用户名: 密码: 验证码:
含酚废水的吸附、氧化及其组合处理工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:随着石油化工、塑料、合成纤维、焦化等工业的迅速发展,排向环境的各类含酚废水也相应增加。由于酚的毒性大,具有致癌、致畸、致突变的潜在性,越来越受到广大研究人员的高度关注。清除或降解水中的酚类污染物,不仅涉及水生生物及陆生植物的生长繁殖,更影响人类及陆生动物的食品饮水安全,因此,研究含酚废水的高效处理技术,对保护环境具有极大的现实意义。
     目前,国内外处理含酚废水的常用方法有物化法、化学氧化法以及生化法三大类。经工业应用证明采用任何单一的方法都有其优势和局限性,而集几种方法的优点形成一种新的组合工艺用来处理含酚废水是含酚废水处理技术的一种发展方向。
     本文是以实验室模拟含酚废水为研究对象,在分别单独采用树脂吸附法处理和Fenton氧化法处理的基础上,集合吸附与Fenton试剂氧化技术的优点,开发一种吸附-氧化组合联用处理含酚废水的新工艺。同时,利用三相流化床反应器的优点,研究了反应器对新工艺处理实验室模拟含酚废水和实际工业废水的强化作用,分析和探讨了处理效果及其影响因素,为这种新工艺的工业化应用提供了理论依据。本文主要研究结果如下:
     (1)考察了三种常用吸附树脂对于苯酚吸附性能的影响。比较研究发现,H-103大孔吸附树脂性能最优。深入地研究了H-103大孔吸附树脂对苯酚的吸附性能;系统地考察了苯酚水溶液初始浓度、pH值、反应时间及反应温度对树脂吸附性能的影响。实验结果表明,当苯酚水溶液初始浓度为1000mg/L时,树脂吸附过程在30min内基本达到平衡,其吸附动力学可用拟二级动力学模型描述,苯酚在H-103大孔树脂上的吸附等温线完全符合Langmuir吸附等温方程。在25℃的温度下,其平衡吸附量和Langmuir常数分别为86.00mg/g和0.2719L/mmg;采用70%(ω)乙醇作为脱附剂,其脱附率可达94.5%。
     (2)比较研究了MnO2、KMnO4及Fenton试剂对苯酚溶液的氧化性能,实验结果表明Fenton试剂氧化性能最好。系统地研究了Fenton试剂氧化处理模拟含酚废水,探讨了Fe2+初始浓度、摩尔浓度比n(Fe2+)/n(H2O2)、溶液pH值、反应温度和反应时间等因素对苯酚去除率的影响。确定了其适宜氧化条件为:pH=6,[Fe2+]=3mmol/L,[H2O2]=80mmol/L,反应温度为25℃,反应时间为60mmin。在此实验条件下苯酚去除率可达95%。
     (3)研究了吸附-氧化组合工艺处理模拟含酚废水。考察了溶液pH值、反应温度、反应时间和树脂固含率等因素对苯酚去除率的影响。实验结果表明,采用吸附-氧化组合工艺处理模拟含酚废水其效果明显优于单一的树脂吸附法和Fenton试剂氧化法。当含酚废水浓度为1000mg/L,反应温度为25℃、溶液pH=4,[Fe2+]=3mmol/L,[H2O2]=80mmol/L,树脂固含率为1%,反应5min后,苯酚去除率即可达到98.6%。对组合工艺除酚的作用机理进行了探讨,通过拟合实验数据建立了吸附-氧化组合工艺协同降解苯酚的动力学方程式。
     (4)在气液固三相流化床内,分别进行了吸附-氧化组合新工艺对模拟含酚废水和实际工业废水的处理研究。分析了树脂颗粒在三相流化床内的混合与离析行为,确定了树脂颗粒实现完全流态化的工艺参数;设计了结构尺寸不同、气体分布器类型不同的六种流化床反应器,比较研究其主要结构参数及操作参数对苯酚去除效果的影响,从而确定了流化床主要结构参数;在自行设计的三相流化床内,研究了树脂颗粒流态化对组合工艺除酚效果的强化作用,并系统探讨了pH值、H202和Fe2+的初始浓度、反应时间、树脂固含率、通气量等因素对苯酚去除率的影响。实验结果表明,树脂颗粒流态化能起到强化组合工艺除酚效果的作用。当苯酚溶液初始浓度为1000mg/L、溶液pH=4、反应温度为25℃、通气量为0.12m3/h、树脂固含率为1%、[Fe2+]=3mmol/L, n(H2O2)/n(Fe2+)=20:1的条件下,模拟含酚废水苯酚去除率达到了99.6%;在实际工业废水含酚浓度为878mg/L,其它条件与上述相同的情况下,实际工业废水处理后溶液中末检出苯酚。
Abstract:With the rapid development of petroleum, plastics, composites and coking industries, the phenolic wastewater has been significantly increased recently. The phenols have been attracted attentions by the majority of researchers due to their toxicity, carcinogen and potential genetic mutagen. The removal and/or degradation of phenolic pollutants from wastewater have a great impact on aquatic life and terrestrial plant growth and reproduction, as well as human society including food and drinking water safety. Therefore, technology development for phenolic removal with high efficiency is a great practical significance to the environmental protection.
