用户名: 密码: 验证码:
超滤膜处理滦河水工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于水资源的短缺、水环境的恶化、饮用水标准的提高以及传统饮用水处理工艺自身存在的局限性,寻求新的饮用水安全保障技术以改进或替代传统工艺成为给水处理领域的重要内容。膜技术被称为“21世纪的水处理技术”,格外引人关注。
     本文采用压入式和浸入式超滤膜系统对滦河微污染原水进行了中试研究,对比分析了两系统的运行特性,并重点对浸入式膜系统进行了深入研究,主要研究成果和结论如下:
     (1)以滦河微污染原水为研究对象,对比分析了压入式和浸入式混凝-超滤两系统的除污特性及运行经济性。在设定工况下,压入式系统和浸入式系统运行稳定,对有机物的去除率分别为41.6%和36.5%;出水浊度均值分别为0.07NTU和0.08NTU;一次产水率分别为89.6%和91.4%;运行费用分别为0.136元/m3和0.122元/m3。采用模糊综合评价法,从技术性能、经济性能和环境性能三方面对压入式系统和浸入式系统进行了综合评价,从初级评判结果来看,压入式系统在环境性能方面表现较优,而浸入式系统在经济性能方面表现较优,从综合评判结果来看,压入式系统和浸入式系统的综合评价隶属度分别为0.490和0.510,根据最大隶属原则,浸入式系统的整体性能相对较优。
     (2)分析了不同水质期滦河原水的有机物分子量分布规律,并对浸入式系统去除有机物在相对分子量上的特点进行了考察。滦河原水不同水质期内的有机物主要由分子量<1kDa的小分子构成,其中低温低浊期内小分子有机物占总量的比例相对最低,而高温高藻期最高。通过分析THMFP/DOC的含量发现,3k-1k分子量区间内的有机物取得最大值,产生THMs的能力最强,提高小分子有机物的去除率有助于降低产生THMs的风险。投加Al盐对有机物的去除效果明显好于投加Fe盐,尤其是在分子量<1k的有机物去除上。在各个水质期内,系统对分子量<1k的有机物去除效果最差,有时甚至出现负增长,而对分子量>30k的有机物去除效果最好。
     (3)以浸入式膜系统为研究对象,利用BP神经网络建立了出水水质和膜污染预测模型。通过对该模型的训练得到,出水COD、出水浊度和TMP的相关系数R都大于0.8;均方标准差RMSE分别为0.0083、0.0009和0.4617,说明该BP神经网络模型有较好的模拟精度。利用检验样本对所建模型的预测性能进行检验,出水COD、出水浊度和TMP的预测值与试验值的平均相对偏差分别为4.63%、9.32%和8.08%,平均相对偏差较小,表明所建BP神经网络预测模型具有较高的预测精度。
     (4)利用所建BP神经网络模型的高效预测性,并结合正交设计,对浸入式膜系统的运行操作参数进行了优化,得到最佳操作参数组合为:膜运行通量53.3L/m2.h,膜过滤周期30min,混凝剂投加量4mg/L,反洗时间80s,反洗水量15m3/h,混凝反应时间6min,反洗曝气量7m3/h。
     (5)在低温低浊期,浸入式膜出水的有机物和浊度保持相对稳定,但当水温低于5℃、膜通量不变的情况下,运行中出现较高的初始TMP,影响了系统的正常运行,提高混凝剂投加量并不能有效改善膜污染状况,而适当降低膜通量可以有效缓解系统的膜污染。高藻原水采取预加氯后,不仅提高了系统对有机物的去除,而且对膜过滤性能起到了一定的改善作用。在线气/水反冲洗可以缓解系统的膜污染,但并不能使TMP完全恢复,定期执行EFM能及时恢复系统的过滤性能。通过分析化学清洗废液的成分发现,有机物是造成膜污染的主要物质,而Fe盐等无机元素在膜面上的沉积作用也不容忽视。
     (6)膜反洗水中的有机物含量较高,以DOC表征的有机物主要分布在分子量>30kDa和<1kDa区间内。混凝/粉末炭-浸入式膜试验装置对膜反洗水的处理效果较好,出水平均浊度为0.07NTU;在FeCl3投加量为15mg/L、PAC为15 mg/L时,出水CODMn平均值为2.81mg/L,平均去除率达到50.7%;出水的pH和微生物指标均满足饮用水标准要求。示范工程的实践证明,选择混凝-超滤短流程处理工艺是可行的,超滤膜技术将是改进或替代常规处理工艺的最佳工艺选择。
Due to the shortage of water resource, the deterioration of water environment, the enhancement of drinking water quality standards and the limitations of traditional drinking water treatment processes, it has been a great subject that new water treatment technologies were explored to improve or replace traditional treatment processes in the area of drinking water treatment. Membrane technology is known as "water treatment technologies in the 21st century", particularly the concern caused by water treatment workers.
