用户名: 密码: 验证码:
甘蔗与斑茅杂交的染色体遗传及育性相关基因的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选育抗旱、抗病、宿根性强的高产高糖甘蔗品种是提高甘蔗生产水平的最有效措施,而种质创新是选育突破性品种的关键。甘蔗近缘属植物斑茅种质的开发利用是甘蔗种质创新研究的重心。由于甘蔗与斑茅杂交后代花粉育性低和杂交后代遗传机理不清,斑茅杂交利用进展缓慢。本研究通过对系谱来源清楚的斑茅杂种F1、BC1及其亲本的染色体核型分析,F1、BC1体细胞染色体基因组原位杂交(GISH)来揭示甘蔗斑茅远缘杂交染色体的遗传;以花粉育性差异的斑茅杂种BC1及其亲本为材料,提取不同育性材料总RNA,反转录成cDNA与Affymatrix公司已经开发的甘蔗基因芯片杂交,利用生物信息学理论,从涉及育性的众多基因中寻找相关基因。主要研究内容如下:
     (1)核型分析结果,2个海南斑茅无性系海南92-105和海南92-77的核型公式都为2n=60=60m,核型属1A型,而其余5个材料的核型均属2B型;热带种拔地拉核型公式为2n=80=70m+10sm,商业栽培品种CP84-1198为2n=120=114m+6sm(4SAT);2个甘蔗与斑茅杂种F,崖城96-66和崖城96-40的核型公式都为2n=70=68m+2sm;来自同一组合的甘蔗与斑茅杂种BC1崖城01-21、崖城01-134和崖城01-36的染色体条数差异较多,核型公式分别为:2n=114=114m、2n=104=100m+4sm(4SAT)和2n=132=130m+2sm。
     (2) GISH技术分析结果表明2个甘蔗与斑茅杂种后代F1崖城96-66和崖城96-40染色体都是由30条来自斑茅的染色体和40条来自甘蔗(Badila)的染色体组成;甘蔗与斑茅BC1崖城01-134的染色体构成为85条染色体来自甘蔗,29条来自斑茅;崖城01-36的染色体构成为96条染色体来自甘蔗,36条来自斑茅。甘蔗与斑茅杂种染色体以多于亲本的条数传递是首次发现。4个甘蔗斑茅杂种有丝分裂中期染色体和间期染色质观察都存在分布不均匀的现象,来自不同属染色体有聚于染取色体某部位的趋势,但不是截然分开。甘蔗与斑茅BC1崖城01-134和崖城01-36分别有1条和2条染色体发生易位。
     (3)核型分析和GISH结果都表明,甘蔗与斑茅杂种F1染色体是按n+n的方式传递的,而甘蔗与斑茅杂种BC,遗传复杂,崖城01-134是按2n+n的方式遗传的,崖城01-36是按特殊的方式传递的,都发生了染色体遗传的“不平衡”现象。
     (4)2个可育和2个不可育材料杂交芯片表达谱之间4次比较,可育对不育表达上调达4次的基因有14个,3次的有32个,表达下调达4次的基因有12个,3次的有34个。共同上调或下调表达次数达3次以上的基因共有92个。应用相对定量PCR技术对3个共同差异基因进行了验证实验。结果表明相对定量PCR结果与芯片检测结果趋具有较好的一致性,基因芯片检测结果可靠。
     (5)对92上调和下调3次以上的基因,进行的BLAST比对分析,从中发现一些与育性有重要关系的基因发现与育性相关的基因SR,JLP,Prm3和Retrotransposon。它们在植物花发育中调控花器官以及花分生组织特性,在营养生长转向生殖生长的调控中发挥作用,与花粉发育、花药开裂过程、发育时期等相关。
     (6)对甘蔗与斑茅BC1后代崖城01-36染色体构成成因进行了探讨,认为其形成原因可能是崖城96-40为甘蔗种质中渗入大量远缘种质斑茅染色体的杂种,使其代谢紊乱,不但雄性不育,其作母本育性也是非常差,只有极少数异常减数分裂形成的染色体基因“完美组合”的配子或具2n及超过2n染色体的雌配子才能完成受精、胚胎发育和发芽及生长的过程,还有可能是2n+n合子中不同来源染色体分裂不同步,造成部分加倍。由于育性差,这种后代一出现就被发现了。
It's the most efficient measure to get a higher sugarcane production level by breeding drought-resistant, disease-resistant and strong ratooning varieties. Germplasm innovation is the key for breeding breakthrough variety. Development and utilization of Erianthus arundinaceum, a closely related genus of Saccharum is the the most important thing for the Germplasm innovation of sugarcane. The hybriding utilization of Erianthus arundinaceum make slow progress because of the infertility and unclearness of the genrtic of the chromosome. Chromosome karyotype analysis was carried out with the F1and BC1of the progenies of sugancane and Erianthus arundinaceus and their parents, GISH analysis was carried out with the F1and BC1, inorder to discover the genetic of Chromosome. Microarray of sugarcane was used to hybridize with the cDNA from the different fertility clones or parents of BC1crossed from E.arundinaceus and sugarcane. The fertility-related genes were screened from the large number genes based on the bioinformatics analysis and microarray. The results were showed as follows:
     (1) Chromosome karyotype analysis show that the somatic chromosome number of E. arundinaceus Hainan92-105and Hainan92-77was both2n=60=60sm, belonging to type1A. The other five tested clones belonged to type2B. The somatic chromosome number of S. officinarum Badila was2n=80=70m+10sm, commercial variety CP84-1198was2n=120=114m+6sm(4SAT), The F,s YC96-66and YC96-40that originated from Badila with E. Arundinaceus were both2n=70=68m+2sm; Clones derived from the same cross of YC96-40(female) and CP84-1198(male) had different chromosome number, YC01-21had2n=104=100m+4sm chromosomes, YC01-134had2n=114=114m, YC01-36had2n=132=130m+2sm chromosomes.