     At present, there are mainly three types of common methods used for treatment of phenolic wastewater including physical adsorption, chemical oxidation and biochemical degradation. It has been found that no single method can accomplish the phenol removal from wastewater with a great satisfactory in industries. The development of technology combining two or more removal methods hence becomes focus in the field.
     This paper is based on laboratory simulated phenol-containing wastewater. In the separate treatment by resin adsorption process and Fenton oxidation method, an innovation of phenol removal from wastewater has been developed using Fenton oxidation process and the adsorption through macroporous resin beads. At the same time, the study was tested on the strengthening action of reactor for the simulated phenolic wastewater and actual industrial wastewater treatment taking advantages of three phase fluidized bed reactor. The treatment effect and its influencing factors have been analysised and discussed. It provides the theory basis for the industrial application of this new technology.The major results of this research are briefly described below.
     After comparative study of three kinds of adsorption resins for phenol adsorption properties, H-103macroporous adsorption resin is of optimal performance. The removal of phenol from aqueous phenol solution was investigated using H-103macroporous resins. The effects of solution initial concentration, pH, reaction time and temperature on phenol removal were studied. The experimental results indicated that the adsorption reached equilibrium within30min and adsorption kinetics could be well described by the pseudo-second-order kinetic model, and Langmuir isotherm model was better to describe the isothermal adsorption of phenol onto the macroporous resin, At this point the concentration of phenol was1000mg/L. The equilibrium adsorption capacity (Qm) and Langmuir constant (KL) were86.00mg/g and0.2719L/mg, respectively,when the tempreture is25℃. Using70%(ω) ethanol as desorption agent, the desorption ratio was94.5%.
     Comparative study on the oxidation resistance of MnO2, KMnO4and Fenton reagent on phenol solution, the experimental results showed that Fenton reagent oxidation is of the best performance. The efficiency of Fenton agent was examined using phenol as a model compound in simulated wastewater. Batch studies were conducted to optimize the parameters such as the Fe2+initial concentration, the molar ratio of n(H2O2)/n(Fe2+), pH, temperature and reaction time governing the Fenton process. It was found that optimal operating conditions existed as:Fe2+initial concentration of3mmol/L, H2O2initial concentration of80mmol/L, pH=6, T=25℃and reaction time of60min. Under these conditions, the phenol removal ratio was95%.
     The efficiency of Fenton agent combined with macroporous resin H-103was examined using phenol as a model compound in simulated wastewater. A batch study was conducted to optimize parameters like the pH, reaction temperature, reaction time and solid holdup governing the process. The experimental results indicated that the phenol removal rate was98.6%using the oxidation-adsorption combination process at25℃, pH=4, Fe2+initial concentration of3mmol/L, H2O2initial concentration of80mmol/L, resin mass percent of1%, after a reaction time of5min. At this point the concentration of phenol was1000mg/L. It is obvious that the efficiency of phenol removal by using the oxidation-adsorption process is better than any of the single methods. Fitting the experimental data, kinetic model was established for the adsorption-oxidation combined process of synergetic degradation of phenol.
     The efficiency of Fenton agent combined with macroporous resin H-103was examined using phenol as a model compound in simulated wastewater in a gas-liquid-solid three-phase fluidized bed. A batch study was conducted to optimize parameters like the pH, reaction time, the resin solid holdup rate, H2O2initial concentration, Fe2+initial concentration and ventilation volume governing the process. The experimental results indicated that resin particle fluidization can strengthen the combination process of phenol removal effect, the phenol removal ratio was99.6%using the oxidation combined with adsorption process at25℃, pH=4, Fe2+initial concentration of3mmol/L, n(H2O2)/n(Fe2+)=20:1, resin mass percent of1%, ventilation volume of0.12m3/h, after reaction time of5min, At this point the concentration of phenol was1000mg/L. Other conditions are the same, no detection of phenol in solution, at this point the concentration of industrial phenol-containing wastewater was878mg/L.
引文
[1]王思菊,赵丽辉,匡欣,等.某些芳香化合物生物降解性研究[J].环境科学学报,1995,15(4):407-415.
    [2]王玲玲,魏寿祥.国内外苯酚供需现状及预测[J].化学工业,2008,26(12):16-20.
    [3]马承愚,彭英利.高浓度难降解有机废水的治理与控制[M].北京:化学工业出版社,2007:6-10.
