]Zhang NQ, Wang MH, Wang N. Precision agriculture——a worldwide overview. Computers and Electronics in Agriculture,2002,36:113-132.
    [38]Zhao CJ(赵春江),Huang WJ(黄文江),Wang JH(王纪华),et al. Studies on the red edge parameters of spectrum in winter wheat under different varieties, fertilizer and water treatments. Scientia Aricultura Sinica(中国农业科学),2002,35(8):980-987(in Chinese)
    [39]Zhao D, Huang L, Li J, Qi J. A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy. ISPRS Journal of Photogrammetry and Remote Sensing,2007,62(1),25-33.
    [40]孙莉,陈曦,武建军,冯先伟,包安明,马亚琴,王登伟.水分胁迫下棉花冠层叶片高光谱数据生物量变化研究.科学通报,2006,51:143-147(增刊)
    [41]王圆圆,陈云浩,李京,黄文江.指示冬小麦条锈病严重度的两个新的红边参数.遥感学报,2007,11(6):875-881.
    1. Aoki M, Yabuki K, Totsuka T. An evaluation of chlorophyll content of leaves based on the spectral reflectivity in several plants. Research Report of the National Institute of Environmental Studies of Japan,1981,66:125-130.
    2. Barnes JD, Balaguer L, Manrique E, Elvira S, Davison AW. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany,1992,32(2):85-100.
    3. Blackburn GA. Hyperspectral remote sensing of plant pigments. Journal of Experimental Botany, 2006,1-13.
    4. Blackburn GA. Spectral indices for estimating photosynthetic pigment concentrations:a test using senescent tree leaves. International Journal of Remote Sensing,1998,19(4):657-675.
    5. Blackmer TM, Schepers JS, Varvel GE, Walter-Shea EA. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agronomy Journal,1996,88 (1):1-5.
    6. Bonham-Carter GF. Numerical procedures and computer program for fitting an inverted Gaussian model to vegetation reflectance data. Computers & Geosciences,1988,14(3):339-356.
    7. Boochs F, Kupfer G, Dockter K, Kuhbauh W. Shape of the red edge as vitality indicator for plants. International Journal of Remote Sensing,11(10):1741-1753.
    8. Broge NH, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote sensing of Environment,2001,76(2):156-172.
    9. Buschman C, Nagel E. In vivo spectroscopy and internal optics of leaves as a basis for remote sensing of vegetation. International Journal of Remote Sensing,1993,14:711-722.
    10. Chappelle EW, Kim MS, McMurtrey JE. Ratio analysis of reflectance spectra (PARS):an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote sensing of Environment,1992,39:239-247.
    11. Dash J, Curran PJ. The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing,2004,25:5403-5413.
    12. Dart B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in Eucalyptus leaves. Remote sensing of Environment,1998,66(2):111-121.
    13. Dart B. Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. International Journal of Remote Sensing,1999,20(14):2741-2759.
    14. Everitt JH, Pettit RD, Alaniz MA. Remote sensing of broom snake weed (Gutierrezia sarothrae) and spiny aster (Aster spinosus). Weed Science,1987,35(2):295-302.
    15. Gamon JA, Penuelas J, Field CB. A narrow-waveband spectral index that tracks diumal changes in photosynthetic efficiency. Remote Sensing of Environment,1992,41:35-44.
    16. Gitelson A A, Merzlyak M N. Spectral reflectance changes associate with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves:spectral features and relation to chlorophyll estimation. Journal of Plant Physiology,1994,143:286-292.
    17. Gitelson AA, Buschmann C, Lichtenthaler HK. The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants. Remote Sensing of Environment,1999,69(3): 296-302.
    18. Gitelson AA, Gritz Y, Merzlyak MN. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology,2003,160:270-282.
    19. Gitelson AA, Kaufman YJ, Merzlyak MN. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment,1996,58(3):289-298.
    20. Graeff S, Claupein W. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. European Journal of Agronomy,2003,19:611-618.
    21. Gupta RK, Vijayan D, Prasad TS. Comparative analysis of red edge hyperspectral indices. Advance of Space Research,2003,32(11):2217-2222.
    22. Hansen PM, Schjoerring JK. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment,2003,86:542-553.
    23. Johnson LF, Hlavka CA, Peterson DL. Multivariate analysis of AVRIS data for canopy biochemistry estimation along the Oregon transect. Remote Sensing of Environment,1994,47: 216-230.