     (2) The reslut of GISH show that The chromosomes of F,s YC96-66and YC96-40that originated from Badila with E. Arundinaceus were both consist of30chromosomes from E. Arundinaceus and40from S. officinarum. The chromosomes of BC1YC01-134was consist of29chromosomes from E. Arundinaceus and85chromosomes from Saccharum.spp. YC01-36was consist of36chromosomes from E. Arundinaceus and96chromosomes from Saccharum.spp. It's the first time to find that chromosome transmit by the way of more than the somatic chromosome number. The phenomenon of distribut of chromosome and chromatin was both find in the four progenies of Saccharum.spp and E. Arundinaceus. The chromosomes of E. Arundinaceus always gather togather, but not so serious. There are one and two translocation chromosome in YC01-134and YC01-36respectively.
     (3)The results of karyotype analysis and GISH indicated that the hybrids originated from Badila (S. officinarum) and E. arundinaceus followed the chromosome transmission pattern of n+n. and the chromosome transmission of BC1were more complex, YC01-134with the genetic pattern of2n+n and YC01-36with another special kind of genetic pattern. The phenomenon of "Disequilibrium hybridization" was found in BC1.
     (4)4kinds compare of microarray expression profile between2fertility clones and2sterility clones show that14genes expressed4times and32genes expressed3times as Up-regulated genes;12gene expressed4times and34genes expressed3times as Down-regulated genes. There are92genes expressed Up-regulated or Down-regulated more than3tims. Three differentially expressed ESTs with ratio more than2were selected randomly for analysis of quantitative real-time RT-PCR.The similar results from microarray and Q-PCR indicated the reliability and authenticity in the microarray analysis.
     (5) The92Up-regulated and down-regulated ESTs gene sequences were identified and blasted at NCBI according to gene ID. A number of fertility genes including SR (serine-arginine repressor protein), JLP (jasmonate-induced protein), Prm3and the Retrotransposon were screened from92genes. These genes control the flower organ building and the property of flower meristem, play their part in the fertility alteration。They play an important role in the pollen development, anther dehisence and development stages control.
     (6) Discussion was done to explain the chromosome composition of YC01-36, the reason may be attribute to that YC96-40is a hybrid with many E. arundinaceus chromosomes in S. officinarum cell, this cause the disturbance of metabolism, male sterile, poor fertility as femail also. Only very few female gamete with perfact chromosome combination or have more than2n chromosomes number caused by abnormal meiosis can put through the process of fertilization, embryonic development, germinate and growh, another reason may be causes by the the out-sync in the zygot with2n+n, so the chromosomes double partly. And these progeniese were easy to be find for few population in one cross.
引文
[1]路明.巴西甘蔗作物的燃料酒精转化对我国发展燃料酒精的启示[J].作物杂志.2004(5):1-4.
    [2]陈如凯林彦铨张木清等.现代甘蔗育种的理论与实践[M].北京:中国农业出版社,2003:53-65,246-254.
    [3]张木清,王华忠,白晨.糖料作物遗传改良与高效育种[M].北京:中国农业出版社,2005:45-63.
    [4]Grassl C O. Saccharum robustum and other wild relatives of noble sugarcanes[J]. Journal of the Arnold Arboretum Harvard University.1946,27:234-252.
    [5]蔡青,文建成,范源洪,等.甘蔗属及其近缘植物的染色体分析[J].西南农业学报.2002,15(2):16-19.
    [6]文建成,蔡青,等.甘蔗属割手密(Saccharum Spontaneum),近缘属斑茅(Sclerostachya)及河八王(Narenga)的染色体数目研究[J].甘蔗糖业.2001(3):12-15.
    [7]王水琦.福建割手密的染色体研究[J].甘蔗糖业.1996(5):9-13.
    [8]安汝东,桃联安,经艳芬,等.甘蔗细茎野生种云南82—1]4杂交利用效果初探[J].中国糖料.2009(]):6-7.
    [9]安汝东,楚连璧,孙有方,等.甘蔗新品种云蔗99—155的选育[J].2007(甘蔗糖业):7-10.
    [10]Lewandowski I, Clifton Brown J C, Scnrlock J, et al. Miscanthus:European experience with a novel energy crop[J]. Biomass and Bioenergy.2000,19(4):209-227.
    [11]何顺长,杨清辉.全国甘蔗野生种质资源的采集的考察[J].甘蔗(福建).1994(1):11-17.
