用户名: 密码: 验证码:
棕色棉纤维色素前体合成与光调控的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棕色棉是一种纤维呈现天然棕色的彩色棉,由于其本身带有天然的颜色,在棉花纺织生产过程中,可以免去漂白、消毒、染色等过程,污染少、环保健康。但是,棕色棉与白色棉相比,品质不够理想,存在颜色不够纯正、色素分布不均匀、色素遗传不稳定等缺陷,严重制约了棕色棉的生产与应用。
     前人从棕色棉纤维中克隆了原花色素合途径中的结构基因(F3H, DFR, CHI等),结合棕色棉纤维色素化学性质的鉴定结果,初步推断棕色棉纤维色素的合成前体为缩合单宁,即原花色素。目前对棕色棉纤维发育过程中原花色素合成、积累规律的研究较少,关于白色棉与棕色棉中原花色素合成、积累的差异鲜见报道,关于棕色棉纤维色素与原花色素的关系仍有待深入研究。
     棕色棉的纤维颜色形成于纤维发育的中后期阶段,研究表明,纤维颜色的呈现与光照有关,但关于纤维色素合成过程中是否存在光质调控尚不清楚,纤维色素合成和积累与光是否存在直接关系仍需进一步研究。
     本课题以棕色棉为材料,通过对纤维组织中原花色素的染色分析、含量测定及其结构基因表达分析等,研究棕色棉纤维色素合成与原花色素的关系,并结合MSAP与cDNA-AFLP技术,研究棕色棉纤维发育过程中的DNA甲基化模式变化与基因表达差异,分析棕色棉纤维发育的分子机制。同时,通过采用不同透光膜处理棕色棉幼苗,研究不同光质对棕色棉幼苗中原花色素合成、积累的影响,探讨光质调控原花色素合成的生理与分子机制,为进一步明确原花色素与纤维色素的关系,解决棕色棉纤维色素颜色不纯正、色素分布不均匀的缺陷提供理论依据。主要研究结果如下:
     1.以棕色棉和白色棉为材料,采用DMACA和TBO对不同发育阶段纤维组织进行化学染色,并对纤维发育过程中,纤维组织中的原花色素含量变化与结构基因GhCHS、GhF3H、GhDFR、GhANS与GhANR表达进行分析,结果表明,棕色棉和白色棉纤维中原花色素的合成起始于纤维细胞的突起阶段,但白色棉纤维中原花色素含量低,并在5DPA后开始降低,20DPA时就检测不到原花色素;而在棕色棉纤维发育的5-40DPA时期,纤维中原花色素含量较高,呈先升后降的趋势,在15DPA原花色素含量最高,并且,在棕色棉纤维中,原花色素合成的结构基因GhCHS、GhF3H、 GhDFR、GhANS与GhANR只在纤维发育的早、中期表达,在花后10天、15天表达量最高,花后15天后表达减弱,纤维生长发育后期表达可能较低。
     2.利用MSAP与cDNA-AFLP技术研究棕色棉纤维发育过程中(5DPA-25DPA)的DNA甲基化模式变化与基因表达差异。66对MSAP选扩引物每个样品平均共扩增出1010.5个带型,每对引物扩增出11-27个片段,平均15.31个片段。随着纤维发育进程的推进,纤维DNA甲基化条带总数、甲基化比率、全甲基化比率逐渐升高,纤维发育的过程中,DNA发生甲基化的位点数逐渐增多。采用64对cDNA-AFLP的引物组合,每对引物组合扩增的总条带数在32-51条之间,平均39.8条,其中,有75条转录衍生片段呈多态性。通过对30条多态性转录衍生片段的克隆、测序与同源性分析发现,30条序列中与已知的棉花相关序列同源性较高的序列较多,共有19条来自于棉属植物。而根据30条转录衍生片段的Blast比对结果,有13条转录衍生片段和报道的已知功能的基因同源,其余17条转录衍生片段的功能未知。
     3.采用红、黄、蓝、白四种透光膜处理棕色棉幼苗,研究光质对棕色棉原花色素、表型性状及其光合系统的影响。结果表明,红膜处理能提高棉花幼苗各组织中原花色素含量,黄膜与蓝膜处理对原花色素合成、积累有抑制作用;红膜、黄膜处理对植物的生长有促进作用、蓝膜处理可促进棉花幼苗根系生长,但会抑制植株生长;而经黄膜、蓝膜与红膜处理后,棕色棉幼苗光能的利用效率降低,净光合速率也发生明显下降,光合产物积累减少,但白膜处理的棕色棉植株仍能较好的吸收、转换、利用光能,并能保持较高的净光合速率。
     4.利用MSAP皮术研究不同透光膜处理对棕色棉幼苗DNA甲基化模式和水平变化的影响,探讨光质对棕色棉生长、发育影响的表观遗传机制。选取了66对MSAP选扩引物进行PCR扩增反应,每个样品平均共扩增出1300.5个带型,每对引物扩增出15-32个片段,平均19.7个片段。经不同膜处理后,红膜、黄膜和蓝膜处理均增加了棉花DNA总甲基和全甲基化的比率,但蓝膜处理降低了棉花DNA半甲基化比例。对甲基化多态性片段的测序、分析表明,DNA甲基化发生改变的位点既存在于基因组的编码区,也存在于非编码区;棉花幼苗中丙酮酸激酶同源基因Seql与水通道蛋白同源基因Seq4的表达受光质调控,基因的激活表达与其甲基化位点的去甲基化有关。
Brown cotton is a kind of naturally colored cotton, which accumulates brown pigment in fiber. Because of less processing and dying procedures, it could induce less harmful chemical effects and is friendlier to environment than white cotton. However, in contrast with white cotton, brown cotton has many defects, such as mixed color, inhomogeneous distribution and unstable inheritance of pigments, which could limit its use and popularization.