    24. Lacapra VC, Melack JM, Gastil M, Valerino D. Remote sensing of inundated rice with imaging spectrometry. Remote Sensing of Environment,1996,55:50-58.
    25. Lee T, Reddy KR, Sassenrath-Cole GF. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration. Crop Sci.2000,40:1814-1819.
    26. Lillesaeter O. Spectral reflectance of partly transmitting leaves:laboratory measurements and mathematical modeling. Remote sensing of Environment,1982,12,247-254.
    27. Maccioni A, Agati G, Mazzinghi P. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. Journal of Photochemistry and Photobiology, B:Biology,2001,61(1-2):52-61.
    28. Major DJ, Schaalje GB, Wiegand C, Blad BL. Accuracy and sensitivity analyses of SAIL model-predicted reflectance of maize. Remote sensing of Environment,1992,41,61-70.
    29. Martin ME, Aber JD. Estimation of forest canopy lignin and nitrogen concentration and ecosystem processes by high spectral resolution remote sensing. Ecology Application,1997,7:431-443.
    30. Penuelas J, Baret F, Filella I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica,1995,31(2):221-230.
    31. Penuelas J, Filella I, Gamon JA. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytologist,1995,131:291-296.
    32. Penuelas J, Gamon JA, Fredeen AL, Merino J, Field CB. Reflectance indices associated with physiological changes in nitrogen and water-limited sunflower leaves. Remote Sensing of Environmen,1994,48:135-146.
    33. Rodriguez D, Fitzgerald GJ, Belford R, Christensen L. Detection of nitrogen deficiency in wheat from spectral reflectance indices and basic crop eco-biophysiological concepts. Australia Journal of Agriculture Research,2006,57:781-789.
    34. Roujean JL, Breon FM. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote sensing of Environment,1995,51(3):375-384.
    35. Sims DA, Gamon JA. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote sensing of Environment, 2002,81:331-354.
    36. Stone ML, Soile JB, Raun WR, Whitney RW, Taylor SL, Ringer JD. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transactions of ASAE,1996, 39:1623-1631.
    37. Takebe M, Yoneyama T, Inada K, Murakami T. Spectral reflectance ratio of rice canopy for estimating crop nitrogen status. Plant Soil.1990,122:295-297.
    38. Thenkabail PS, Smith RB, De PE. Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogrammetric Engineering and Remote Sensing,2002,68:607-621.
    39. Thomas JR, Gausman HW. Leaf reflectance versus leaf chlorophyll and carotenoids concentration for eight crops. Agronomy Journal,1977,63:845-847.
    40. Thomas JR, Oerther GF. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agronomy Journal,1972,64:11-13.
    41. Tilley DR, Ahmed M, Son JH, Badrinarayanan H. Hyperspectral reflectance of emergent macrophysics as an indicator of water column ammonia in an oligohaline, subtropical marsh. Ecology,2003,21:153-163.
    42. Tracy MB, James SS and Gary EV. Light Reflectance Compared with Other Nitrogen Stress Measurements in Corn Leaves. Agronomy Journal,1994,86:934-938.
    43. Vaesen K, Gilliams S, Nackaerts K et al. Ground-measured spectral signatures as indicators of ground cover and leaf area index:the case of paddy rice. Field Crops Research,2001,69:13-25.
    44. Vane G. Terrestrial imaging spectrometry:Current status, future trends. Remote sensing of Environment,1993,44(2):109-127.
    45. Vogelmann JE, Rock BN, Moss DM. Red-edge spectral measurements from Sugar Maple leaves. International Journal of Remote Sensing,1993,14:1563-1575.
    46. Wessman CA, Aber JD, Peterson DL. An evaluation of imaging spectrometry for estimating forest canopy chemistry. International Journal of Remote Sensing,1989,10:1293-1316.
    47. Woodard HJ, Bly A. Relationship of nitrogen management to winter wheat yield and grain protein in South Dakota. Journal of Plant Nutrition,1998,21:217-233.
    48. Xue LH, Cao WX, Luo WH, Dai TB, Zhu Y. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal,2004,96,135-142.
    49. Yoder BJ, Pettigrew-Crosby RE. Predicting nitrogen and chlorophyll concentrations from reflectance spectra (400-2500nm) at leaf and canopy scales. Remote sensing of Environment,1995, 53:199-211.
    50. Zarco-Tejada PJ, Miller JR, Noland TL, Mohammed GH, Sampson P. Scaling up and model inversion methods with marrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(7):1491-1501.