    [12]杨清辉,萧凤回.西藏甘蔗亚族植物种质资源考察采集报告[J].云南农业大学学报.1991(3):183-186.
    [13]黄家雍,廖江雄.甘蔗与河八王,五节芒,滇蔗茅属间交配性及杂种F1无性系的形态学…[J].西南农业学报.1997,10(3):92-98.
    [14]杨李和.云南割手密种、斑茅种、滇蔗种杂种后代黑穗病抗性研究初报[J].甘蔗(福建).2004,1 1(1):10-14.
    [15]李富生,何丽莲,杨清辉,等.蔗茅(Erianthus fulvus)的特异性状及其与甘蔗杂交F1代的染色体和(?)RAPD鉴定研究[J].分子植物育种.2003(5):775-781.
    [16]杨清辉,李富生.斑茅染色体和植物学性状观察研究[J].云南农业大学学报.1997(4):253-256.
    [17]廖兆周,符城,等.具有斑茅种质的耐旱甘蔗品系的选育[J].作物学报.2002,28(6):841-846.
    [18]李富生,林位夫,何顺长.开发利用蔗茅野生种质资源的思考[J].资源开发与市场.2004,20(4):266-270.
    [19]沈万宽.斑芽的杂交利用价值探讨[J].甘蔗(福建).2002,9(3):1-5.
    [20]陈逢彩.谈谈蔗茅在甘蔗杂交育种中的价值问题[J].甘蔗糖业.1979(1):12-18.
    [21]萧风回,李奇伟,戴耀波.甘蔗×斑茅杂种及其双亲的农艺、工艺、植物学性状和染色体观察[J].云南农业大学学报.1995,]0(1):29-34.
    [22]Grassl. Taxonomy of Saccharum relatives:Sclerastachya[J]. Narenga and Erianthus.1972:240-248.
    [23]彭绍光.甘蔗育种学[M].北京:中国农业出版社,1990.
    [24]周耀辉.斑茅分类地位的研究[J].甘蔗糖业.1989(6):4-6,17.
    [25]王丽萍,蔡青,范源洪,等.甘蔗(Saccharum)与斑茅(Erianthus arundtnaceus)远缘杂交利用研究[J].西南农业学报.2007,20(4):721-726.
    [26]蔡青,范源洪,Aitkenk,等.利用AFLP进行“甘蔗属复合体”系统演化和亲缘关系研究[J].作物学报.2005,31(5):551-559.
    [27]陈辉,范源洪,向余颈攻,等.从核糖体DNA ITS区序列研究甘蔗属及其近缘属种的系统发育关系[J].作物学报.2003,29(3):379-385.
    [28]刘少谋.几个斑茅后代作为甘蔗杂交亲本的利用效果[J].甘蔗糖业.1992(3):1-6.
    [29]廖兆周.甘蔗、斑茅及其杂种的过氧化物酶同工酶[J].植物学报.1988,30(2):214-219.
    [30]吴能奕,戚经文.甘蔗植物染色体Giemsa—c带分带研究及其应用[J].广东农业科学.1985(2):17-20.
    [31]郑雪芳,张木清,李奇伟,等.甘蔗斑茅的杂交利用及其杂种后代鉴定系列研究(二):甘蔗斑茅远缘真实杂种的分子鉴定[J].分子植物育种.2004,2(1):35-42.
    [32]杨荣仲,谭裕模,黎焕光,等.斑茅杂种后代分子检测[J].分子植物育种.2003(6):824.
    [33]符成,邓海华,陈西文.海南甘蔗育种场斑茅研究利用[J].甘蔗糖业.2003(6):1-5,14.
    [34]王丽萍,蔡青,范源洪,等.甘蔗(Saccharum)与斑茅(Erianthus arundtnaceus)远缘杂交利用研究[J].西南农业学报.2007,20(4):721-726.
    [35]刘少谋,符成,陈勇生.近十年海南甘蔗育种场斑茅后代回交利用研究[J].甘蔗糖业.2007(2):1-6.
    [36]钟淮饮,李富生,杨清辉.甘蔗杂种真实性鉴定研究综述[J].中国农学通报.2005,21(6):390-394.
    [37]郑德森.甘蔗儿个种和品种的6种同工酶比较[J].福建农学院学报.1987,16(2):101-110.
    [38]邓海华,符成,李奇伟,等.斑茅F1杂交可育亲本选择及其回交后代鉴定和主要经济性状[J].热带作物学报.2004,25(4):97-101.
    [39]杨业后,符成,等.斑茅F1品系崖城96—66与CP84—1198杂交后代的鉴别[J].甘蔗糖业.2002(4):11-14.
    [40]杨荣仲,谭裕模,何为中,等.RAPD在鉴定斑茅杂种后代中的应用[J].广西蔗糖.2003(2):8-10,19.
    [41]Cai Q, Aitken K, Deng H H, et al. Verication of the introgression of Erianthus arundinaceus germplasm into sugarcane using molecular markers[J]. Plant Breeding.2005,124:322-328.
    [42]陈健文,Phillip, Jackson A.,等.应用ISSR标记鉴定斑茅BC2杂种真实性[J].中国糖料.2008(1):1-3.