     In previous studies, several flavonoid structural genes including encoding dihydroflavonol reductase (DFR), anthocyanidin synthase (ANS), flavanone3-hydroxylase (F3H), and anthocyanidin reductase (ANR) were cloned from brown fiber. The analysis of chemical properties of extracted compounds primarily demonstrated that the pigment in brown fiber might be proanthocyanidins (PAs, also called condensed tannins). However, the reports on synthesis and accumulation rules of PAs are less and the relationship between PAs and brown pigment in fiber are not yet clear by now.
     For brown cotton, during the middle and late development stages of fiber, the brown pigment was accumulated in fiber. In the accumulated procedure, light might be related to the sun light irradiation. However, it needs to further research whether the light has effects on pigment synthesis or not.
     In the experiment, on the one hand, the relationship between brown pigment and PAs was studied. On the another hand, the variation of DNA methylation and gene expression were analyzed by using MSAP and cDNA-AFLP methods during the development stages from5to25DPA. On the third hand, the seedlings of brown cotton were treated with different color films, and the effects of light quality on PAs synthesis were discussed. The results of the experiment were as follows:
     1. A brown fiber line and a white fiber cultivar were selected to determine the factors that affect the pigmentation in brown fiber. Accordingly, the fibers in different developmental stages were collected to verify the presence of PAs by p-dimethylami-nocinnamaldehyde (DMACA) and toluidine blue O (TBO) staining. The PAs content and related gene expressions were determined. As a result, PAs synthesis started at the stage of papillary epidermic cells of seeds and there were obvious differences on the aspect of PAs synthesis in fiber between white cotton and brown cotton. For white fiber, the PAs content reached maximum at5DPA stage, and then gradually decreased to zero. But for brown fiber, the PAs content was increased from5to15DPA stage, and reached the maximum at the15DPA stage, then gradually decreased from15to40DPA stage. In brown cotton, PAs synthesis continued for the whole developmental stage from5to40DPA. PAs content in brown fiber was far more than that in white fiber, which may be the reason why the brown pigment accumulated in brown fiber.
     2. Brown fibers were collected to analyze the variation of DNA methylation and gene expression by using MSAP and cDNA-AFLP methods during the development stages from5to25DPA. The results showed that by MSAP analysis, a total of1010.5bands per samples and11-27bands per primer combination were amplified by using66pairs of primer combinations. During the development process of fiber, the sum of methylated sites, the ratio of methylated sites and percentage of fully methylated sites were gradually increased with the advancement of fiber development stages. However, by cDNA-AFLP analysis, a total of32-51bands with average of39.8bands per primer combination were amplified by using64pairs of primer combinations. There are75polymorphic transcription derived fragments (TDFs) were detected, and among that,30TDFs were sequenced and analyzed. By blasting at NCBI website,19TDFs were detected to be homologous with genes from cotton. According to blasting results, among30TDFs,13TDFs were homologous with known functional genes; however,17TDFs were homologous with unknown function genes.
     3. The seedlings of brown cotton were treated with different color films, and the effects of light quality on PAs synthesis, phenotype traits and photosynthetic system were studied. As a result, red film treatment increased the PAs content, however, yellow and blue films treatment inhibited the PAs synthesis. After treatment with different color films, plant growth were accelerated by red and yellow films, root growth was promoted by blue film. The Physiological Parameters such as light use efficiency, net photosynthetic rate and accumulation of photosynthetic products were decreased after the treatment with red, blue and yellow films. The plants treated with white films maintained better light use efficiency and higher net photosynthetic rate.