    [4]张炜铭,陈金龙,张全兴,等.苯酚和苯胺在超高交联吸附树脂上的共吸附行为[J].高分子学报,2006,22(2):213-218.
    [5]李玉标.含酚废水的处理方法[J].净水技术,2005,24(2):51-54.
    [6]李超.树脂吸附-化学氧化法处理[D].长沙:中南大学,2011.
    [7]Fang H. H. P., Liang D. W., Zhang T., et al. Anaerobic treatment of phenol in wastewater under thermophilic condition[J]. Water Research,2006,40(3):427-434.
    [8]Wurm H. J. The treatment of phenolic wastes[C]. Proceedings of the 23rd, Industrial Waste Conference. Purdue University:1968,1054-1073.
    [9]张敬东,张家华.污水处理技术的新发展[J].环境技术,1997,(6):28-33.
    [10]黄志勇,陈国树.含酚废水的治理方法及其进展[J].环境与开发,1997,12(2):32-34.
    [11]盖新杰,朱丹,高山,等.乳化液膜法处理化工废水的进展[J].化工环保,1996,16(2):85-88.
    [12]Banat F., Al-Asheh S., Qtaishat M. Treatment of waters colored with methylene blue dye by vacuum membrane distillation[J]. Desalination,2005,174(1):87-96.
    [13]Kujawski W., Warszawski A., Ratajczak R., et al. Application of pervaporation and adsorption to the phenol removal from wastewater [J]. Separation and Purification Technology,2004,40(2):123-132.
    [14]Deosarkar S. P., Pangarkar V. G. Adsorptive separation and recovery of organics from PHBA and SA plant effluents[J]. Separation and Purification Technology,2004,38(3):241-254.
    [15]吴健,辛国章.焦化废水深度处理的工业试验[J].燃料与化工,1996,27(6):318-319.
    [16]孙越,陈金龙,李爱民.复合功能超高交联树脂吸附邻苯二酚的热力学研究 [J].环境污染与防治,2005,4:81-83.
    [17]季衍卿,杨发福,郑林禄,等.杯[6]冠醚接枝纤维素螯合树脂的合成及其吸附性能[J].合成化学,2005,13(2):166-169.
    [18]王学江,张全兴,赵建夫.氨基修饰聚苯乙烯树脂对酚酸物质的吸附性能[J].高分子学报,2005,2:93-97.
    [19]Ahmed Z. M., Lyne S., Shahrabani R. Removal and recovery of phenol from phenolic wastewater viaion exchange and polymeric resins[J]. Environmental Engineering Science,2000,17(5):245-255.
    [20]Furuya E., Sato K., Kataoka T., et al. Amount of aromatic compounds adsorbed on inorganic adsorbents[J]. Separation and Purification Technology, 2004,39(1-2):73-78.
    [21]Abburi K. Adsorption of phenol and p-chlorophenol from their single and bisolute aqueous solutions on Amberlite XAD-16 resin[J]. Journal of Hazardous Materials,2003,105(1-3):143-156.
    [22]张劲勇,王环宇,林述刚.用熄焦粉处理焦化废水的试验研究[J].化工环保,2003,23(4):200-203.
    [23]徐革联,熊楚安,邵景景,等.利用生物与吸附性物质联合处理焦化废水的研究[J].煤炭加工与综合利用,2000,(4):27-29.
    [24]初茉,任守政,李华民.利用膨胀石墨处理焦化废水的研究[J].煤炭加工与综合利用,1999,(5):19-20.
    [25]蓝梅,顾国维PACT工艺研究进展及应用中应注意的问题[J].工业水处理,2000,20(1):10-12.
    [26]Kaul S. N., Nandy T., Deshpande C. V., et al. Application of full-scale evaporation-incineration technology for hazardous wastewater [J]. Water Science Technology,1998,38(4-5):363-372.
    [27]Yasuhir H., Takio A. Treatment of industrial wastewaters by extraction and incineration[J]. Energy Conversion and Management,2000,46:1165-1178.
    [28]庞世平.N-503萃取焦化废水的研究[J].山西化工,2003,23(1):8-12.
    [29]葛宜掌,金红.协同-络合萃取法回收含酚废水中的酚类[J].环境化学,1996,15(2):112-117.
    [30]杨义燕,李芮丽,党广悦,等.络合萃取法处理工业含酚废水[J].环境科学,1995,16(2):35-38.
    [31]邱慧琴.N503治理制药厂含酚废水的研究[J].环境科学与技术,1987,38(3):37-48.
    [32]王盛颉,罗琳,吴根义,等.P507与N503在煤油体系中对酚类物质萃取 取效率的比较研究[J].工业用水与废水,2011,42(2):51-54.
    [33]刘鹤年.厌氧/好氧生物脱氮一絮凝法处理焦化废水[J].化工环保,1995,15(6):343-346.