    [43]余爱丽,张木清,等.1sSR分子标记在甘蔗及其近缘属分类上的应用[J].福建农林大学学报:自然科学版.2002,31(4):484-489.
    [44]王英,庄南生,高和琼,等.甘蔗种质遗传基础的1SSR分析[J].湖南农业大学学报:自然科学版.2007(S1):887-889.
    [45]吴水金,潘世明,陈义强,等.甘蔗斑茅属间远缘杂种真实性的ITS鉴定及其抗旱性分析[J].江西农业大学学报.2008,30(4):628-632.
    [46]D'Hont A, Rao P S, Feldmann P, et al. Identification and characterisation of sugarcane intergeneric hybrids,Saccharum officinarum x Erianthus arundinaceus,with molecular markers and DNA in situ hybridizationfJ]. Theor Appl Genet.1995(91):320-326.
    [47]劳方业,符成,陈仲华,等.斑茅杂交后代的分子鉴定[J].甘蔗糖业.2006(1):6-11.
    [48]庄南生,郑成木,王英,等.用AFLP片段构建甘蔗祖亲种特异DNA探针[J].热带作物学报.2004,25(3):18-23.
    [49]邓海华,符成,等.斑茅F2杂种选育与同工酶标记辅助选择[J].甘蔗糖业.2002(1):1-5.
    [50]邓海华,符成,李奇伟,等.斑茅F1杂交可育亲本选择及其回交后代鉴定和主要经济性状[J].热带作物学报.2004,25(4):97-101.
    [51]刘少谋,符成,吴其卫,等.斑茅杂种甘蔗BC1选育研究[J].热带农业科学.2007,27(3):9-12.
    [52]符成,邓海华,杨业后,等.斑茅及其杂种后代主要经济性状研究[J].甘蔗糖业.2004(4):1-5.
    [53]林炜乐.甘蔗斑茅杂交后代染色体遗传分析及品质抗性鉴定[D].福州:福建农林大学,2008.
    [54]陈义强,邓祖湖,郭春芳,等.甘蔗常用亲本及其衍生品种的抗旱性评价[J].中国农业科学.2007(6).
    [55]Jeswiet J. World material of Sacchrum[J]. Proc Int Soc Sugar-Cane echnol.1927,2:137-139.
    [56]邓祖湖,赖丽萍,林炜乐,等.甘蔗斑茅杂交后代BC1的染色体核型及染色体遗传分析[J].福建农林大学学报:自然科学版.2007,36(6):561-566.
    [57]Gall J, Pardue M. Formation and detection of RNA-DNA hybrid molecules in cytological preparations[J]. Proc.Natl.Acad.Sci.U.S.A.1969,63:378-383.
    [58]Larger P R, Waldrop A, Ward D C. Enzymatic synthesis of biotin-labeled polynucleotides:novel nucleic acid affinity probes[J]. Proc.Natl.Acad.Sci.USA.1981,78:6633-6637.
    [59]Albertson D G. Localization of the ribosomal genes in Caenorkabditis elegans chromosomes by in situ hybridization using biotin-labeled probes[J]. Embo J.1984,3:1227-1234.
    [60]Wiegant D J. Multiple colors by fluorescence in situ hybridization nusing ratio-labelled DNA probes create a molecular karyotype[J]. Human Molecular Genetics.1992(1):593-598.
    [61]Rayburn A L, Gill B S. Use of biotin-labeled probes to map specific DNA sequences of wheat chromosomes[J]. J.Hered.1985,76:78-81.
    [62]Hanson R E, Zwick M S, Choi S D, et al. Fluorescent in situ hybridization of a bacterial artificial chromosome[J]. Genome.1995,38:646-651.
    [63]Jiang J, Gill B S, Wang G L, et al. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes[J]. Proc Natl Acad Sci USA.1995,92:4487-4491.
    [64]Cheng Z K, Buell C R, Wing R A, et al. Toward a cytological characterization of the rice[J]. Genome Research.2001,11:2133-2141.
    [65]佘朝文,宋运淳.植物荧光原位杂交技术的发展及其在植物基因组分析中的应用[J].武汉植物学研究.2006,24(4):365-376.
    [66]Dong F, Song J, Naess S K, et al. Development and applications of a set of chromosomespecific cytogenetic DNA markers in potato[J]. Theor Appl Genet.2000,101:1001-1007.
    [67]Leitch A R, Schwarzacher T, Mosgoeller W, et al. Parental genomes are separated throughout the cell cycle in a plant hybrid[J]. Chromosoma.1991,101:206-213.
    [68]Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolour fluorescence in situ hybridization using total genomic and highly repeated DNA probes[J]. Genome. 1993,36:489-494.
    [69]Nederlof P M, van der Flier S, Wiegant J, et al. Multiple fluorescence in situ hybridization[J]. Cytometry. 1990,11:126-131.
    [70]Islam-Faridi M N, Childs K L, Klein P E, et al. A molecular cytogenetic map of sorghum chromosome 1.Fluorescence in situ hybridization analysis with mapped bacteria artificial chromosomes[J].2002, 161:345-353.