     Ultrafiltration membrane process was tested for treatment of Tjanjin Luan River micro-polluted raw water. The pollutant removal characteristics and operating economics of the pressured membrane system and the submerged membrane system for treatment of Luan river water were studied. The two systems were evaluated comprehensively by using of fuzzy comprehensive Evaluation Method.The characteristics in relative molecular weight of the submerged membrane system on the removal of organic matter were investigated.The prediction model between effluent quality and membrane fouling of the immersed membrane system was established by using of BP artificial neural network. The effects of influent quality, membrane fouling and membrane integrity on the stability of submerged membrane system were analyzed in the periods of low temperature and low turbidity period and the period of high temperature and high amount of algae. In order to improve water production rate of UF system, Coagulation/PAC adsorption/immersed membrane was tested for treatment of inside-out UF membrane backwash water. The process design characteristics, the operation management and process design experience of the demonstration project, as well as the problems of ultrafiltration membrane technology in municipal water supply industry application were discussed.
     The results and conclusions were as follows:
     (1) The pollutant removal characteristics and operating economics of the pressured membrane system and the submerged membrane system for treatment of Luan river water were studied contrastingly in the same water conditions. The results showed that pressured membrane system and immersed membrane system showed operation stability in setting operating conditions. By two systems, the removals of organic matter were 41.6% and 36.5% respectively. The two systems had shown a great advantage comparision with conventional water treatment process in turbidity removal, and the mean effluent turbidity was respectively 0.07NTU and 0.08NTU. The water production rate of the pressured membrane system and immersed membrane system were 89.6% and 91.4% respectively, the operating costs were 0.136 yuan/m3 and 0.122 yuan/m3 respectively. Pressured membrane system and immersed membrane system were made a comprehensive evaluation from the technical performance, economic performance and environmental performance by Fuzzy comprehensive evaluation method. From the initial evaluation results, the pressured membrane system showed better environmental performance; while immersed membrane system showed better economic performance.From the comprehensive evaluation results, immersed membrane system demonstrated superior overall performance.
     (2) The molecular weight distribution of organic matter in the different period of Luan River water quality was analyzed. The characteristics of the relative molecular weight of organic matter removal from the immersed membrane systems were studied. The results showed that the organic matters in Luan River raw water were mainly composed of the small molecules with MW less than lkDa during the different water quality periods, in which the proportion of the total organic matter was the mininum in the periods of low temperature and low turbidity, while the maximum in the periods of high temperature and high amount of algae. It was found that the THMFP/DOC was the maximum on the organic molecular weight range of 3k-1k, and followed by molecular weight range of 10k-3k. Thus increasing the removal rate of small-molecule organic compounds helps reduce the risks of producing THMs. The organic removal efficiency of Al salt coagulants was significantly better than Fe salt coagulants, especially for the organic matter with MW 30k was best.
