用户名: 密码: 验证码:
新型BC_3结构高温高压合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过高温高压条件下合成的材料具一些与常规条件下合成的材料所不具有的优异特性,比如较高硬度、化学稳定性、金属性以及优异的抗氧化特性。在这些新材料中,高温高压下合成的超硬多功能材料被人们寄予了厚望。现代在工业上被广泛运用的两种的超硬材料分别是金刚石和立方氮化硼,由于在运用上存在一定的不足,因而发展受到了限制。近年来俄罗斯和美国的科学家们在硼掺杂的金刚石中发现了超导现象,而且理论预测更高含量的掺硼金刚石具有更高的超导转变温度,另外日本的科研工作者发现在一些金属单质体系中掺杂硼元素的超导温度要比掺杂其他元素的超导温度高,由此富硼体系材料的超导研究成为目前科学的前沿课题。由硼碳氮三种元素组合的二元或者三元材料体系一直以来都是超硬材料设计和合成的热点,科研工作者在硼碳氮三元体系的超硬材料的合成在实验上没有取得突破,所以将超硬材料的设计转向硼碳二元体系。加之硼碳二元体系材料具有较高的硼含量,有可能具有较高的超导温度,因此硼碳二元超硬超导多功能材料的设计与合成成为新的科研热点。同时实验上利用各种硼碳二元材料经过高温高压的手段合成出了类金刚石结构的硼碳化合物如:d-BC,d-BC_(1.6)。四方结构的硼碳化合物c-BC_5,是硼碳材料研究又一个非常成功的例子。理论计算表明这是一种具有很高维氏硬度(71GPa)和很大的体模量(335GPa)的半导体材料,而且在相同的尺寸上它的热稳定性比金刚石要多500K,该结构还具有高达45K的超导转变温度,所以高温高压实验技术是合成硼碳多功能材料首选。在已经合成出的c-BC_5中硼元素的比例只有16.7%,却具有高达45K的超导温度,那么在更高的含硼量的原子摩尔比为1:3的硼碳二元体系中的BC_3构型中,经过高温高压处理之后会不会也同样存在BC_3新结构材料,将具超硬特性以及高的超导转变温度。
     本论文利用金刚石对顶砧产生高压,采用原位共聚焦拉曼散射光谱、激光加热高温高压,电子探针等先进的实验技术,利用类石墨相BC_3为原始材料,在金刚石对顶砧中分别将样品加压到50.5GPa,40.5GPa,30.5GPa然后进行激光加热,加热的温度分为1900K±20K,1800±20K,1700±20K。运用高温高压原位拉曼散射实验技术,测量了经过高温高压处理后的BC_3样品的拉曼散射数据,发现原来graphite-like BC_3样品两个拉曼振动模式之一的G模,峰位在1589cm~(-1)消失了,取而代之的是在200-1300cm~(-1)波段范围内出现了十几个拉曼新峰,样品的拉曼峰数据的显著变化表明BC_3已经发生了明显的结构相变。通过和目前已知的硼碳化合物,硼,碳各种单质的拉曼数据对比排除了BC_3样品高温高压下分解的可能,确定了实验上得到的数据并非目前已知的硼碳化合物,而是一种新的BC_3结构。因此我们在金刚石对顶砧中成功合成出一种具有新型原子结构的BC_3材料,而且这种新材料可以稳定存在于常温常压条件下。通过与我组他人的理论结果对比,确定实验上合成出的BC_3具有P21/m对称性,是一种具有超硬超导性质的多功能材料。
Materials are treated by high pressure and high temperature might have excellent properties than those obtained at normal conditions, such as, extreme hardness, high thermal and chemical stability, et al. People show great interest to search superhard multi-function materials under high temperature and high pressure. At present, the widely used superhard materials are mainly diamond and cubic BN. The shortcomings of these materials limited their application. Recently, the discovery of superconductivity in polycrystalline boron-doped diamond (BDD) synthesized under high pressure and high temperature. Theoretical calculation shows that the higher boron content the higher superconducting transition temperature will be. In addition, boron doped in some metals have been discovered. Boron-carbon compounds could have higher superconducting transition temperature for its high boron content. Diamond-like BC and diamond-like BC_(1.6) have been synthesized under high pressure and high temperature. Another big success is the superhard diamond-like BC_5. Theoretical calculation shows that it Vickers hardness is , and 500 K more thermally stable than nanocrystalline diamond at the same grain size, and its Tc could be as high as 45 K. The 1:3 boron-to-carbon ratio (graphite-like BC_3) has been absorbed people’s attention with higher boron content according to the diamond like-BC_5, could exist new atomic structure with the extreme hardness, and higher superconducting transition temperature.