    [71]Kim J S, Klein P E, Klein R R, et al. Molecular cytogenetic maps of sorghum linkage groups 2 and 8[J]. Genetics.2005,169:955-965.
    [721 Lawrence J B, Singer R H, Mcnell J A. Interphase and metaphase resolution of different distances within the human dystrophin gene[J]. Science.1990,249:928-932.
    [73]Haaf T, Ward D. Structural analysis of a satellite DNA and centromere proteins using extended chromatin and chromosomes[J]. Human Molecular Genetics.1994(3):697-709.
    [74]Lawrence J B, Villnave C A, Singer R H. Sensitive high-resolution chromatin and chromosome mapping in sine presence and orientation of two closely integrated copies of EBV in a lymphoma line[J]. Cell.1988,52:51-56.
    [75]Parra I, Windle B. High resolution visual mapping of stretched DNA by fluorescence hybridization. [J]. Nature Genetics.1993,5:17-21.
    [761 Heiskanen M, Hellsten E, Kallioniemi O, et al. Visual mapping by fibre-FISH[J]. Genomies.1995,30:31-36.
    [77]Cheng Z, Buell C, Wind R A, et al. Toward Sequencing Cotton(Gossypium)GenomesResolution of fluorescence in situ hybridization mapping mitotic prometaphase chromosomes,meiotic pachytene chromosomes and extended DNA on nce fibers[J]. Plant Physiol.2002,10:379-387.
    [78]Laan M, Isosomppi J, Klockars T. Utilization of FISH in positional cloning:an example on 13q22[J]. Genome Res.1996,6:1002-1012.
    [79]Hans De Jong J, Fransz P F, Zabel P. High resolution F ISH in plants-techniques and applications[J]. Trends Plant Science.1999,4(7):258-263.
    [80]杨学明,裔传灯.植物染色体原位杂交技术及其在稻属研究中的应用[J].植物遗传资源学报.2004,5(4):401-405.
    [81]向素琼,汪卫星,李晓林,等.甘薯近缘野生种Ipomoea trifida(4x) GISH分析[J].作物学报.2008,34(2):341-343.
    [82]Galasso I, Blanco A, Katsiotis A, et al. Genomic organization and phylogenetic relationships in the genus Da.sypyrum analysed by Southern and in situ hybridization of total genomic and cloned DNA probes[J]. Chromosoma.1997,106:53-61.
    [83]Ning S B, Jin W W, Wang L, et al. Comparative genomic research between maize and rice using genomic in situ hybridization[J]. Chin Sci Bull.2001,46:656-658.
    [84]Zoller J F, Yang Y, Herrmann R G, et al. Comparative ge-nomic in situ hybridization(cGISH) analysis on plant chromosomes revealed by labeled Arabidopsis DNA[J]. Chromosome Res.2001,9(5):357-375.
    [85]Belyayev A, Raskina O, Nevo E. Evolutionary dynamics and chromosomal distribution of repetitive sequences on chromosomes of Aegilops speltoides revealed by genomic in situ hybridization[J]. Heredity.2001, R6: 738-742.
    [86]Raskina O, Belyayev A, Nevo E. Repetitive DNAs of wild emmer wheat(Triticum dicoccoides)and their relation to S-genome species.molecular cytogenetic analysis[J]. Genome.2002,45:391-401.
    [87]Snowdon R J, Kohler W, Friedt W. Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids[J], Thero Appl Genet.1997,95:1320-1324.
    [88]杨艳萍,陈佩度.普通小麦与鹅观草属间杂种F1及BC1的分子细胞遗传学、育性和赤霉病抗性研究[J].遗传.2009,31(3):290-296.
    [89]RainaS, Rani V. GISH technology in plant genome research[J]. Methods Cell Sci.2001,23:83-104.
    [90]Schwarzacher T, Leitch A R, Bennett M D, et al. In situ hybridization of parental genomes in a wide hybrid[J]. 1989,64:315-324.
    [91]胡文辉,何光存.基因组原位杂交鉴定栽培稻与广西药用野生稻杂交后代染色体[J].武汉植物学研究.2000,18(2):81-84.
    [92]陆文辉,林小虎,李兴峰,等.抗条锈小滨麦易位系的鉴定[J].作物学报.2005,31(1):88-91,i2.
    [93]Jm J, Sg B. Sequential chromosome banding and in situ hybridization analysis[J]. genome.1993,36:792-796.
    [94]钟少斌,姚景侠.麦类作物DNA原位杂交及其在远缘杂种染色体分析中的应用[J].中国农业科学.1997,30(1):33-37,T2.
    [95]刁英,刘静宇,周明全,等.花青素合成基因bzl和bz2在莲藕染色体上的定位[J].武汉植物学研究.2004,22(5):380-384.
    [96]孙春晓,于常海.基因的染色体定位[J].国外医学:遗传学分册.2000,23(3):120-124.
    [97]Heiskanen M, Peltonen L. Visual mapping by high resolution FISH[J]. Trend in Genetics.1996,12:379-382.
    [98]Jiang J M, Gill B S. Nonisotopic in situ hybridization and plant genome mapping:the first 10 years[J]. Genome.1994,37:717-725.