     (3) The prediction model between effluent quality and membrane fouling of the immersed membrane system was established by using of BP artificial neural network.BP artificial neural network prediction model which was trained had good simulation accuracy.The correlation coefficient R of the effluent COD, effluent turbidity and TMP were greater than 0.8. The simulation results and experimental results showed a good correlation.The RMSE of the effluent COD, effluent turbidity and TMP were 0.0083,0.0009 and 0.4617 respectively, which indicated unapparent discrete trend of the simulated values and experimental values series.The predicition performance of the models was tested for using test samples. It was found that the average relative deviation of predicted values and experimental values of the effluent COD, effluent turbidity and TMP were 4.63%,9.32% and 8.08% respectively. It showed that the BP artificial neural network prediction model built had a high prediction performance.
     (4) The system operating parameters was optimized by using BP artificial neural network model and orthogonal design. The optimization results showed that the optimal operating parameters(membrane flux, membrane filtration cycle, coagulant dosage, backwashing time, backwashing water flux, coagulation reaction time, backwashing air flux) were 53.3L/m2.h,30min,4mg/L,80s,15m3/h,6min,7m3/h respectively.
     (5) The organic matter and turbidity of the submerged membrane effluent remained relatively stable in the period of low temperature and low turbidity, but the higher initial TMP caused by the situations which were water temperature below 5℃and constant flux affected the normal operation of the system. Increasing the coagulant dosage can not effectively improve the membrane fouling. Decreasing membrane flux properly can effectively reduce the initial TMP, thereby easing the fouling of membrane system. High algae raw water will not only affect the membrane system's effulent quality, but also cause the serious membrane fouling. Pre-chlorination processes increased could not only improve the organic matter removal, but also play a certain improvement to membrane filtration performance.Air-water backwashing can mitigate membrane fouling, but it does not make TMP fully recovered. Periodic EFM can timely recover the membrane performance. It was found by analyzing the composition of chemical cleaning waste liquid that organic was the main material causing membrane fouling, while the deposition of inorganic elements such as Fe salt in the membrane surface can not be ignored.
     (6) The concentration of organic matter in membrane backwash water was relatively high. The molecular weight of DOC in membrane backwash water was mainly more than 30ku and less than lku. The average permeate turbidity was 0.07 NTU. The average removal efficiency of CODMn was 50.7% and the average permeate CODMn was 2.81mg/L under the conditions of 15mg/L FeCl3 and 15mg/L PAC. Microcystin levels and pH were lower than the water quality requirements of "Sanitary standard for drinking water". Practice has proved that Coagulation-UF short flowsheet process is feasible. The ultrafiltration membrane technology is the optimum choice to improve or replace traditional treatment process.
引文
[1]廖军,张进,周浩.从我国水资源特点看水资源产业化发展[J].农村经济与科技,2009,(11):85-86.
    [2]环境保护部.2008年中国环境状况公报[R].2009.
    [3]李贵宝,周怀东,刘晓茹.我国生活饮用水水质标准发展趋势及特点[J].中国水利,2005,(9):40-42.
    [4]何文杰.安全饮用水保障技术[M].北京:中国建筑工业出版社,2006.
    [5]高娟,李贵宝,刘晓茹等.国内外生活饮用水水质标准的现状与比对[J].水利技术监督,2005,(3):61-64.
    [6][美国]约瑟华I.巴兹勒,温克勒G.威葆格,J.威廉·依莱.饮用水水质对人体健康的影响[M].刘文君译.北京:中国环境科学出版社,2003.
    [7]王琳,王宝贞编著.饮用水深度处理技术[M].北京:化学工业出版社,2002.
    [8]李圭白,杨艳玲,李星.第三代饮用水净化工艺初探[J].中国给水排水,2006,22(9):218-222.
    [9]时钧,袁权,高从增主编.膜技术手册[M].北京:化学工业出版社,2001.
    [10]刘茉娥等.膜分离技术[M].北京:化学工业出版社,2000,156-159.
    [11]邵刚.膜法水处理技术(第2版)[M].北京:冶金工业出版社,2000.
    [12]华耀祖.超滤技术与应用[M].北京:化学工业出版社,2004.