    51. Zhu Y, Zhou D, Yao X, Tian Y, Cao W. Quantitative relationships of leaf nitrogen status to canopy spectral reflectance in rice. Australian Journal of Agricultural Research,2007,58,1-9.
    52.吴长山,项月琴,郑兰芬,童庆禧.利用高光谱数据对作物群体叶绿素密度估算的研究.遥感 学报.2000,4(3):228-232.
    53.薛利红,杨林章,范小晖.基于碳氮代谢的水稻氮含量及碳氮比光谱估测.作物学报,2006,32(3):430-435.
    [1]Analytical Spectral Devices. Inc. FieldSpec Pro User's guide.2002.
    [2]Blackmer TM, Schepers JS, Varvel GE, Walter-Shea EA. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agronomy Journal,1996,88 (1):1-5.
    [3]Broge NH, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment,2000,76:156-172.
    [4]Bronson KF, Chua TT, Booker JD, Keeling JW, Lascano RJ. In-season nitrogen status sensing in irrigated cotton:Ⅱ. Leaf nitrogen and biomass. Soil Science Society of American Journal,2003, 67(5):1439-1448.
    [5]Chappelle EW, Kim MS, McMurtrey JE. Ratio analysis of reflectance spectra (PARS):an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sensing of Environment,1992,39:239-247.
    [6]CROPSCAN Inc. Data logger controller, User's guide and technical reference. CROPSCAN Inc. Rochester, MN.2000.
    [7]Elvidge CD, Chen ZK. Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment,1995,54:38-48.
    [8]Gitelson AA, Kaufman YJ, Merzlyak MN. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment,1996,58(3):289-298.
    [9]Hansen PM, Schjoerring JK. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment,2003,86:542-553.
    [10]Johnson LF, Hlavka CA, Peterson DL. Multivariate analysis of AVRIS data for canopy biochemistry estimation along the Oregon transect. Remote Sensing of Environment,1994,47: 216-230.
    [11]Lacapra VC, Melack JM, Gastil M, Valerino D. Remote sensing of inundated rice with imaging spectrometry. Remote Sensing of Environment,1996,55:50-58.
    [12]Lamb DW, Steyn-ross M, Schaare P, Hanna MM, Silvester W, Steyn-ross A. Estimating leaf nitrogen concentration in ryegrass (Lolium spp.) pasture using the chlorophyll red-edge:theoretical modeling and experimental observations. International Journal of Remote Sensing,2002,23(18): 3619-3648.
    [13]Lee KS, Cohen WB, Kennedy RE, Maiersperger TK, Gower ST. Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sensing of Environment,2004, 91:508-520.
    [14]Lee T, Reddy KR, Sassenrath-Cole GF. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration. Crop Science,2000,40:1814-1819.
    [15]Martin ME, Aber JD. Estimation of forest canopy lignin and nitrogen concentration and ecosystem processes by high spectral resolution remote sensing. Ecology Application,1997,7:431-443.
    [16]Myneni RB, Williams DL. On the relationship between FAPAR and NDVI. Remote Sensing of Environment,1994,49:200-211.
    [17]Serrano L, Filella I, Penuelas J. Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop Science,2000,40(3):723-730.
    [18]Sims DA, Gamon JA. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002,81:331-354.
    [19]Taylor SL, Raun WR, Solie JB, Johnson GV, Stone ML, Whitney RW. Use of spectral radiance for correcting nitrogen deficiencies and estimating soil test variability in an established bermudagrass pasture. Journal of Plant Nutrition,1998,21(11):2287-2302.
    [20]Teillet PM, Staenz K, Williams DJ. Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions. Remote Sensing of Environment,1997,61: 139-149.
    [21]Thenkabail PS, Enclona EA, Ashton MS, Legg C, Dieu MJD. Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests. Remote Sensing of Environment,2004,90:23-43.
    [22]Wang RC, Chen MZ, Jiang HX. Study on the agricultural mechanism of yield estimation using remote sensing:I. Spectral characteristics of rice with different nitrogen level and selection of sensitive waveband. Journal of Zhejiang Agricultural University,1993,19 (sup):7-14 (in Chinese).
    [23]Wessman CA, Aber JD, Peterson DL. An evaluation of imaging spectrometry for estimating forest canopy chemistry. International Journal of Remote Sensing,1989,10:1293-1316.