    [99]Fransz P, Armstrong S, de Jong JH, et al. Integrated cytogenetic map of chromosome 4S of A.rhaliana:structural organization of heterochromatic knob and centromere region[J]. Cell.2000,100:367-376.
    [100]Linares C, Gonzalez J, Ferrer E, et al. The use of double fluorescence in situ hybridization to physically map the positions of 5S rDNA genes in relation to the chromosomal location of 18S-5.8S-26S rDNA and a C genome specific DNA sequence in the genus Avena[J]. Genome.1996,39:535-542.
    [101]Linde-Laursen I, Jensen J. Genome and chromosome disposition at somatic metaphase in a Hordeum×Psathyrostachys hybrid[J]. Heredity.1991,66(2):203-210.
    [102]Mukai Y, Gill B S. Detection of barley chromatin added to wheat by genomic in situ hybridization[J]. Genome.1991(34):448-452.
    [103]Iglesias V A, Moscone E A, Papp I. Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco[J]. Plant Cell.1997,9:1251-1264.
    [104]Pedersen C, Zimny J, Becker D. Localization of introduced genes on the chromosomes of transgenic barley,wheat and triticale by fluorescence in siru hybridization[J]. Theor.Appl.Genet.1997,94:749-757.
    [105]Barro F, Martin A, Cabrera A. Transgene integration and chromosome alterations in two transgenic lines of tritordeum[J]. Chromosome Res.2003,11:565-572.
    [106]D'Hont A, Grivet L, Feldmann P. Characterisation of the double structure of modern sugarcane cultivars(Saccharum spp.)by molecular cytogenetics[J]. Mol genet.1996,250:405-413.
    [107]Besse P, Mcintyre C L. Chronosome in situ hybridization of ribosomal DNA in Erianthus sect Ripidiumspecies with varying chromosome numbers confirm sx=10 in Erianthus sect Ripidium[J]. Genome.1999, 42(270-273).
    [108]张华,林彦铨.甘蔗细胞与分子遗传学研究进展[J].甘蔗(福建).2001,8(3):1-6.
    [109]陈林娇,颖缪,陈德海.原位PCR技术及其应用[J].生物工程进展.2000,20(2):60-65.
    [110]黄东益,郑成木.甘蔗染色体组构成系统演化的研究[J].热带作物学报.2000,21(1):43-51.
    [111]D'Hont A, Paulet F, Glaszmann J C. Oligoclonal interspecific origin of'North Indian'and'Chinese' sugarcanes[J]. Chromosome Research.2002,10(3):253-262.
    [112]D'Hont A, Ison D, A Lix K. Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribo somal RNA genes[J]. Genome.1998,41(2):221-225.
    [113]Piperidis G, Mandy J, Christopher, et al. Molecular contribution to selection of intergeneric hybrids between sugarcane and the wild species Erianthus arundinaceus Genome[J].2000,43:1033-1037.
    [114]孙凯,王秀荣,刘丽玲,等.基因芯片技术及其应用[J].东北农业大学学报.2006,37(3):409-412.
    [115]Kawasaki S, Borcher C, Deyholos M, et al. Gene Expression Profiles during the Initial Phase of Salt Stress in Rice[J]. The Plant Cell.2001,13:889-905.
    [116]孙兵,闫彩霞,张廷婷,等.基因芯片技术在植物基因克隆中的应用研究进展[J].基因组学与应用生物学.2009,28(1):153-158.
    [117]Wellmer F, Riechmann J L, Alves-Femeira M, et al. Genome-wide analysis of spatial gene expression in Arabidopsis flowers[J]. Plant Cell.2004,16(5):1314-1326.
    [118]Leonhardt N, Kwak J M, Robert N, et al. Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant[J]. Plant Cell.2004,16(3): 596-615.
    [119]陈竺,强伯勤,方福德.基因组科学与人类疾病[M].北京:科学出版社,2001:32-39.
    [120]许州达,景瑞莲,甘强,等.用水稻基因芯片筛选小麦耐旱相关基因[J].农业生物技术学报.2007,15(5):821-827.
    [121]高志勇.应用基因芯片检测水稻基因表达的研究[J].安徽农业科学.2007,35(10):3007-3008.
    [122]Coram T E, Settles M L, Wang M, et al. Surveying expression level polymorphism and single-feature polymorphism in near-isogenic wheat lines differing for the Yr5stripe rust resistance locus[J]. Theor Appl Genet. 2008,117(3):401-411.
    [123]Suzuki M., Ketterling M. G., Mccarty D. R. Quantittive statistical analysis of cis-regulatory sequences in ABA/VP1—and CBF/DREB—regulated genes ofA rabidopsis[J]. Plant Physio 1..2005,139(1):437-447.
    [124]刘,郑文杰,赵卫东,等.转基因大豆DNA检测芯片的研究[J].中国食品卫生杂志.2005,17(2):132-134.
    [125]黄文胜,潘良文,粟智平,等.基因芯片检测转基因油菜[J].农业生物技术学报.2003,11(6):588-592.
    [126]周萍萍,尤元海,吴永宁,等.转基因大豆低密度基因芯片的检测方法研究[J].中国食品卫生杂志.2008,20(2):97-102.