    [13]董秉直,曹达文,陈艳著.饮用水膜深度处理技术[M].北京:化学工业出版社,2006.
    [14]黄廷林主编.水工艺设备基础[M].北京:中国建筑工业出版社,2002,265.
    [15]丁志斌,查吕应,张平等.微滤技术在处理地表原水中的应用探讨[J].工业水处理,2003,23(7):16-19.
    [16]杜启云.中空纤维膜分离技术在水资源化中的应用[J].天津城市建设学院学报,2003,9(2):77~81.
    [17]许振良.膜法水处理技术[M].北京:化学工业出版社,2001.
    [18][英]P.希利斯编.膜技术在水和废水处理中的应用[M].刘广立,赵广英译.北京:化学工业出版社,2003,56~60,123,128~133.
    [19]Graerne Pearce. Introduction to membranes:Manufacturers'comparison:part 1[J]. Filtration+Separation.2007,(10):36-38
    [20]Al. Schafer, A. G Fane, T.D.Wait. Cost Factors and Chemical Pretreatment Effects in the Membrane Filtration of Water Containing Natural Organic Matter [J]. Water Research,2001, 35:1509-1517.
    [21]Roberto Pianta, Markus Boller, Marie-Laure Janex, et al. Micro-and ultrafiltration of Karstic Spring water [J]. Desalination,1998,117(1-3):61-71.
    [22]W.Doyen, B.Baee, F.Lambrechts, et al.Methodology for Accelerated Pre-selection of UF Type of Membranes for Large-scale Applications [J]. Desalination,1998,117 (1-3):85-93.
    [23]T. Suzuki, Y. Watanabe, G.Ozawa, et al. Removal of Soluble Organics and Manganese by a Hybrid MF Hollow Fiber Membrane System [J]. Desalination,1998,117:119-130.
    [24]Jorgen Wagner. Membrane Filtration Handbook:Practical Tips and Hints [Z], USA: Osmonics,2001.
    [25]王琳,王宝贞.城市饮用水膜处理技术[J].膜科学与技术,2001,21(3):53-56.
    [26]Cartwright P. The Role of Membrane Technology in Water Purification Applications [J]. Filtration Sep.1997,34(6):564-567.
    [27]Jacangelo J G, Aieta E M, Cams K E, et al. Low Pressure Membrane Filtration for removing Giardia and Microbial Indication[J]. Journal of AWWA,1991,83 (9):97-106.
    [28]李伟英,董秉直谭章荣等.混凝与超滤联用技术处理长江原水的研究[J].同济大学学报,2004,32(5):644-647.
    [29]夏圣骥,金家明,彭剑峰等.超滤膜处理水库水研究[J].工业水处理,2005,25(7):48~49.
    [30]陈治安,刘通,尹华升等.超滤在饮用水处理中的应用和研究进展[J].工业用水与废水,2006,37(3):7-10.
    [31]尹华升,陈治安,陈益清等.超滤处理微污染水库水的中试研究[J].中国给水排水,2006,22(11):9-12.
    [32]柯水洲,文卫,肖定华.超滤法处理湘江原水的试验研究[J].净水技术,2005,24(5):24-26.
    [33]丁志斌,查吕应,张平等.微滤技术在处理地表原水中的应用探讨[J].工业水处理,2003,23(7):16~19.
    [34]孙丽华,李星,夏圣骥等.高锰酸钾强化混凝/砂滤/超滤组合工艺处理松花江水试验研究[J].膜科学与技术,2008,28(1):77~85.
    [35]易兆青,余冬冬,张振家等.混凝-超滤联用技术制备自来水的试验研究[J].环境科学与技术,2008,31(2):95~97.
    [36]闫昭辉,董秉直.混凝/超滤处理微污染原水的试验研究[J].净水技术,2005,24(6):4~6.
    [37]张捍民,王宝贞.淹没式中空纤维膜过滤装置去除饮用水中污染物的试验研究[J].给水排水,2000,26(6):28—31.