    [24]Xue LH, Yang LZ, Fan XH. Estimation of nitrogen content and C/N in rice leaves and plant with canopy reflectance spectra. Acta Agronomica Sinica,2006,32 (3):430-435 (in Chinese)
    [25]Xue LH, Cao WX, Luo WH, Dai TB, Zhu Y. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal,2004,96,135-142.
    [26]Zhao DL, Reddy KR, Kakani VG, Reddy VR. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy,2005,22:391-403.
    [1]Adams JE, Arkin DF. A light interception method for measuring row crop ground cover. Soil Scicence Society of America Journal,1977,41:789-792.
    [2]Aoki M, Yabuki K, Totsuka T, Nishida M. Remote sensing of chlorophyll content of leaf (I) effective spectral reflection characteristics of leaf for the evaluation of chlorophyll content in leaf dicotyledons. Environment of Control Biology.1986,24:21-26.
    [3]Blackburn GA. Quantifying chlorophylls and caroteniods at leaf and canopy scales:An evaluation of some hyperspectral approaches. Remote sensing of Environment,1998,66: 273-285.
    [4]Blackburn GA. Spectral indices for estimating photosynthetic pigment concentrations:a test using senescent tree leaves. International Journal of Remote Sensing,1998,19(4):657-675.
    [5]Card DH, Peterson DL, Matson PA, Aber JD. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote sensing of Environment,1988,26: 123-147.
    [6]Carter GA. Ratios of leaf reflectance in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing,1994,15:697-704.
    [7]Chappelle EW, Kim MS, McMurtrey JE. Ratio analysis of reflectance spectra (PARS):an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote sensing of Environment,1992,39:239-247.
    [8]Collins W. Remote sensing of crop type and maturity. Photogramm Eng Remote Sens,1978, 44:43-45.
    [9]Curran PJ, Dungan JL, Gholz HL. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiology,1990,7:33-48.
    [10]Dash J, Curran PJ. The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing,2004,25:5403-5413.
    [11]Datt B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in Eucalyptus leaves. Remote sensing of Environment,1998,66(2):111-121.
    [12]Datt B. Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. International Journal of Remote Sensing,1999,20(14):2741-2759.
    [13]Daughtry CST, Walthall CL, Kim MS, de Colstoun EB, McMurtrey JE. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote sensing of Environment, 2000,74:229-239.
    [14]Demetriades-Shah TH, Steven MD, Clark JA. High resolution derivative spectra in remote sensing. Remote sensing of Environment,1990,33:55-64.
    [15]-Filella I, Serrano I, Penuelas J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Science,1995,35:1400-1405.
    [16]Gamon JA, Penuelas J, Field CB. A narrow-waveband spectral index that tracks diumal changes in photosynthetic efficiency. Remote Sensing of Environment,1992,41:35-44.
    [17]Gitelson AA, Merzlyak MN. Quantitative estimation of chlorophyll a using reflectance spectra:experiments with autumn chestnut and maple leaves. Journal of Photochemical Photobiology(B).1994,22:247-252.
    [18]Gitelson AA, Merzlyak MN. Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing,1997,18:2691-2697.
    [19]Gitelson AA, Merzlyak MN. Spectral reflectance changes associate with autumn senescence of Aesulus hippocastanum L. and Acer platanoides L. leaves spectral features and relation to chlorophyll estimation. Journal of plant physiology,1994,143:286-292.
    [20]Gitelson AA, Merzlyak MN. Signature analysis of leaf reflectance spectra:Algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology,1996:148, 494-500.
    [21]Gupta RK, Vijayan D, Prasad TS. Comparative analysis of red edge hyperspectral indices. Advance in Space Research,2003,32(11):2217-2222.
    [22]Hansen PM, Schjoerring JK. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalize difference vegetation indices and partial least squares regression. Remote sensing of Environment,2003,86:542-553.
    [23]Hendry GAF, Houghton JD, Brown SB. The degradation of chlorophyll-biological enigma. New Phytol.1987,107:255-302.
    [24]Horler DNH, Barber JP, Ferns DC, Barringer AR. Approaches to detection of geochemical stress in vegetation. Advanced Space Research,1983,3:175-179.
    [25]Horler DNH, Dockray M, Barber J, Barringer AR. Red edge measurements for remotely sensing plant chlorophyll content. Advanced Space Research,1983,3:273-277.
    [26]Horler DNH, Dockray M, Barber J. The red edge of plant leaf reflectance. International Journal of Remote Sensing,1983,4:273-288.
    [27]Knipling EB. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote sensing of Environment,1970,1:155-159.