     4. The effects of light quality on variation of DNA methylation were analyzed using the seedlings of brown cotton treated with different color films. The results showed that a total of1300.5bands per samples and15-32bands with an average of19.7bands per primer combination were amplified by using66pairs of primer combinations. The ratios of total methylated sites and fully-methylated sites were increased after treatment with red, yellow and blue films, moreover, blue film treatment decreased the percentage of hemi-methylated sites. In addition,10polymorphic fragments were sequenced and cloned. By blasting at NCBI, the sequences alignment revealed that both coding and non-coding regions could be methylated or demethylated by different light quality. The expression of seq1(homologous with pyruvate kinase) and seq2(homologous with MIP family) were regulated by light quality, which were closely related to the procedure of the demethylation of methylated sites for the genes during the activated expression.
引文
[1]詹少华,林毅,蔡永萍.天然棕色棉纤维色素光谱学特性及其化学结构初步推断[J].植物学通报,2007,24(1):99-104
    [2]王淑民.彩色棉溯源与研究[J].世界农业,2000,257(9):19-21
    [3]邱新棉.天然彩色棉研究现状与展望[J].植物遗传资源学报,2003,4(2):171-174
    [4]石玉真,杜雄明,刘国强,等.天然有色棉纤维和短绒色泽遗传分析[J].棉花学报,2002,14(4):242-248
    [5]詹少华,林毅,蔡永萍,等.棕色棉纤维中酚类物质动态变化与色素合成的关系[J].作物学报,2006,32(11):1684-1688
    [6]Ware JO, Bennedict LI. Colored cottons and their economic value [J]. J Heredity,1962, LⅢ(2):57-65.
    [7]詹少华,李正鹏,林毅,等.天然棕色棉纤维色彩遗传特性的定量分析[J].中国农学通报,2008,24(12):146-148
    [8]Kohel, RJ. Genetic analysis of five colour variants in cotton [J]. Crop Sci.,1985, 25:793-7
    [9]Dickerson DK, Lane EF, Rodriguez DF. Naturally colored cotton:resistance to changes in color and durability when refurbished with selected laundry aids [J]. California:California Agricultural Technology Institute [PHD dissertation],1999,1-6
    [10]孙君灵,杜雄明,周忠丽,等.国审彩色棉品种—中棉所51[J].中国棉花,2005,11:22-23
    [11]张家宪,刘伟,胡岩.彩色棉皖棉38和皖棉39简介[J].中国棉花,2006,6:14
    [12]刘勤红,刘任重,王淑艳,等.我国彩色棉的研究现状与发展建议[J].山东农业科学,2004,3:11-13
    [13]雄明.彩色棉品质改良和有色纤维研究进展[A].中国棉花学会,2002,年会论文汇编[会议论文],2002,110-113
    [14]袁淑娜,华水金,倪密,等.彩色棉纤维中矿质元素含量与纤维品质形成的关系[J].中国农业科学,2010,43(20):4169-4175
    [15]张镁,吴红霞,马长华,等.彩棉纤维的形态结构、超微结构和主要化学组成[J].印染,2002,6:1-5
    [16]董合忠,郭庆正,王志芬.棉花纤维的发育及其与纤维品质的关系[J].莱阳农学院学报,1996,13(3):197-201
    [17]邱新棉,周文龙,李茂松,等.天然彩色棉纤维素的遗传基础形成及湿处理色素 变化规律的研究[J].中国农业科学,2002,35(6):610-615
    [18]赵向前,王学德.天然彩色棉纤维色素成分的研究[J].作物学报,2005,31(4):456-462
    [19]Waghmare VN, Koranne KD. Colored cotton:present status, problems and potentials [J]. Indian J Genet Plant Breed,1998,58(1):1-15
    [20]陈英,宋心远,刘书芳.彩色棉中色素对纤维微结构的影响[J].印染,2004,6:4-6
    [21]詹少华,林毅,蔡永萍,等.天然棕色棉色素分布规律及色素合成与纤维发育的关系[J].棉花学报,2006,18(3):170-174
    [22]Hua SJ, Wang XD, Yuan SN, et al. Characterization of pigmentation and cellulose synthesis in colored cotton fibers [J]. Crop sci,2007,47:1540-1546
    [23]Xiao YH, Zhang ZS, Yin MH, et al. Cotton flavonoid structural genes related to the pigmentation in brown fibers[J]. Biochem Bioph Res Co,2007,358:73-78
    [24]詹少华,林毅,蔡永萍.缩合单宁与天然棕色棉纤维色素合成的关系[J].棉花学报,2007,19(3):183-188
    [25]Gregory JT, Kathy TF, Sharon A, et al. Proanthocyanidin biosynthesis in Plants [J]. J Biol Chem,2003,278(22):31647-31656
    [26]Li Tian, Yongzhen Pang, Richard A. Biosynthesis and genetic engineering of proanthocyanidins and (iso)flavonoids[J]. Phytochem Rev,2008,7:445-465
    [27]Routaboul JM, Kerhoas L, Debeaujon I, et al. Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana [J]. Planta,2006,224:96-107
    [28]Baoshan S, Conceicao L, Jorge M, et al. Separation of grape and wine proanthocyanidins according to their degree of polymerization [J]. J Agric Food Chem, 1998,46:1390-1396
    [29]Brossand F, Cheynier V, Asselin C, et al. Flavonoid compositional differences of grapes among site test plantings of cabernet franc [J]. Am J Enol Vitic,1999,52(2): 277-284
    [30]Nuno M, Sara M, Ana CG, et al. Proanthocyanidin composition of red vitis vinifera varieties from the Douro valley during ripening:influence of cultivation altitude [J]. Am J Enol Vitic,2001,52(2):115-121