    [34]夏畅斌,何湘柱.酸浸粉煤灰对焦化厂含酚废水处理的研究[J].工业水处理,2000,20(4):20-21.
    [35]卢建杭,王红斌,刘维屏,等.焦化废水中有机污染物的混凝去除作用机理探讨[J].工业水处理,2000,20(6):20-22.
    [36]孙佩石,原田吉明,山崎健一.高浓度有机废水的催化湿式氧化法处理试验研究[J].环境污染与防治,1999,21(1):4-6.
    [37]杨民,杜书,王贤高,等.催化湿式氧化处理碱渣废水的研究[J].环境工程,2001,19(1):13-15.
    [38]Chen D. W, Ray A. K. Photodegradation kinetics of 4-nitrophenol in TiO2 suspension[J]. Water Research,1998,32(11):3223-3234.
    [39]Chen J., Ollis D. F., Rulkens W. H., et al. Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (I):photocatalytic activity and pH influence[J]. Water Research,1999,33(3):661-668.
    [40]Chen J., Ollis D. F., Rulkens W. H., et al. Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (II):Photocatalytic mechanisms [J]. Water Research,1999, 33(3):669-676.
    [41]Larson R. A., Weber E. J. Reaction mechanism in environmental organic chemistry[M]. USA:Lewis Publishers.1994,402-404.
    [42]Tennakone K. Photodegradation of visible light absorbing organic compounds in the presence of semiconductor for catalysts [J]. Photochemistry and Photobiology,1992,88:289-295.
    [43]Jekel M. R. Flocculation effects of ozone[J]. Ozone Science & Engineering, 1994,16:55-66.
    [44]周涛,魏松波,吴晓辉,等.焦化厂生化外排水的臭氧强化混凝实验研究[J].应用化工,2006,35(2):110-112.
    [45]Monje-Ramirez I., Orta M. T., De Velasquez. Removal and transformation of recalcitrant organic matter from stabilized saline landfill leachates by coagulation-ozonation coupling processes [J]. Water Research,2004,38: 2358-2366.
    [46]Christos C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment[J]. Electrochimica Acta,1994, 39(11-12):1857-1862.
    [47]Fenouillet B., Duverneuil P., Lacoste G., et al. Metal recovery in surface treatment units by using the 3PE reactor[C]. Springer Berlin/Heidelberg,1999: 1,191-194.
    [48]申哲民,王文华,贾金平,等.电催化氧化中的三种催化材料处理酸性红B染料的比较研究[J].环境污染治理技术与设备,2001,12(1):21-25.
    [49]邵瑰玮,李劲,王万林,等.脉冲电晕放电下焦化废水脱硫的研究[J].环境科学,2004,25(2):77-80.
    [50]李英德,王传奎.电场对分子线电子结构的影响[J].原子与分子物理学报,2003,20(1):11-15.
    [51]Beschkov V., Velizarov S., Agathos S. N., et al. Bacterial denitrification of waste water stimulated by constant electric field[J]. Biochemical Engineering Journal,2004,17(2):141-145.
    [52]Ventura A., Jacquet G., Bermond A., et al. Electrochemical generation of the Fenton's reagent:application to atrazine degradation[J]. Water Research,2002, 36(14):3517-3522.
    [53]Wang Q. Q., Lemley A.T. Oxidation of diazinon by anodic Fenton treatment[J]. Water Research,2002,36(13):3237-3244.
    [54]Amadelli R., De Battisti A., Girenko D. V., et al. Electrochemical oxidation of trans 3,4-dihydroxy cinnamicacid at PbO2 electrodes:direct electrolysis and ozonemediated reactions compared[J]. Electrochimica Acta,2000,46(2-3): 341-347.
    [55]Comninellis C., Nerini A. Anodic oxidation of phenol in the presence of NaCl for wastewater treatment[J]. Journal of Applied Electrochemistry,1995,25(1): 23-28.
    [56]Comninellis C., Pulgarin C. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes [J]. Journal of Applied Electrochemistry,1993, 23(2):108-112.
    [57]Goshima, Nobutaka, Hakamata. Electrochemical treatment of oil bath water[P]. JP0416286,1992.
    [58]Tennakoon C. L. K. Electrochemical treatment of human waste in packed-bed reactor [J]. Applied Electrochemistry,1991,21:703-711.
    [59]周培国,傅大放.微电解工艺研究进展[J].环境污染治理技术与设备,2001,2(4):18-24.
    [60]Siantar D. P., Schreier C. G., Chou C. S., et al. Treatment of 1, 2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts[J]. Water Research,1996,30(10):2315-2322.
    [61]Huang C. P., Wang H. W., Chiu P. C. Nitrate reduction by metallic iron[J]. Water Research,1998,32(8):2257-2264.