    [28]Lichtenthaler HK, Lang M, Sowinska M, Heisel F, Mieh JA. Detection of vegetation stress via a new high resolution fluorescence imaging system. Journal of Plant Physiology,1996, 148:599-612.
    [29]Lichtenthaler HK. Chlorophylls and carotenoids:the pigments of photosynthetic biomembranes. Methods Enzymol.1987,148:331-382.
    [30]Merzlyak MN, Gitelson AA, Chivkunova OB, Rakitin VY. Nondestructive optical detection of leaf senescence and fruit ripening. Physiol Plant,1999,106:135-141.
    [31]Merzlyak MN, Gitelson AA. Why and what for the leaves are yellow in autumn? On the interpretation of optical spectra of senescing leaves (Acer platanoides L.). Journal of Plant Physiology,1995,145:315-320.
    [32]Penuelas J, Filella I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trend of Plant Science,1998,3(4):151-156.
    [33]Penuelas J, Gamon JA, Fredeen AL, Merino J, Field CB. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves. Remote sensing of Environment,1994,48,135-146.
    [34]Pinar A. Grass chlorophyll and the reflectance red edge. International Journal of Remote Sensing,1996,17(2):351-357.
    [35]Richardson AD, Duigan SP, Berlyn GP. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol,2002,153:185-194.
    [36]Rock BN, Hoshizaki T, Miller JR. Comparison of in situ and airborne measurements of the blue shift associated with forest decline. Remote Sensing of Environment,1988,24:109-127.
    [37]Schutt JB, Rowland RR, Heartly WH. A laboratory investigation of a physical mechanism for the extended infared absorption ("red shift") in wheat. International Journal of Remote Sensing,1984,5:95-102.
    [38]Sims DA, Gamon JA. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment,2002,81:337-354.
    [39]Thomas JR, Gausman HW. Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops. Agronomy Journal,1977,60:799-802.
    [40]Thomas JR, Oerther GF. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agronomy Journal,1972,64:11~13.
    [41]Vogelmann JE, Rock BN, Moss DM. Red-edge spectral measurements from Sugar Maple leaves. International Journal of Remote Sensing,1993,14:1563-1575.
    [42]Zarco-Tejada PJ, Berjon A, Lopez-Lozano R, Miller J R, Martin P, Cachorro V, Gonzalez M R, de Frutos A. Assessing vineyard condition with hyperspectral indices:Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment,2005,99:271-287.
    [43]陈维君,周启发,黄敬峰.用高光谱植被指数估算水稻乳熟后叶片和穗的色素含量.中国水稻科学.2006,20(4):434-439
    [44]刘伟东,项月琴,郑兰芬,童庆禧,吴长山.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析.遥感学报,2000,4(4):279-283.
    [45]唐延林,王纪华,黄敬峰,王人潮,何秋霞.水稻成熟过程中高光谱与叶绿素、类胡萝卜素的变化规律的研究.农业工程学报.2003,19(6):167-173.
    [46]王秀珍,黄敬峰,李云梅,王人潮.水稻生物化学参数与高光谱遥感特征参数的相关分析.农业工程学报,2003,19(2):144-148.
    [47]王秀珍,王人潮,李云梅,沈掌泉.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究.浙江大学学报(农业与生命科学版),2001,27(3):301-306.
    [1]Baret F, Guyot G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment.1991,35:161-173.
    [2]Boegh E, Soegaard H, Broge N et al. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment,1998,81:179-193.
    [3]Broge NH, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment.2000,76:156-172.
    [4]Broge NH, Mortensen JV. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sensing of Environment,2002,81: 45-57.
    [5]Bunnik NJJ. The multispectral reflectance of short-wave radiation by agriculture crops in relation with their morphological and optical properties. H. Veenman and Foncu, B.V. Wageningen.1978,176.
    [6]Carter GA. Reflectance wavebands and indices for remote estimation of photosynthesis and stomatal conductance in pine canopies. Remote Sensing of Environment,1998,63:61-72.
    [7]Chen JM, Cihlar J. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sensing of Environment.1996,55:153-162.
    [8]Curran PJ. Remote sensing of foliar chemistry. Remote Sensing of Environment.1989,30, 271-278.
    [9]Elvidge CD, Chen ZK. Comparison of broad-band and narrow-band red and near-Infrared vegetation indices. Remote Sensing of Environment,1995,54:38-48.