    [127]徐景升.转基因农产品检测基因芯片研制[D].福建农林大学,2004.
    [128]李喜焕,王省芬,穆国俊.基因芯片技术及其在植物育种上的应用[J].河北农业科学.2003,7(2):44-49.
    [129]刘文荣,张积森,饶进,等.干旱胁迫下斑茅消减文库的构建及分析[J].作物学报.2007,33(6):961-967.
    [130]张积森,李伟,阙友雄,等.斑茅两个看家基因片段的克降及其在基因芯片中的应用[J].热带呀热带植物学报.2007,15(4):277-283.
    [131]张积森.干旱胁迫下斑茅cDNA芯片表达谱研究及抗旱关键基因克隆[D].福州:福建农林大学,2007.
    [132]那海燕.利用基因芯片筛选育性相关基因[D].福州:福建农林大学,2009.
    [133]孙春丽,潘延云.拟南芥花粉活力的测定及其在花粉发育研究中的应用[J].植物学通报.2008,25(3):268-275.
    [134]王福青,王翠兰,等.大白菜雄性不育系88—-3花药和花粉发育的细胞形态学观察[J].西北植物学报.2001,21(3):570-574,T1.
    [135]杨晓丽,张海洋,郭旺珍,等.芝麻核雄性不育系ms86-1小孢子败育过程的超微结构[J].作物学报.2008,34(11):1894-1900.
    [136]梁燕,赵稚雅.结球白菜细胞质雄性不育系花药和花粉的发育[J].西北农业大学学报.1994,22(3):19-23.
    [137]龙欢,姚家玲,涂金星.3种甘蓝型油菜雄性不育系花药发育的细胞学研究[J].华中农业大学学报.2005,24(6):570-575.
    [138]孙晓敏,胡胜武,于澄宇.油菜生态不育系H50S花药败育的细胞学观察[J].西北农业学报.2009(5):153-158.
    [139]寸宇智.萝卜可育系和雄性不育系花粉发育的组织化学研究[J].大理师专学报.1998(2):35-37.
    [140]方宣钧,金芜军,等.雄性可育与雄性不育籽粒苋小孢子发育研究[J].发育与生殖生物学报:英文版.1996,5(1):55-59,T1-T2.
    [141]徐祖元,徐乃瑜.新型小麦胞质不育系花粉败育的细胞学观察[J].武汉植物学研究.1998,16(3):193-196.
    [142]丁毅,余金洪.马协杂交稻不育系和保持系花粉发育的细胞学比较[J].武汉大学学报:自然科学版.1998,44(6):729-732.
    [143]康俊根.四种类型甘蓝雄性不育系花药败育特征及基因表达谱分析[D].中国农业科学院,2006.
    [144]李传友,孙兰珍.小麦同核异质雄性不育系花粉发育的超微结构[J].华北农学报.1998,13(1):24-29.
    [145]江勇,王明全.珍汕97不育系和保持系水稻花粉发育过程中RNA含量变化的研究[J].武汉大学学报:自然科学版.1997,43(6):763-766.
    [146]常逊,张再君,李阳生,等.水稻红莲型细胞质雄性不育幼穗发育过程中组织型转谷氨酰胺酶活性比较[J].中国水稻科学.2006,20(2):183-188.
    [147]黄晋玲,杨鹏,李炳林.棉花晋A细胞质雄性不育系酶活性的研究[J].棉花学报.2004,16(4):229-232.
    [148]文李,刘盖,张再君,等.红莲型水稻细胞质雄性不育花药蛋白质组学初步分析[J].遗传.2006,28(3):311-316.
    [149]史银连,邓芳,曹剑波,等.光敏核不育水稻农垦58S花粉败育过程中Ca^2+-ATPase的变化[J].作物学报.2008,34(12):2106-2111.
    [150]龚宏伟,马翎健,何蓓如,等.K型小麦雄性不育系育性敏感时期核糖核酸酶活性及可溶性蛋白质含量的变化[J].麦类作物学报.2008,28(1):31-34.
    [151]解海岩,蒋培东,王晓玲,等.棉花细胞质雄性不育花药败育过程中内源激素的变化[J].作物学报.2006,32(7):1094-1096.
    [152]吕世友,陈祖铿,等.花粉发育的研究进展[J].植物学通报.2001,18(3):340-346.
    [153]Mascarenhas J P. Gene acivity during pollen development [J]. Aunu Rev Plant Physiol Plant Mol Biol.1990, 41:317-338.
    [154]Rubinelli P, Hu Y, Ma H. Identification, sequence analysis and expression studies of novel anther-specifi c genes of Arabidopsis thaliana [J]. Pl ant Mol Bio.1998,37:607-619.
    [155]张龙雨,李红霞,张改生,等.黏类小麦细胞质雄性不育相关基因cMDH的克隆与表达分析[J].作物学报.2009,35(9):1620-1627.
    [156]张弢,向殉,叶纨芝,等.芜菁花粉发育相关基因BcMF2r的分子克隆及其生物信息学分析[J].浙江大学学报:农业与生命科学版.2006,32(6):598-605.
    [157]邢俊杰,李莉,李磊,等.水稻光温敏核不育基因表达产物初步研究[J].生命科学研究.2008,12(2):126-130.