    [62]唐光临,徐楚韶,董凌燕,等.铁屑法与瓦斯泥+铁屑法预处理焦化废水[J].重庆大学学报(自然科学版),2001,24(6):85-87.
    [63]唐光临,徐楚韶,董凌燕,等.铁屑法预处理焦化废水[J].重庆大学学报:自然科学版,2001,24(5):93-95.
    [64]张文艺,王健.微电解法预处理焦化废水试验[J].煤炭科学技术,2003,31(9):11-14.
    [65]张文艺.微电解-SBR活性污泥法处理焦化废水[J].过程工程学报,2003,3(5):471-476.
    [66]张文艺.微电解—混凝—SBR法处理焦化废水[J].中国给水排水,2003,19(7):58-59.
    [67]Tregubov D. G., Slobodskoj S. A. Koksi Khimiya/Coke and Chemistry,1997, (9):32-34.
    [68]Brisset J. L. Air corona removal of phenols [J]. Journal of Applied Electrochemistry,1997,27:179-183.
    [69]Mason T. J., Lorimer J. P. Sonochemistry-theory, application and uses of ultrasound in chemistry and chemical engineering[M].Ellis Horwood, 1990:81-93.
    [70]Henglein A. Sonolysis of Carbon dioxide, nitrous oxide, and methane in aqueous solution[J]. Z. Naturforsch.,1984,40b,100-107.
    [71]谢冰.超声波作用下有机污染物的降解[J].水处理技术,2000,4(2):114-119.
    [72]李志建,李可成,周明.超声波—厌氧生化法处理碱法草浆黑液的研究[J].环境科学与技术,2000,89(2):42-44.
    [73]陈士夫,赵梦月,陶跃式,等.光催化降解有机磷农药的研究[J].环境科学,1995,16(5):61-63.
    [74]Bhatnagar A., Cheung H. M. Sonochemical destruction of chlorinated C1 and C2 volatile organic compounds in dilute aqueous solution[J]. Environmental Science & Technology,1994,28(8):1481-1486.
    [75]白晓慧.超声波技术与污水污泥及难降解废水处理[J].工业水处理,2000, 20(12):8-10.
    [76]祁梦兰,郑自保,杜静,等.声化学氧化—间歇式活性污泥法处理染料废水的研究[J].化工环保,1996,16(6):332-336
    [77]Hua I., Hoechemer R. H., Hoffmann M. R. Sonolytic hydrolysis of p-nitrophenyl acetate:the role of supercritical water[J]. The Journal of Physical Chemistry, 1995,99(8):2335-2342.
    [78]De Visscher A., Van Eenoo P., Drijvers D., et al. Kinetic model for the sonochemical degradation of monocyclic aromatic compounds in aqueous solution[J]. The Journal of Physical Chemistry,1996,100(28):11636-11642.
    [79]马晓利,陈亚雄,宁平,等.超声辐照-活性污泥法处理焦化废水中COD的研究[J].有色金属,2003:140-142.
    [80]宁平,徐金球,黄东宾,等.超声辐照-活性污泥联合处理焦化废水[J].环境科学,2003,24(3):65-69.
    [81]Petrier C., Lamy M. F., Francony A., et al. Sonochemical degradation of phenol in dilute aqueous solutions:comparison of the reaction rates at 20 and 487 kHz[J]. The Journal of Physical Chemistry,1994,98(41):10514-10520.
    [82]Petrier C., Francony A. Ultrasonic waste-water treatment:incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation[J]. Ultrasonics Sonochemistry,1997,4(4):295-300.
    [83]许初胜.用高浓度活性污泥法处理焦化废水[J].燃料与化工,1995,(3):150-152.
    [84]Yu H., Gu G., Song L. Posttreatment of effluent from coke-plant wastewater treatment system in sequencing batch reactors[J]. Journal of Environmental Engineering,1997,123:305-308.
    [85]Dale C. J. Submerged biotower technology for tertiary nitrification of poultry abattoir wastewater [J]. Journal of the Chartered Institution of Water and Environlnental Management,2000,14(1):35-38.
    [86]Woolard C. R., Irvine R. L. Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria[J]. Water Envionmental Research,1994,66(3): 230-235.
    [87]Woolard C. R., Irvine R. L. Treatment of hypersaline wastewater in the sequencing batch reactor[J]. Water Research,1995,29(4):1159-1168.
    [88]Peyton M. B., Wilson T., Yonge D. R. Kinetics of phenol biodegradation in high salt solutions[J]. Water Research,2002,36(19):4811-4820.
    [89]李春杰,耿琰,周琪,等SMSBR处理焦化废水的膜污染机理研究[J].中 国给水排水,2002,18(4):5-9.
    [90]李春杰,耿琰,周琪,等.SMSBR处理焦化废水中的短程硝化反硝化[J].中国给水排水,2001,18(11):8-12.