     In this paper, we used a modified Merrill–Bassett-type our-screw diamond anvilcell (DAC) with a 400μm culet in this study. A hole of 120μm was drilled for the sample chamber on Steel T301 gasket. NaCl was used as pressure transmitting media and heat insulation. Raman scattering was used to study the BC_3 phase under high pressure and high temperature, a direct transformation from the graphite-like BC_3 to a new BC_3 phase was observed experimentally in a diamond-anvil cell at high temperature 1700±20K, 1800±20K , 1900±20K and high pressure 30.5, 40.5 and 50.5GPa. We shut out the possibility that BC_3 decomposed into other boron-carbon, or boron and carbon compounds under high pressure and high temperature, and we are sure that the new compound is not all the boron-carbon compounds that have been known until now by the comparison of all boron-carbon Raman spectra. We have obtained a new structure of BC_3 after a series of laser heating high pressure and high temperature experiments. In order to confirming the new BC_3 structure, the theoretical Raman spectrum of s-BC_3 at 0GPa was computed and compared to our experimental by the collaborators. The most simulated intensive peak positions and relative intensities of s-BC_3 match our experimental observation very well. Electronic and electron-phonon coupling calculations reveal s-BC_3 is a superconductor with critical temperature 7K. Furthermore, the hardness of this phase is 46.8GPa, so the s-BC_3 is a candidate of superhard superconducting multifunctional materials.
引文
[1] A.Y.Liu, M.L.Cohen, Prediction of New Low Compressibility Solids [J]. Science, 1898,145:841
    [2] V.L.Solozhenko, D.Andrault, Synthesis of super hard cubic BC2N [J], Appl. Phys. Lett, 2001, 78 :1385-1387.
    [3] H. W. Hubble, I. Kudryashov, V. L. Solozhenko, P. V. Zinin, Raman studies of cubic BC2N, a new superhard phase, [J] J. Raman Spectrosc. 2004; 35: 822–825.
    [4] Vladimir L. Solozhenko and Oleksandr O. Kurakevych, Ultimate Metastable Solubility of Boron in Diamond: Synthesis of Superhard Diamondlike BC5, PRL 102, 015506 (2009).
    [5] Matteo Calandra and Francesco Mauri, High-Tc Superconductivity in Superhard Diamondlike BC5, PRL 101, 016401 (2008).
    [6] E. A. Ekimov et al, Nature (London) 428, 542 (2004).
    [7] Vladimir L. Solozhenko, Synthesis of bulk superhard semiconducting B–C material, APLIED PHYSICS LETTERS, (2004).
    [8] P. V. Zinina_and L. C. Ming, Pressure- and temperature-induced phase transition in the B–C system, JOURNAL OF APPLIED PHYSICS 100, 013516 (2006).
    [9] P.V. Zinin, I. Kudryashov, Identification of the diamond-like B–C phase by confocal Raman spectroscopy, Spectrochimica Acta Part A 61 (2005) 2386–2389.
    [10] Zhongyuan Liu, Julong He, Prediction of a sandwichlike conducting superhard boron carbide: First-principles calculations, PHYSICAL REVIEW B 73, 172101 (2006).
    [11] P. V. Zinin, L. C. Ming, Raman spectroscopy of the BC3 phase obtained under high pressure and high temperature, J. Raman Spectrosc. 2007; 38: 1362–1367.
    [12] Ch. Wa¨lti, E. Felder, C. Degen, Strong electron-phonon coupling in superconducting MgB2: A specific heat study, PHYSICAL REVIEW B, VOLUME 64, 172515.
    [13] Toru Shirasaki, Alain Derre, Synthesis and characterization of boron-substituted carbons, Carbon 38 (2000) 1461–1467.
    [14] H. K. Mao, P. M. Bell and R. J. Hemley, Phys, Rev, Lett. 55 (1985) 99.
    [15] H. E. Lorenzana, I. F. Silvera and K. A. Goettel, Phys, Rev. Lett. 63 (1998)2080.
    [16] E. Wigner and H. B. Huntington, J.Chem. Phys. 3 (1935) 764.
    [17] C.T.Michael, Tectonophysics, 136 (1987) 27.
    [18]沈仁权等编基础生物化学上海:科技出版社,(1980) 156.
    [19]高压物理讲义(参考资料),吉林大学超硬材料国家重点实验室.