    [10]Fang HL, Liang SL. A hybrid inversion method for mapping leaf area index from MODIS data experiments and application to broadleaf and needleleaf canopies. Remote Sensing of Environment.2005,94:405-424.
    [11]Fernandes RA, Miller JR, Chen JM, Rubinstein IG. Evaluating image-based estimates of leaf area index in boreal conifer stands over a range of scales using high-resolution CASI imagery. Remote Sensing of Environment.2004,89:200-216.
    [12]Hatfield JL, Kanemasu ET, Asrar G, et al. Leaf area estimates from spectral measurements over various planting dates of wheat. International Journal of Remote Sensing.1985,6: 167-175.
    [13]Jordan CF. Derivation of leaf area index from quality of light on the forest floor. Ecology, 1969,50:663-666.
    [14]Kovacs JM, Flores-Verdugo F, Wang J, Aspden LP Estimating leaf area index of a degraded mangrove forest using high spatial resolution satellite data Aquatic Botany.2004,80:13-22.
    [15]Lelong CCD, Pinet PC, Poilve H. Hyperspectral imaging and stress mapping in agriculture:a case study on wheat in Beauce (France). Remote Sensing of Environment,1998,66(2): 179-191.
    [16]Patel NK, Patnaik C, Dutta J, Shekh AM, Dave AJ. Study of crop growth parameters using airborne imaging spectrometer data. International Journal of Remote Sensing,2001,22(12): 2401-2411.
    [17]Richardson AJ, Wiegand CL. Distinguishing vegetation from soil background information. Photo Eng Remote Sens,43:1977,1541-1552.
    [18]Rouse JW, Haas RH, Schell JA, Deering DW, Harlan JC. Monitoring the vernal advancement of retrogradation of natural vegetation. NASA/GSFC, TypelⅢ, Final Report, Greenbelt, MD, USA,1974,1-371.
    [19]Shibayama M, Akiyama T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass. Remote Sensing of Environment,1989,27:119-127.
    [20]Turner DP, Cohen WB, Kennedy RE, Fassnacht KS, Briggs JM. Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sensing of Environment.1999,70:52-68.
    [21]Wiegand CL, Gausman HW, Cuellar JA, Gerbermann AH, Richardson AJ. Vegetation density as deduced from ERTS-1 MSS response. Third European Terrestrial Reference System Symposium, NASA-SP-351,1, Sect A,1974,93-116.
    [22]Zhao CJ, Huang WJ. Wang JH, et al. The red edge parameters of different wheat varieties under different fertilization and irrigation treatments. Agri Sci Chin,2002,1:745-751
    [23]冯伟.基于高光谱遥感的小麦氮素营养与生长指标监测研究,南京农业大学博士论文,2007.
    [24]刘伟东,项月琴,郑兰芬,童庆禧,吴长山.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析.遥感学报,2000,4(4):279-283.
    [25]宋开山,张柏,李方,段洪涛,王宗明.高光谱反射率与大豆叶面积及地上生物量的相关分析.农业工程学报,2005,21(1):36-40.
    [26]唐延林,王秀珍,王福民,王人潮.农作物LAI和生物量的高光谱法测定.西北农林科技大学学报(自然科学版)),2004,32:100-104.
    [27]田庆久,闵祥军.植被指数研究进展.地球科学进展.1998,13,327-333.
    [28]童庆禧.中国典型地物波谱及其特征分析.北京:科学出版社,1990
    [29]王秀珍,王人潮,黄敬峰.微分光谱遥感及其在水稻农学参数测定上的应用研究.农业工程学报,2002,18:9-13.
    [30]薛利红,曹卫星,罗卫红,王绍华.光谱植被指数与水稻叶面积指数相关性的研究.植物生态学报.2004,28(1):47-52.
    [31]张佳华,符棕斌.生物量估测模型中遥感信息与植被光合参数的关系研究.测绘学报,1999,28(2):128-132.
    [32]张佳华,王长耀,符棕斌.遥感信息结合光合特性研究作物光合产量模型.自然资源学报,2000,15(2):170-174.
    [33]张晓阳,李劲峰.利用垂直植被指数推算作物叶面积系数的理论模式.遥感技术与应用.1995,10(3):13-18.
    [34]赵英时等编著遥感应用分析原理与方法北京:科学出版社,2003.
    [1]Beck. R. EO-1 User Guide V.2.3. Available at:http://EO1.usgs.gov.2003.
    [2]Boegh E, Soegaard H, Broge N, et al. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment,2002,81:179-193.