    [158]孙清萍,汪莉,等.红莲型水稻不育系统花粉发育不同时期,MADS—box基因家族的表达分析[J].武汉植物学研究.2002,20(5):325-328.
    [159]刘乐承,向殉,曹家树.白菜雄性不育相关基因BcMF4基因功能的NAi验证[J].遗传.2006,28(11):1428-1434.
    [160]位明明,王俊生,张改生,等GAPDH基因表达与小麦生理型雄性不育花药败育的关系[J].分子植物育种.2009,7(4):679-684.
    [161]Mariani C, Beuckeleer M D, Truettner J, et al. Induction of male sterility in plant s by achimaeric ribonuclease gene [J]. Nature.1990,347:737-741.
    [162]周雪荣,方荣祥.表达核糖核酸酶基因的雄性不育油菜的获得[J].遗传学报.1997,24(6):531-536.
    [163]钟蓉,刘玉乐,朱峰,等.TA29-Ba rna se基因导致油菜雄性不育的研究[J].植物学报.1996,38(7):582-585.
    [164]罗玉英,李怀军,刘玉乐,等.转基因雄性不育烟草花药绒毡层及花粉发育的特点[J].遗传.1998,20(4):51.
    [165]刘大文,王守才,谢友菊,等.转Zm13-Ba rnase基因玉米的获得及其花粉育性研究[J].植物学报.2000,42(6):611-615.
    [166]Vander Meer I M. Promoter analysis of the chalcone synthase (ChsA) gene of petunia hybrid:A67bp promot erregion directs flower specific expression [J]. Plant Mol Biol.1990,15:95-109.
    [167]陈建南,傅鸿仪.HSP70基因表达对高粱育性的影响[J].发育与生殖生物学报(英文版).1998,7(2):51-62.1998,7(2):51-62.
    [168]Schoenbeck M A, Temple S J, Trepp G B, et al. Decreased NADH glutamate synthase activity in nodules and flowers of alfalfa (Medicago sativa L.) transformed with an antisense glutamatesynthase transgene [J]. J Exp Bot, 2000,51:29-39.2000,51:29-39.
    [169]王丽萍,马丽.提高甘蔗远缘杂交后代花粉育性的研究[J].亚热带农业研究.2005,1(1):1-3.
    [170]姚伟,余爱丽,徐景升,等.甘蔗基因组DNA简单和快速提取方法[J].农业生物技术学报.2005,13(1):121-122.
    [171]庄伟建,陈如凯,林治良.甘蔗染色体及Giemsa-C带研究初报[J].祸建农学院学报.1996,11(3):19-22.
    [172]郑成木.甘蔗核型及其染色体数目变化的研究[J].热带作物学报.1993,14(1):47-51,T1,2.
    [173]Bremer G A. The cytology of sugarcane.A cytological inveigaion of some cultivated kinds and of their parents. [J]. Genetica(The Hague).1924,4:497-525.
    [174]Ishikawa M, Yoshida K, Yamashita Y, et al. Experimental trial for diagnosis of ancreatic ductal carcinoma based on gene expression profiles of pancreatic ductal cells[J]. Cancer Sci.2005,96(7):387-393.
    [175]那海燕,邓祖湖,张木清,等.植物丝氨酸/精氨酸丰富(SR)蛋白的结构和功能及其在植物发育中的作用[J].植物生理学通讯.2008,44(6):1209-1215.
    [176]Mcconn M, Browse J. The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant.,1996,8:403-416[J]. Plant Cell.1996,8:403-416.
    [177]Creelman R, Mullet J. Biosynthesis and action of jasmonates in plants[J]. Annu Rev Plant Physiol Plant M ol Biol.1997,48:338-355.
    [178]甘立军,夏凯,周燮.茉莉酸对拟南芥花粉育性的调控[J].植物生理学通讯.2004,40(3):269-274.
    [179]Demole E, Lederer E, M Ercier D. Isolement et determination dela structure du jasmonate de methyle, consituant odorant characteristique de ressence de jasmin[J]. Helv Chim Acta.1962,45:675-685.
    [180]Grzmil P, Boinska D, Kleene K, et al. Prm3, the fourth gene in the mouse protamine gene cluster, encodes a conserved acidic protein that affects sperm motility[J]. Biology of Reproduction.2008,78(6):958-967.
    [181]Schluter G, Engel W. The rat Prm3 gene is an intronless member of the protamine gene cluster and is expressed in haploid male germ cells[J], Cytogenet Cell Genet.1995,71:352-355.
    [182]陈志伟,吴为人.植物中的内反转录转座子及其应用[J].遗传.2004,26(1):122-126.
    [183]唐益苗,马有志.植物反转录转座子及其在功能基因组学中的应用[J].植物遗传资源学报.2005,6(2):221-225.
    [184]宋国琦,胡银岗,林凡云,等.YS型小麦温敏不育系育性转换基因的cDNA-AFLP分析[J].西北植物学报.2006,26(4):661-666.
    [185]卢利方,冯仁军,张银东.玉米温敏核雄性不育相关基因克隆[J].华南热带农业大学学报.2006,12(1):7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700