    [31]Bogs J, Downey MO, Harvey JS, et al. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves [J]. Plant Physiol,2005,139:652-663
    [32]Maries MAS, Ray H, Gruber MY. New perspectives on proanthocyanidin biochemistry and molecular regulation [J]. Phytochem,2003,44:425-432
    [33]Bogs J, Ebadi A, McDavid D, et al. Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development [J]. Plant Physiol,2006,140: 279-291
    [34]Deyu Xie, Sharma SB, Nancy L, et al. Role of Anthocyanidin Reductase, Encoded by Banyuls in Plant Flavonoid Biosynthesis [J]. Sci,2003,299:396-399
    [35]Kitamura S, Shikazono N, Tanaka A. Transparent testa 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis [J]. Plant J, 2004,37:104-114.
    [36]Baxter IR, Young JC, Armstrong G, et al. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana [J]. Proc Natl Acad Sci USA,2005,102:2649-2654
    [37]Marinova K, Pourcel L, Weder B, et al. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat [J]. Plant Cell,2007,19:2023-2038
    [38]Pourcel L, Routaboul JM, Kerhoas L, et al. Transparent testa 10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat [J]. Plant Cell,2005,17:2966-2980
    [39]Shashi, Sharma B, Richard AD. Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana [J]. Plant J,2005, 44:62-75
    [40]Yongzhen Pang, Gregory JP, Elane W, et al. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula [J]. Plant physiol,2007,145: 601-615
    [41]Mark PR, Francesco P, John WH, et al. Sn, a maize bHLH gene, modulates anthocyanin and condensed tannin pathways in Lotus corniculatus [J]. J Exp Bol, 2003,54(381):239-248
    [42]Jochen B, Felix WJ, Adam MT, et al. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development [J]. Plant Physiol, 2007,143:1347-1361
    [43]Chapple, CCS, Shirley, BW, Zook M, et al. Secondary metabolism in Arabidopsis [M]. New York:Cold Spring Harbor Laboratory Press,1994,989-1030
    [44]Debeaujon I, Peeters AJM, L on-Kloosterziel KM, et al. The Transparent testa 12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium [J]. Plant Cell, 2001,(13):853-872
    [45]Shirley B W, Kubasek W L, Storz, G, et al. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis [J]. Plant J,1995, (8):659-671
    [46]Koornneef M. Mutations affecting the testa color in Arabidopsis [J]. Arabidopsis Inf. Serv,1990,27:1-4
    [47]Wisman E, Hartmann U, Sagasser M, et al. Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes [J]. Pro. Natl Acad Sci USA,1998,95:12432-12437
    [48]Peer W A, Brown D E, Brian W, et al. Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis [J]. Plant Physiol,2001,126:536-548
    [49]Nesi N, Jond C, Debeaujon I, et al. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed [J]. Plant Cell,2001,13:2099-2114
    [50]Weisshaar B, Jenkins G I. Phenylpropanoid biosynthesis and its regulation [J]. Plant Biol,1998,1:251-257
    [51]Nathalie N, Marie O L, Bathilde A, et al. The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-accumulation cells of the Brassica napus seed coat [J]. Plant Cell Rep,2009,28:601-617
    [52]Tsutomu, Masahiko M, Tomoyuki O, et al. The Re and Rd genes are involved in proanthocyanidin synthesis in rice pericarp [J]. Plant J,2006,49:91-102
    [53]Soizic L, Severine G, Laurence G. Involvement of abscisic acid in controlling the proanthocyanidin biosynthesis pathway in grape skin:New elements regarding the regulation of tannin composition and Leucoanthocyanidin Reductase (LAR) and Anthocyanidin Reductase (ANR) activities and expression [J]. J Plant Growth Regul, 2009,0721-7595
    [54]Nancy T, Laurent T, Agnes A, et al. Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway [J]. Plant Physiol,2009,149:1028-1041
    [55]Francesco P, Tessa B, Nicola T, et al. Light and an exogenous transcription factor qualitatively and quantitatively affect the biosynthetic pathway of condensed tannins in Lotus corniculatus leaves [J]. J Exp Bot,2005,56(414):1093-1103
    [56]Jaligot E, Beule T, Baurens FC, et al. Search for methylation-sensitive amplification polymorphisms associated with the "mantled" variant phenotype in oil palm (Elaeis guineensis Jacq.) [J]. Genome,2004,47:224-228.