    [91]仇雁翎,赵建夫,李咏梅,等.焦化废水中有机物在A1-A2-0系统各段的降解与转化[J].上海环境科学,2002,21(4):216-219.
    [92]Paul M. S., Jim H., Martin H. K. Biological fluided-bed treatment of wastewater from byproduct coking operations:full-scale case history[J]. Water Envionmental Research,1999,71(1):5-9.
    [93]满春生,徐守忠,王骏,等.温度对提高活性污泥法处理含酚废水效率的研究[J].中国环境科学,1995,15(1):14-17.
    [94]Hamoda. M. F. Operating characteristics of the aerated submerged fixed-film (ASFF) bioreactor[J]. Water Research,1987,21(8):939-947.
    [95]程志久,殷文瑾.烟道气处理焦化剩余氨水的研究[J].环境科学学报,2000,20(5):639-641.
    [96]Nam K., Kukor J. J. Combined ozonation and biodegradation for remediationof mixtures of poly cyclic aromatic hydrocarbons in soil[C]:Springer Netherlands, 2000:11,1-9.
    [97]Marilena T., Radoiu, Milan H. Effect of solvent, catalyst type and catalyst activation on the microwave transformation of 2-tert-butylphenol[J]. Journal of Molecular Catalysis A:Chemical.2002,186:121-126.
    [98]Frieda O., Nava N. Characteristics of organics removal by PACT simultaneous adsorption and biodegradation[J]. Water Research,1997,31(3):391-398.
    [99]熊德琪,黄先湖.应用磁化效应提高含酚废水处理效果[J].水处理技术,2001,27(1):50-52.
    [100]许海燕,李义久,刘亚菲.Fenton—混凝催化氧化法处理焦化废水的影响因素[J].复旦学报:自然科学版,2003,42(3):440-444.
    [101]刘红,张林霞,吴克明.吸附-氧化法处理焦化废水的研究[J].工业水处理,2003,23(5):35-37.
    [102]Aksu Z., Yener J. A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents[J]. Waste Management,2001, 21(8):695-702.
    [103]Ku Y., Lee K. C. Removal of phenols from aqueous solution by XAD-4 resin[J]. Journal of Hazardous Materials,2000,80(1-3):59-68.
    [104]Pan B. C., Meng F. W., Chen X. Q., et al. Application of an effective method in predicting breakthrough curves of fixed-bed adsorption onto resin adsorbent[J]. Journal of Hazardous Materials,2005,124(1-3):74-80.
    [105]Juang R. S., Ahiau J. Y. Adsorption isotherms of phenols from water onto macroreticular resins [J].Journal of Hazardous Materials,1999,70(3):171-183.
    [106]Huang J. H. Treatment of phenol and p-cresol in aqueous solution by adsorption using a carbonylated hypercrosslinked polymeric adsorbent[J]. Journal of Hazardous Materials,2009,168(2-3):1028-1034.
    [107]王学江,张全兴,李爱民,等.ND-100超高交联吸附树脂对水中苯酚的吸附行为研究[J].离子交换与吸附,2002,18(6):529-535.
    [108]徐莉,马洪涛,邓国才,等.大孔树脂吸附法处理模拟邻苯二酚生产废水的研究[J].离子交换与吸附,2000,16(1):66-71.
    [109]王槐三,寇晓康,黄文强.树脂吸附法处理苯酚工业废水的研究[J].四川大学学报:工程科学版,2001,33(6):67-70.
    [110]Krishnaiah A. Adsorption of phenol and p-chlorophenol from their single and bisolute aqueous solutions on Amberlite XAD-16 resin[J]. Journal of Hazardous Materials,2003, B105(1-3):143-156.
    [111]肖吉敏,王槐三,刘玉鑫,等.树脂吸附处理模拟双酚A生产中含酚废水的研究[J].四川大学学报:工程科学版,2003,33(2):64-67.
    [112]K Vasanth Kumar, K Porkodi. Adsorption of 4-chlorophenol from aqueous by xad-4 resin Isotherm, kinetic, and thermodynamic analysis [J]. Journal of Hazardous Materials,2007,143(1-2):598-599.
    [113]祁晓静,段梅,段文生,等.树脂吸附法处理高浓度邻甲酚工业废水研究[J].应用化工,2009,38(11):1652-1655.
    [114]王津南,李爱民,许丽,等.新型树脂对碱性紫生产废水的治理研究[J].工业水处理,2009,29(2):44-47.
    [115]黄文强,李晨曦.吸附分离材料[M].北京:化学工业出版,2005,34-52.
    [116]伍钦,钟理,邹华生,等.传质与分离工程[M].广州:华南理工大学出版社,2005,332-335.
    [117]何炳林,黄文强.离子交换与吸附树脂[M].上海:上海科技教育出版社,1995,12-45.