    [3]Coops NC, Smith ML, Martin ME, et al. Prediction of eucalypt foliage nitrogen content from satellite-derived hyperspectral data. IEEE Transactions on Geoscience & Remote Sensing,2003, 41(6):1338-1346.
    [4]Datt B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in Eucalyptus leaves. Remote Sensing of Environment,1998,66:111-121.
    [5]Daugytry CST, Walthall CL, Kim MS, Brown de Colstoun E, Mcmurtrey JE. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment,2000, 74:229-239.
    [6]Jago RA, Cutler MEJ, Curran PJ. Estimating canopy chlorophyll concentration from field and airborne spectra. Remote Sensing of Environment,2000,68:217-224.
    [7]Karpouzli E, Malthus T. The empirical line method for the atmospheric correction of IKONOS imagery. International Journal of Remote Sensing,2003,24(5):1143-1150.
    [8]Research Systems Inc (RSI), ENVI User's Guide, Research Systems Inc, Version 4.3,2006.
    [9]Roderick M, Smith R, Lodwick G. Calibrating long-term AVHRR-derived NDVI imagery. Remote Sensing of Environment,1996,58:1-12.
    [10]Serrano L, Penuelas J, Ustin SL. Remote sensing of nitrogen and lignin in Mediterranean vegetation for AVIRIS data:Decomposing biochemical from structural signals. Remote Sensing of Environment,2002,81:355-364.
    [11]Smith GM, Milton EJ. The use of the empirical line method to calibrate remotely sensed data to reflectance. International Journal of Remote Sensing,1999,20(13):2653-2662.
    [12]Smith ML, Martin ME, Plourde L, et al. Analysis of hyperspectral data for estimation of temperate forest canopy nitrogen concentration:Comparison between an airborne (AVIRIS) and a spaceborne (Hyperion) sensor. IEEE Transactions on Geoscience & Remote Sensing,2003,41(6):1332-1337.
    [13]Sripada RP, Heiniger RW, White JG, et al. Aerial color infrared photography for determining late-season nitrogen requirements in corn. Agronomy Journal,2005,97:1443-1451.
    [14]Wessman CA, Aber JD, Peterson DL. An evaluation of imaging spectrometry for estimating forest canopy chemistry. International Journal of Remote Sensing,1989,10:1293-1316.
    [15]刘建贵,吴长山,张兵等.PHI成像光谱图像反射率转换.遥感学报,1999,3(4):290-294.
    [16]蒲瑞良,宫鹏.森林生物化学与CASI高光谱分辨率遥感数据的相关分析.遥感学报,1997,1(2):115-123.
    [17]谭炳香,李增元,陈尔学,庞勇EO-1 Hyperion高光谱数据的预处理.遥感信息,2005,6:36-41.
    [18]吴昀昭,田庆久,金震宇等.ETM+数据绝对反射率反演方法分析.遥感信息,2004,2:9-12.
    [19]杨敏华,刘良云,刘团结等.小麦冠层理化参量的高光谱遥感反演试验研究.测绘学报,2002,31(4):316-321.
    [1]Asner GP. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment.1998,64:234-253.
    [2]Blackmer TM, James SS, Gary E. Nitrogen deficiency detection using reflected short-wave radiation from irrigated corn canopies. Agronomy Journal,1996,88:1-5.
    [3]Blackmer TM, Schepers JS, Varvel GE. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agronomy Journal,1994,86:934-938.
    [4]Curran PJ. Remote sensing of foliar chemistry. Remote Sensing of Environment,1989,30: 271-278.
    [5]Curran PJ, Dungan JL, Peterson DL. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry. Testing the Kokaly and Clark methodologies. Remote Sensing of Environment,2001,76:349-359.
    [6]Dart B. Remote sensing of Chlorophylla, Chlorophyll b, Chlorophyll a+b, and total Carotenoid content in Eucalyptus leaves. Remote Sensing of Environment,1998,66:111-121.
    [7]Daugytry CST, Walthall CL, Kim MS, Brown de Colstoun E, Mcmurtrey JE. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment,2000, 74:229-239.
    [8]Dawson TP, Curran PJ, Plummer SE. LIBERTY:modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sensing of Environment.1998,65:50-60.
    [9]Demetriades-shah TH, Steven MD, Clark JA. High resolution derivative spectral in remote sensing. Remote Sensing of Environment,1990,33:55-64.