    [57]Suzuki MM, Bird A. DNA methylation landscapes:provocative insights from epigenomics [J]. Nature Review Genet,2008,9:465-476.
    [58]杨金兰,柳李旺,龚义勤,等.镉胁迫下萝卜基因组DNA甲基化敏感扩增多态性分析[J].植物生理与分子生物学学报,2007,33(3):219-226.
    [59]Hanai LR, Floh EIS, Fungaro MHP, et al. Methylation patterns revealed by MSAP profiling in genetically stable somatic embryogenic cultures of Ocotea catharinensis (Lauraceae) [J]. In Vitro Cell Dev-Plant,2010,46:368-377.
    [60]Mason G, Noris E, Lanteri S, et al. Potentiality of Methylation-sensitive Amplification Polymorphism (MSAP) in Identifying Genes Involved in Tomato Response to Tomato Yellow Leaf Curl Sardinia Virus [J]. Plant Mol Biol Rep,2008, 26:156-173.
    [61]潘雅姣,傅彬英,王迪,等.水稻干旱胁迫诱导DNA甲基化时空变化特征分析[J].中国农业科学.2009,42:3009-3018.
    [62]Teyssier E, Bernacchia G, Maury S, et al. Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening [J]. Planta,2008,228:391-399.
    [63]FinneganE J, PeacockW J, DennisE. DNA methylation, a key regulation of plant development and other processes [J]. Curr Opin Genet Dev,2000,10:217-223
    [64]邢宝松,郭启祥,马强,等.DNA甲基化检测方法研究进展[J].河南农业科学,2007.11:17-19
    [65]Inagaki S, Kakutani T. Control of genic DNA methylation in Arabidopsis [J]. J Plant Res,2010,123:299-302
    [66]Chen XQ, Ma Y, Chen F, et al. Analysis of DNA methylation patterns of PLBs derived from Cymbidium hybridium based on MSAP [J]. Plant Cell Tiss Organ Cult, 2009,98:67-77
    [67]King GJ. Morphological development in brassica oleraceais modulated by in vivo treatment with 5-azacytidine [J]. Jourm Horticul Sci,1995,70(2):333-342.
    [68]Sano HV, Kamada IV. A single treatment of rice seedling with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA [J]. Mol Genet Genomics, 1990,220:441-447
    [69]Bossdorf O, Arcuri D, Richards CL, et al. Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana [J]. Evol Ecol,2010,24:541-553
    [70]Hafiz IA, Abbasi NA, Ahmad T, et al. Methylation profiles differ between juvenile and adult phase leaves of crab apple(Malus micromalus) seeding tree [J]. Pak J Bot, 2008,40(3):1025-1032,
    [71]郭广平,顾小平,袁金玲,等.不同生理年龄毛竹DNA甲基化的MSAP分析[J].遗传,2011,33(7):794-800
    [72]陆光远,伍晓明,陈碧云,等.油菜种子萌发过程中DNA甲基化的MSAP分析[J].科学通报,2005,50(24):2750-2756
    [73]Burn JE, Bagnall DJ, Metzger JD, et al. DNA methylation, vernalization and the initiation of flowering [J]. Proc Natl Acad Sci,1993,90:287-291
    [74]柳李旺,宋贤勇,龚义勤,等.萝卜MSAP体系优化与抽薹过程中MSAP分析[J].江苏农业科学,2006,6:203-206
    [75]Sheldon CC, Finnegan EJ, Rouse DT, et al. The control of flowering by vernalization [J]. Curr Opin Plant Biol,2000,3:418-422
    [76]Thanananta T, Pongtongkam P, Thongpan A, et al. Effect of short day photopriod on DNA methylation and expression of gene in rice KDML105 [J]. Afr J Biotechnol, 2006,5(15):1372-1382