    [38]Andrew R Gere. Microfiltration Operating Costs [J]. AWWA,1997, (10).
    [39]孙丽华,吕谋,李圭白.混凝/砂滤/超滤组合工艺对水中颗粒物质的去除[J].青岛理工大学学报,2006,27(5):74~77.
    [40]A. A. Karimil. Microfiltration Goes to Hollywools the Los Angeles Experience [J]. AWWA. 1999,91(6):90-103
    [41]M. R. Collins, G L. Amy, P. H. King. Removal of Organic Matter in Water Treatment [J]. Journal of Environment Engineering,1985, 111(6):850-864.
    [42]Laine J M, Clark M M, Mallevialle J. Ultrafiltration of lake water:Effect of pretreatment on the partitioning of organics, THMFP and flux [J]. AWWA,1990, (2):82-87.
    [43]王锦,王晓昌,何自琦.超滤膜直接过滤水处理试验研究[J].西安建筑科技大学学报,2001,33(1):51~55.
    [44]莫罹,黄霞.微滤膜处理微污染原水研究[J].中国给水排水,2002,18(4):40~43.
    [45]H. H. Ngo, S. Vigneswaran, S. H. Kim. Microfiltration-Adsorption Hybrid System in Organics Removal from Water [J]. Water Science and Technology,2000,41(10-11):51-57.
    [46]L. T. Veronique. Coagulation Pretreatment for Ultrafiltration of a Surface Water [J]. AWWA, 1999, (6):76-89.
    [47]刘萍,曾光明,黄瑾辉等.强化混凝与超滤组合工艺净化湘江水[J].中国环境科学,2006,26(2):145~149.
    [48]莫罹,黄霞,吴金玲.混凝-微滤膜组合净水工艺中膜过滤特性及其影响因素[J].环境科学,2002,23(2):45~49.
    [49]杨帆,王暄,韩宏大等.混凝-微滤组合工艺处理饮用水的中试研究[J].中国给水排水,2007,23(23):75~78.
    [50]S. Mozia, M. Tomaszewska. Treatment of Surface Water Using Hybrid Processes-Adsorption on PAC and Ultrafiltration [J]. Desalination,2004,(162):23-31.
    [51]董秉直,曹达文,刘遂庆等.超滤膜-活性炭用于优质饮用水生产工艺试验研究[J].给水排水,2001,27(1):15~18.
    [52]田家宇,梁恒,李星等.一体化超滤-膜混凝吸附生物反应器饮用水除污染效能[J].给水排水,2008,34(8):17~21.
    [53]邓扬,高乃云,范瑾初.膜与活性炭组合工艺处理天然水的研究进展[J].上海环境科学,2001,20(8):359~361.
    [54]J. C. Vickers, M. A. Thompson, U. G. Kelkar. The Use of Membrane Filtration in Conjunction with Coagulation Processes for Improved NOM Removal [J]. Desalination,1995,102:57-61.
    [55]P. K. Park, C. H. Lee, S. J. Choi, et al. Effect of the Removal of DOMs on the Performance of a Coagulation-UF Membrane System Production for Drinking Water[J]. Desalination,2002, (145):237-245.
    [56]S. Lee, J. H. Kweon, Y. H. Choi, et al. Effects of Flocculent Aggregates on Microfiltration with Coagulation Pretreatment of High Turbidity waters [J]. Water Science and Technology,2006, 53(7):191-197.
    [57]Malgorzata Kabsch-Korbutowicz. Application of ultrafiltration integrated with coagulation for improved NOM removal [J]. Desalination,174 (2005):13-22.
    [58]王锦,王晓昌.直接超滤和混凝—超滤组合工艺的膜污染比较[J].上海环境科学,2002,21(2):83-85.
    [59]董秉直,曹达文,范瑾初.粉状活性炭-超滤膜处理黄浦江原水的研究[J].上海环境科学.2003,22(11):731~737.