    [20] R. A. Forman, G. J. Piermarini, J. D. Barnet and S. Block, Science , 176, 284 ,(1972) .
    [21] J. D. Barnet, S. Block and G. J. Piermarini, Rev. Sci. Instrum. 44 ,1, (1973).
    [22] Mao H K ,Bell P M ,Shaner J W , et al . Specific Volume Measurements of Cu, Mo, Pd and Ag and Calibration of the Ruby Fluorescence Pressure Gauge from 0.06 to 1 Mbar , J Appl Phys, 49, 1725,(1978).
    [23]程光煦编著,拉曼布里渊散射——原理及应用科学出版社,2001.
    [24]张光寅蓝国祥王玉芳编著,晶格振动光谱学高等教育出版社,2001.
    [25] Fangfei Li, Qiliang Cui, Zhi He, Tian Cui, Chunxiao Gao, Qiang Zhou, Brillouin scattering spectroscopy for a laser heated diamond anvil cell, APPLIED PHYSICS LETTERS 88, 203507 (2006).
    [26] Qiang Zhou, Raman scattering system for a laser heated diamond anvil cell, REVIEW OF SCIENTIFIC INSTRUMENTS.
    [27] KimE, Oh I, Kwak J. Electrochem. Commun. 2001; 3: 608.
    [28] Minseo Park ,S.M. Camphausen, Raman scattering of tetrahedrally-bonded amorphous carbon deposited at oblique angles .Materials Letters 41 -1999. 229–233.
    [29] A. Richter, H.J. Scheibe, W. Pompe, K.W. Brzezinka, I. Mu¨hling, J. NonCryst. Solids 88 (1986). 131.
    [30] S. Prawer, K.W. Nugent, Y. Lifshitz, G.D. Lempert, E. Grossman, J. Kulik, I. Avigal, R. Kalish, Diamond Relat Mater. (1996). 433.
    [31] M. Ramsteiner, J. Wagner, Appl. Phys. Lett. 51 (1987). 1355.
    [32] H. Sumiya and T. Irifune, J. Mater. Res. 22, 2345.
    [33] T. Irifune et al., Nature (London) 421, 806 (2003).
    [34] A. F. Goncharov, I. N. Makarenko, and S. M. Stishov, Sov. Phys. JETP 69, 380 (1989)
    [35] N. Vast, S. Baroni,G. Zerah, J. M. Besson, Lattice Dynamics of Icosahedral a-Boron under Pressure, PHYS I CAL RE V I EW LETTERS 27 JANUARY (1997).
    [36] R. J. Nelmes, J. S. Loveday, D. R. Allan, J. M. Besson, G. Hamel, P. Grima, and S. Hull, Phys. Rev. B 47, 7668 (1993).
    [37] W. Richter and K. Ploog, Phys. Status, Solidi (b) 68, 201 (1075).
    [38] W. Weber and M. F. Thorpe, J. Phys. Chem. Solids 36, 967 (1975).
    [39] C. H. Beckel, M. Yousaf, M. Z. Fuka, S. Y. R. Raja, and N. Lu, Phys. Rev. B 44, 2535 (1991).
    [40] K. Shirai and S. Gonda, J. Phys. Chem. Solids 57, 109 (1996).
    [41] W.R.L. Lambrecht and B. Segall, Phys. Rev. B 40, 9909 ~1989.
    [42] R.Q. Zhang, K.S. Chan, H.F. Cheung, and S.T. Lee, Appl. Phys. Lett. 75, 2259 ~1999.
    [43] J.C. Zheng, C.H.A. Huan, A.T.S. Wee, R.Z. Wang, and Y.M.
    [44] Y. Tateyama, T. Ogitsu, K. Kusakabe, S. Tsuneyuki, and S. Itoh, Phys. Rev. B 55, R10 161 ~1997.
    [45] H. Werheit,H.W. Rotter, F.D. Meyer , FT-Raman spectra of isotope-enriched boron carbide,Journal of Solid State Chemistry 177 (2004) 569–574.
    [46] Vladimir L. Solozhenko and Oleksandr O. Kurakevych,Raman scattering from turbostratic graphitelike BC4 under pressure, JOURNAL OF APPLIED PHYSICS 102, 063509 (2007).
    [47] T. L. Aselage, D. R. Tallant, and D. Emin, Isotope dependencies of Raman spectra of B12As2, B12P2, B12O2, and B121xC32x : Bonding of intericosahedral chains, PHYSICAL REVIEW B VOLUME 56,(1997).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700