    [77]何艳霞,王子成,曹红平,等.光暗条件下大蒜DNA甲基化差异的初步研究[J].植物生理通讯,2007,43(1):85-88
    [78]Lukens LN, Zhan SH. The plant genome's methylation status and response to stress: implications for plant improvement [J]. Curr Opin Plant Biol,2007,10:317-322
    [79]Mirouze M, Paszkowski J. Epigenetic contribution to stress adaptaion in plants [J]. Curr Opin Plant Biol,2011,14:1-8
    [80]华扬,陈学峰,熊建华,等.水稻冷胁迫诱导的甲基化差异片段CIDM7的分离和分析[J].遗传,2005,27(4):595-600
    [81]Steward N, Ito M, Yamaguchi Y, et al. DNA methylation in maize nucleosomes and demethylation byenvironmental stress [J]. J Biol Chem,2002,277:37741-37746
    [82]潘雅姣,傅彬英,王迪,等.水稻干旱胁迫诱导DNA甲基化时空变化特征分析[J].中国农业科学,2009,42(9):3009-3018
    [83]樊洪泓,李廷春,李正鹏,等.PEG模拟干旱胁迫对石斛DNA表观遗传变化的MSAP分析[J].核农学报,2011,25(2):0363-0368
    [84]钟兰,王建波.DNA超甲基化在小麦耐盐胁迫中的作用[J].武汉植物研究,2007,25(1):102-104
    [85]范建成,刘宝,王隽媛.萘胁迫对水稻基因组DNA甲基化模式及水平的影响[J].环境科学,31(3):793-800
    [86]孟华兵,杜雪,姜宇晓,等.镉胁迫下二倍体和同源四倍体油菜DNA甲基化差 异分析[J].核农学报,2010,24(6):1297-1304
    [87]葛才林,杨小勇,刘向农,等.重金属对水稻和小麦DNA甲基化水平的影响[J].植物生理与分子生物学学报,2002,28:363-368
    [88]王子成,马洪霞,何艳霞.重金属镉对拟南芥DNA甲基化的影响[J].植物生理通讯,2009,45(2):115-118
    [89]Labra M, Grassi F, Imazio S, et al. Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L [J]. Chemosphere,2004,1049-1058
    [90]Sano H. Inheritance of acquired traits in plants [J]. Plant signaling & behavior, 2010,5(4):346-348
    [91]Akimoto K, Katakami H, Kim HJ, et al. Epigenetic inheritance in rice plants [J]. Ann Bot,2007,100:205-17.
    [92]朱新霞,汪保华,郭旺珍,等.中棉所12配制的2个杂交棉DNA甲基化遗传与传递[J].作物学报,2009,35(12):2150-2158
    [93]Li XL, Guo WW, Wang B, et al. Instability of chromosome number and DNA methylation variation induced by hybridization and amphidiploid formation between Raphanus sativus L. and Brassica alboglabra Bailey [J]. BMC Plant Bio,2010, 10:207.
    [94]Zhao Y, Yu S, Xing C, et al. Analysis of DNA methylation in cotton hybrids and their parents [J]. Mol Bio,2008,42(2):195-205.
    [95]Sakthivel K, Girishkumar K, Ramkumar G, et al. Alterations in inheritance pattern and level of cytosine DNA methylation, their relationship with heterosis in rice [J]. Enphytica,2010, DOI 10.1007/s10681-010-0167-2.
    [96]Qi X, Li ZH, Jiang LL, et al. Grain-yield heterosis in Zea mays L. shows positive correlation with parental difference in CHG methylation [J]. Crop sci,2010, 50:2338-2346
    [97]Jia F, Fu YP, Liu WQ, et al. Quantitative determination of DNA methylation in tobacco leaves by HPLC [J]. Afr J Agr Res,2010,6(6):1545-1548
    [98]Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands [J]. Proc Natl Acad Sci,1992,89:1827-1831.
    [99]Reyna-Lopez GE, Simpson J, Ruiz-Herrera J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms [J]. Mol Gen Genet,2009,253:703-710.