    [10]Flowers M, Weisz R, Heiniger R. Remote sensing of winter wheat tiller density for early nitrogen application decisions. Agronomy Journal,2001,93:783-789.
    [11]Gitelson AA, Merzylak MN, and Lichtenthaler HK. Detection of red edge position and chlorophyll content by reflectance measurements near 700nm. Journal of Plant Physiology,1996.148:501-508.
    [12]Jacquemoud S, Baret F. PROSPECT:a model of leaf optical properties spectra. Remote Sensing of Environment,1990,24:75-91.
    [13]Jago RA, Cutler MEJ, Curran PJ. Estimating canopy chlorophyll concentration from field and airborne spectra. Remote Sensing of Environment,2000,68:217-224.
    [14]Jongschaap REE, Booij R. Spectral measurements at different spatial scales in potato:relating leaf, plant and canopy nitrogen status. International Journal of Applied Earth Observation and Geoinformation,2004,5:205-218.
    [15]Kokaly RF, Clark RN. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 1999,67:267-287.
    [16]Kokaly RF. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sensing of Environment,2001,75:153-161.
    [17]Miller JR, Hare EW, Wu J. Quantitative characterization of the vegetation red edge reflectance. I. An inverted-Gaussian reflectance mode. International Journal of Remote Sensing,1990,11(10): 1775-1795.
    [18]Pinar A. Grass chlorophyll and the reflectance red edge. International Journal of Remote Sensing, 1996,17(2):351-357.
    [19]Rundquist BC. The influence of canopy green vegetation fraction on spectral measurements over native tallgrass prairie. Remote Sensing of Environment,2002,81:129-135.
    [20]Shibayama M and Akiyama TA. A spectroradiometer for field use. VII. Radiometric estimation of nitrogen levels in field rice canopies. Japanese Journal of Crop Science,1986,55:439-445.
    [21]Takebe M, Yoneyama T, Inada K, et al. Spectral reflectance ratio of rice canopy for estimating crop nitrogen status. Plant Soil.1990,122:295-297.
    [22]Thenkabail PS, Enclona EA, Ashton MS, Legg C, Dieu MJD. Hyperion, IKONOS, ALI, and ETM+ sensors in the study of affrican rainforests. Remote sensing of Environment,2004,90:23-43.
    [23]Vaesen K, Gilliams S, Nackaerts K et al. Ground-measured spectral signatures as indicators of ground cover and leaf area index:the case of paddy rice. Field Crops Research,2001,69:13-25.
    [24]Walburg G, Bauer M, Daughtry CST. Effect of nitrogen nutrition on growth, yield and reflectance characteristics of corn canopies. Agronomy Journal,1982,74:677-683.
    [25]Xue LH, Cao WX, Luo WH, et al. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal,2004,96(1):135-142.
    [26]Yoder BJ, Pettigrew-Crosby RE. Predicting nitrogen and chlorophyll content and concentrations form reflectance spectra (400-2500nm) at leaf and canopy scales. Remote Sensing of Environment, 1995,53:199-211.
    [27]李映雪,朱艳,田永超等.小麦叶片氮积累量与冠层反射光谱指数的定量关系.作物学报,2006,32(2):203-209.
    [28]刘伟东,项月琴,郑兰芬等.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析.遥感学报,2000,4(4):279-283.
    [29]牛铮,陈永华,隋洪智等.叶片化学组分成像光谱遥感探测机理分析.遥感学报,2000,4(2):125-129.
    [30]浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000.
    [31]王秀珍,黄敬峰,李云梅等.高光谱数据与水稻农学参数之间的相关分析.浙江大学学报(农业与生命科学版),2002,28(3):283-288.
    [32]王秀珍,黄敬峰,李云梅等.水稻地上鲜生物量的高光谱遥感估算模型研究.作物学报,2003,29(6):815-821.
    [33]王秀珍,王人潮,李云梅.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究.浙江大学学报(农业与生命科学版),2001,27(3):301-306.
    [34]吴长山,项月琴,郑兰芬等.利用高光谱数据对作物群体叶绿素密度估算的研究.遥感学报,2000,4(3):228-232.
    [35]杨敏华,刘良云,刘团结等.小麦冠层理化参量的高光谱遥感反演试验研究.测绘学报,2002,31(4):316-321.
    [36]张良培,郑兰芬,童庆禧.利用高光谱数据对生物变量进行估计.遥感学报,1997,1(2):110-113.
    [37]赵英时等编著.遥感应用分析原理与方法.科学出版社,北京,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700