    [118]Lin S. H., Juang R. S. Heavy metal removal from water by sorption using surfactant-modified montmorillonite[J]. Journal of Hazardous Materials,2002, 92(3):315-326.
    [129]Poots V. J. P., Mckay G., Healy J. J. Removal of basic dye from effluent using wood as an adsorbent[J]. Water Pollution Control Federation,1978,50(5): 926-935.
    [120]北川浩,铃木谦一郎.吸附的基础与设计[M].北京:化学工业出版社,1983.48-49.
    [121]Dursun A. Y., Kalayci C. S. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto chitin[J]. Journal of Hazardous Materials,2005, 123(1-3):151-157.
    [122]壬小文.水污染控制工程[M].北京:煤炭工业出版社,2002.122-139.
    [123]宋世谟.物理化学[M].北京:高等教育出版社,2001.157-208.
    [124]许保玖.当代给水与废水处理原理[M].北京:高等教育出版社,2003.122-149.
    [125]Ho Y. S., Mckay G. The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat[J]. The Canadian Journal of Chemical Engineering,1998,76(4):822-827.
    [126]岳钦,高宝玉.二氧化氯处理苯酚和甲醛废水的研究[J].山东环保,1998(3):3-5.
    [127]温东辉,祝万鹏.高浓度难降解有机废水的催化氧化技术发展[J].环境科学,15(5):88-91.
    [128]王发珍,左东升,李天增,等.Fenton试剂处理苯酚废水的研究[J].环境保护科学,2008,34(4):18-20.
    [129]傅学峰,冯俊生.Cu2+作用下Fenton氧化处理苯酚废水研究[J].安徽农业科学,2011,39(12):7358-7359.
    [130]赵欣,甘海明,王继徽,等H2O2-Fe2+氧化法处理邻甲苯酚生产含酚废水的研究(Ⅱ)[J].湖南大学学报:自然科学版,2000,27(6):90-93.
    [131]涂勇,张洪玲,张龙,等.Fenton氧化—活性炭吸附耦合处理焦化废水生化尾水的研究[J].污染防治技术,2010,23(1)26-29.
    [132]杨润昌,周书天,罗卫玲.Fenton试剂加硫酸处理高浓度含酚废水的研究[J].石油化工环境保护,1997,(2):18-21.
    [133]赖鹏,赵华章.Fenton氧化深度处理焦化废水的研究[J].当代化工,2012,41(1):11-14.
    [134]包木太,王娜,陈庆国,等.Fenton法的氧化机理及在废水处理中的应用进展[J].化工进展,2008,27(5):660-665.
    [135]罗刚,黄君礼,孙红.活性炭吸附/Fenton试剂氧化法处理造纸厂污冷凝水的研究[J].哈尔滨建筑大学学报,1999,32(6):59-62.
    [136]Xu X. R., Li H. B., Wang W. H., et al. Degradation of dyes in aqueous solutions by the Fenton process[J]. Chemosphere,2004,57(7):595-600.
    [137]Neyens E., Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidation technique[J]. Journal of Hazardous Materials,2003,98(1-3):33-50.
    [138]张国卿,王罗春,徐高田,等.Fenton试剂在处理难降解有机废水中的应用[J].工业安全与环保,2004,30(3):17-19.
    [139]Lin S. H., Lo C. C. Fenton process for treatment of desizing wastewater[J]. Water Research,1997,31(8):2050-2056.
    [140]Kremer M. L., Stein Gabriel. The catalytic decomposition of hydrogen peroxide by ferric perchlorate[M]. Transactions of the Faraday Society,1959,55.
    [141]Barb W. G., Baxendale J. H., George P., et al. Reactions of ferrous and ferric ions with hydrogen peroxide. Part I-The ferrous ion reaction[M]. Transactions of the Faraday Society,1951,47.
    [142]刘勇弟,徐寿昌.几种类Fenton试剂的氧化特性及在工业废水处理中的应用[J].上海环境科学,1994,13(3):26-28.
    [143]徐向荣,王文华,李华斌.Fenton试剂与染料溶液的反应[J].环境科学,1999,20(3):73-75.
    [144]彭书传,魏凤玉,崔康平.H2O2-Fe2+法处理p-萘磺酸钠生产废水的研究[J].工业水处理,1998,18(1):25-27.
    [145]祁梦兰,郝瑞霞.过氧化氢-亚铁盐氧化法对染料废水的脱色处理[J].化工环保,1990,104(4):246-247.
    [146]肖芳.大孔吸附树脂对有机化工废水中低浓度水溶性有机物的吸附特性与回收工艺研究[D].成都:四川大学,2004.
    [147]Dursun G., Cicek H., Dursun AY. Adsorption of phenol from aqueous solution by using carbonised beet pulp[J]. Journal of Hazardous Materials,2005, 125(1-3):175-182.