    [100]Xu ML, Li XQ, Korban SS. AFLP-Based detection of DNA methylation [J]. Plant Mol Biol Rep,2000,18:361-368
    [101]王春国,古瑜,陈成彬,等.不同倍性西瓜基因组DNA甲基化水平与模式的MSAP分析[J].分子细胞生物学报,2009,42(2):118-125
    [102]何艳霞,王子成.拟南芥幼苗超低温保存后DNA甲基化的遗传变异[J].植物学报,2009,44(3):317-322
    [103]Oh YJ, Chung H, Yu JG, et al. Newly developed MSAP analysis reveals the different polymorphism patterns in transgenic tobacco plants with the dsRNA MET1 gene [J]. Plant Bio Rep,2009,3:139-145
    [104]Lu YL, Rong TZ, Cao MJ. Analysis of DNA methylation in different maize tissues [J].J Genet Genomics,2008,35:41-48
    [105]Bachem CWB, Hoeven RS van der, Bruijn SM de, et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP:analysis of gene expression during potato tuber development [J]. Plant J,1996, 9:745-753.
    [106]赵继荣,雒淑珍,张增艳,等cDNA-AFLP技术及其在植物基因表达分析中的应用[J].华北农学报,2009,24:18-22
    [107]卢钢,曹家树cDNA-AFLP技术在植物表达分析上的应用[J].植物学通报,
    2002,19(1):103-108
    [108]吴建明,李杨瑞,杨柳,等cDNA-AFLP和cDNA-SRAP技术在植物基因差异表达上的应用及其分析比较[J].生物技术通报,2009,11:52-55
    [109]田曾元,戴景瑞.利用cDNA-AFLP技术分析玉米灌浆期功能叶基因差异表达与杂种优势[J].科学通报,2002,47(18):1412-1416
    [110]吴才君,曹家树,董德坤.芸薹种蔬菜杂交种及其亲本莲座期基因差异表达与杂种优势的关系[J].中国农业科学,2004,37(11):1654-1659.
    [111]Brugmans B, Carmen AFD, Bachem C WB. et al.A novel method for the construction of genome wide transcriptome maps [J]. Plant J,2002,31(2):211-222.
    [112]潘玉欣,马骏,张桂寅,等.棉纤维次生壁加厚期cDNA-AFLP表达谱剖析和转录组图谱构建[J].科学通报,2007,52(12):1435-1432
    [113]范淑英,乐建刚,成广杰,等.用cDNA-AFLP技术构建白菜转录图谱[J].中国农业科学,2008,41(6):1735-1741
    [114]王文霞,褚栋,高士刚,等.小麦抗叶锈病近等基因系TcLr38的cDNA-AFLP分析[J].中国农业科学,2010,43(2):293-303
    [115]肖金平,陈俊伟,张慧琴,等.干旱胁迫下柑橘叶片基因表达谱的cDNA-AFLP分析[J].园艺学报,2011,38(3):417-424
    [116]高凤华,张洪亮,王海光,等.应用cDNA-AFLP比较干旱胁迫条件下水稻和旱稻转录本表达谱[J].科学通报,2009,54(16):2305-2319
    [117]邓晓艳,刘江娜,李志博,等.棉花耐旱相关基因的cDNA-AFLP差异显示[J].石河子大学学报,2010,28(5):537-741
    [118]曾志,王平,梁文裕,等.龙眼成化逆转相关基因表达的cDNA-AFLP分析[J].农业生物技术学报,2009,17(6):1050-1055
    [119]惠麦侠,王晗,张鲁刚,等.白菜叶缘裂刻近等基因系的cDNA-AFLP分析及SCAR标记的转化[J].中国农业科学,2010,43(21):4447-4454
    [120]申艳红,陈晓静,卢秉国,等.番木瓜果实成熟相关基因的cDNA-AFLP分析及克隆[J].园艺学报,2011,38(6):1081-1088
    [121]孙保娟,曹家树,黄细松,等.白菜离体春花相关基因表达的cDNA-AFLP分析[J].园艺学报,2006,33(6):1341-1344
    [122]Debeaujon I, Nesi N, Perez P, et al. Proanthocyanidin-accumulation cells in Arabidopsis testa:regulation of differentiation and role in seed development [J]. Plant cell 2003,15(11):2514-2531
    [123]Porter LJ. Number and weight-average molecular weights for some proanthocyanidin polymers (Condensed tannins) [J]. Aust J Chem,1984, 39(4):557-562
    [124]Ikegami A, Akagi T, Potter D, et al. Molecular identification of 1-cys peroxiredoxin and anthocyanidin/flavonol 3-O-galactosyltransferase from proanthocyanidin-rich young fruits of persimmon (Diospyros kaki Thunb.) [J]. Planta, 2009,230:841-855
    [125]Li YG, Tanner G, Larkin P. The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes [J]. J Sci Food Agric, 1996,70:89-101
    [126]Murray HG, Thompson WF. Rapid isolation of high molecular weight DNA [J]. Nucleic Acids Res,1980,8:4321-4325
    [127]Sanguinetti CJ, Dias Neto E, Simpson AJ. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels [J]. Bio techniques,1994, 17(5):914-921
    [128]计志斌,商海红,闰恒超,等.棉花纤维次生壁加厚期基因的表达谱分析[J].分子植物育种,2011,9(3)327-335
    [129]Jiao YL, Lau OS, Deng XW. Light-regulated transcriptional networks in higher plants [J]. Nat Rev Genet,2007,8:218-230.
    [130]Hu JP, Desai M. Light control of peroxisome proliferation during arabidopsis photomorphogenesis [J]. Plant Signal & Behav,2008,3:801-803.
    [131]Chen M, Chory J, Fankhauser C. Light signal transduction in higher plants [J]. Annu Rev Genet,2004,38:87-117
    [132]Castillon A, Shen H, Huq E. Blue light induces degradation of the negative regulator Phytochrome Interacting Factor 1 to promote photo morphogenic development of Arabidopsis seedlings [J]. Genet,2009,182:161-171.
    [133]郑洁,胡美君,郭延平.光质对植物光合作用的调控及其机理[J].应用生态学报,2008,19(7):1619-1624
    [134]许莉,刘世琦,齐连东,等.不同光质对叶用莴苣光合作用及叶绿素荧光的影响[J].中国农学通报,23(1):96-100
    [135]江明艳,潘远智.不同光质对盆栽一品红光合特性及生长的影响[J].园艺学报,2006,33(2):338-343
    [136]杜洪涛,刘世琦,蒲高斌.光质对彩色甜椒幼苗生长及叶绿素荧光特性的影响[J].2005,14(1):41-45
    [137]张瑞华,徐坤,董灿兴,等.光质对姜生长及光能利用特性的影响[J].园艺学报,2008,35(5):673-680.
    [138]谢宝东,王花田.光质和光照时间对银杏叶片黄酮、内酯含量的影响[J].南京林业大学学报,2006,30(2):51-54
    [139]郭银生,谷艾素,崔瑾.光质对水稻幼苗生长及生理特性的影响[J].应用生态学报,2011,22(6):1485-1492
    [140]孙庆丽,陈志,徐刚,等.不同光质对水稻幼苗生长的影响[J].浙江农业学报.2010,22(3):321-325
    [141]时向东,蔡恒,焦枫,等.光质对作物生长发育影响研究进展[J].中国农学通报,2008,24(6):226-230
    [142]宋哲,李天忠,徐贵轩,等.光质对“红富士”苹果果实着色的影响[J].生态学报,2009,29(5):2304-2311
    [143]齐连东,刘世琦,许莉,等.光质对菠菜草酸、单宁及硝酸盐积累效应的影响[J].农业工程学报,2007,23(4):201-205
    [144]Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence [J]. Biochim Biophys Acta,1989.990:87-92
    [145]Demmig-Adams B, Adams WW Ⅲ, Barker DH, et al. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation to of excess excitation [J]. Physiol Plant,1996,98:253-264
    [146]David M. Kramer, Giles Johnson, Olavi Kiirats, et al. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes [J]. Photosynth Res,2004,79:209-218
    [147]常涛涛,刘晓英,徐志刚,等.不同光谱能量分布对番茄幼苗生长发育的影响[J].中国农业科学,2010,43(8):1748-1756
    [148]Shin KS, Murthy HN, Heo JW, et al. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants [J]. Acta Physio Plant,2008, 30:339-343
    [149]王丽娟,张学英,徐金娥,等.不同光质对草莓果实花青苷/酚类物质及类黄酮物质的影响[J].2009,32(2):54-57
    [150]徐凯,郭延平,张上隆.不同光质对草莓叶片光合作用和叶绿素荧光的影响[J].中国农业科学,2005,38(2):369-375
    [151]Zhong L, Xu YH, Wang JB. DNA-methylation changes induced by salt stress in wheat Triticum aestivum [J]. Afr. J. Biotechnol,2009,8:6201-6207.
    [152]廖祥儒,张蕾,徐景智,等.光在植物生长发育中的作用[J].河北大学学报,2001,(3):341-354
    [153]Voskresenskaya NP. Effect of light quality on carbon metabolism [J]. Encyclopedia of plant physiology. New series,1979. v.6
    [154]李韵山,潘瑞炽.蓝光对水稻碳水化合物和蛋白质代谢的调节[J].植物生理学报,1995,21(1):22-28
    [155]Kaldenhoff R, Kolling A, Richter G. Regulation of the Arabidopsis thaliana aquaporin gem AthH2 (PIP1b) [J]. J Photoch Photobio B,1996,36:351-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700