    [148]Pan B. C., Xiong Y., Li A. M., et al. Adsorption of aromatic acids on an aminated hypercrosslinked macroporous polymer[J]. Reactive and Functional Polymers,2002,53(2-3):63-72.
    [149]李小兵.有机小分子电致发光材料的理论研究[D].湘潭:湘潭大学,2006.
    [150]Maity N., Payne G. F., Ernest Jr. Michael V., et al. Caffeine adsorption from aqueous solutions onto polymeric sorbents:The effect of surface chemistry on the adsorptive affinity and adsorption enthalpy[J]. Reactive Polymers,1992, 17(3):273-287.
    [151]何伟,李伟.大孔树脂在中药成分分离中的应用[J].南京中医药大学学报,2005,21(2):134-136.
    [152]王庆文,杨玉恒,高鸿宾.有机化学中的氢键问题[M].天津:天津大学出 版社,1993.4-7.
    [153]Glemza A. J., Koehler J. A., Brune B. J., et al. Selective adsorption of methoxyphenol positional isomers[J]. Industrial & Engineering Chemistry Research,1998,37(9):3685-3690.
    [154]任露泉.试验优化设计与分析(第二版)[M].北京:高等教育出版社,2003,8.
    [155]张立珠,陈忠林,马军,等.水溶液中新生态Mn02对苯酚的氧化作用及机理研究[J].环境科学,2006,27(5):941-944.
    [156]Stone A. T. Reduction and dissolution of manganese(Ⅲ) oxides by substituted phenols[J]. Environmental Science & Technology,1987,21(10):979-988.
    [157]张锦,李圭,余敏,等.新生态水合二氧化锰对水中酚类化合物的吸附和氧化[J].水处理技术,2002,28(5):263-265.
    [158]张锦,李圭白.高锰酸钾对水水中苯酚去除机制的研究[J].哈尔滨建筑大学学报,2002,35(1):66-69.
    [159]李圭白,杨艳玲,马军,等.高锰酸钾去除天然水中微量有机污染物机理探讨[J].大连铁道学院学报,1998,19(2):1-4.
    [160]王盛,倪静,周丽英,等.高锰酸钾/高锰酸盐预氧化处理高氨氮高有机物污染源水[J].上海水务,2008,24(3):20-23.
    [161]Ma H. Z., Zhang X. H., Ma Q. L., et al. Electrochemical catalytic treatment of phenol wastewater[J]. Journal of Hazardous Materials,2009,165(1-3):475-480.
    [162]伏广龙,许兴友,费银华.芬顿试剂和粉煤灰沸石协同处理柠檬酸废水的试验研究[J].中国矿业,2007,16(12):117-123.
    [163]张乐观,朱新锋.铁炭微电解/Fenton试剂预处理土霉素废水的研究[J].环境工程学报,2008,2(5):608-610.
    [164]Barbier J., Delance F., Jabouille F., et al. Total oxidation of acetic acid in aqueous solution over noble metal catalysts[J]. Catalysis,1998,177:378-385.
    [165]Gallezot P., Chaumet S., Perrard A., et al. Catalytic wet air oxidation of acetic acid on carbon-supported ruthenium catalysts[J]. Catalysis,1997,168(1): 104-109.
    [166]Cova D. R. Catalyst suspension in gas-agitated tubular reactors[J]. Industrial & Engineering Chemistry Process Design and Development,1966,5(1):20-25.
    [167]Suganuma T., Yamanishi T. Concentration gradient in multiple stage gas bubble columns[J]. Kagaku Kogaku Ronbunshu,1966,30(1):1136-1140.
    [168]Onda K., Takeuchi H., Okumoto Y. Mass transfer coefficients between gas and liquid phases in packed columns [J]. Journal of Chemical Engineering of Japan, 1968,1(1):56-62.
    [169]Smith D. N., Ruether J. A. Dispersed solid dynamics in a slurry bubble column[J]. Chemical Engineering Science,1985,40(5):741-753.
    [170]Garside J., Al-Dibouni M. R. Velocity-voidage relationships for fluidization and sedimentation in solid-liquid systems[J]. Industrial & Engineering Chemistry Process Design and Development,1977,16(2):206-214.
    [171]Matsumoto T., Hidaka N., Morooka S. Axial distribution of solid holdup in bubble column for gas-liquid-solid systems[J]. AIChE Journal,1989,35(10): 1701-1709.
    [172]Fan L. S., Yamashita T., Jean R. H. Solids mixing and segregation in a gas-liquid-solid fluidized bed[J]. Chemical Engineering Science,1987,42(1): 17-25.
    [173]周立,钟宏,李超.三相流化床间歇操作中颗粒的混合与离析行为[J].过程工程学报,2010,10(1):51-55.
    [174]齐洪波.流化床气液两相流流场数值模拟研究[D].哈尔滨:哈尔滨工业大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700