    [60]G. T. Seo, S. W. Jang and S. H. Lee. The Fouling Characterization and Control in the High Concentration PAC Membrane Bioreactor HCPAC-MBR[C]. IWA Specialty Conference, Seoul, Korea, June 7-10,2004:761-768.
    [61]王琳,王宝贞,王欣泽等.活性炭与超滤组合工艺深度处理饮用水[J].中国给水排水,2002,18(2):1-4.
    [62]Maria Tomaszewska, Sylwia Mozia. Removal of organic matter from water by PAC/UF system [J]. Water Research,2002,36 (16):4137-4143.
    [63]董秉直,曹达文,范瑾初等.UF膜与混凝粉末活性炭联用处理微污染原水[J].环境科学,2001,22(1):37—40.
    [64]J. M. Haack, N. A. Booker, T. Carroll. A Permeability-controlled Microfiltration Membrane for Reduced Fouling in Drinking Water Treatment [J]. Water Research.2003,37(3):585-588
    [65]Bing-MuHsu, Hsuan-Hsien Yeh. Removal of Giardia and Cryptosporidium in drinking water treatment:a pilot-scale study [J]. Water Research,2003,37:1111-1117.
    [66]Khosrow Farahbakhsh. Enhancing the efficacy of low-pressure membrane for microbial removal [D]. Edmonton:university of Alberta,2003.
    [67]Z. Bintuan, D. A. Clifford, S. Chellam. Comparison of Electrocoagulation and Chemcial Coagulation Pretreatment for Enhanced Virus Removal Using Microfiltration Membranes [J]. Water Research.2005,39(13):3098-3108
    [68]J. S. Chang, L. J. Tsai, S. Vigneswaran. Experimental Investigation of the Effect of Particle Size Distribution of Suspended Particles on Microfiltration [J]. Water Science and Technology. 1996,34(9):133-144.
    [69]J. G. Jacagelo, S. S. Adham, J. M. Laine. Mechanism of Cryptosporidium, Giadia and MS2 Virus Removal by MF and UF [J]. AWWA.1995,88(9):107-121.
    [70]S. S. Adham, J. G. Gacangelo, J. M. Laine. Characteristics and costs of MF and UF plants [J]. AWWA,1996,88(5):22-31.
    [71]Amy Q Cho J. Interactions between natural organic matter and membrane:Rejection and fouling [J]. Wat SciTech,1999,40 (9):105-112.
    [72]William J C, Kamalesh H, SirKar K, et al. Membrane softening:A treatment process comes of age [J]. JAWWA,1989,81(11):47-51.
    [73]吕晓龙,刘惠玉.多孔膜的污染及其控制方法[J].天津工业大学学报,2004,23(1):18-22.
    [74]S G Yiantsios, A J Karabelas. The effect of colloid stability on membrane fouling [J]. Desalination,1998,118:143-152.
    [75]周先桃,雷明光,陈文梅.解决膜污染技术的理论探讨[J].过滤与分离,2001,11(4):10-12.
    [76]孟凡刚,张捍民,李艳松等.分形理论在膜污染研究中的应用[J].哈尔滨工业大学学报,2005,37(10):1352-1354
    [77]M. M. Zhang, C. Li, M. M. Benjiamin, et al. Fouling and Natural Organic Matter Removal in Adsorbent Membrane Systems for Drinking Water Treatment [J]. Science and Technology. 2003,(37):1663-1669
    [78]刘茉娥.超滤膜污染机理的研究及控制[J].水处理技术.1989,15(3):163~169
    [79]K. Kimura, Y. Hane, Y. Watanabe, et al. Irreversible Membrane Fouling during Ultrafiltration of Surface Water[J].Water Research.2004,38(14-15):3431-3441
    [80]王锦,王晓昌,何自琦.浊度和腐植酸对超滤膜污染过程的研究[J].2002,22(1):24-28
    [81]莫罹,黄霞,吴金玲等.混凝-微滤膜净水工艺的膜污染特性及其清洗[J].中国环境科学.2002,22(3):258~262
    [82]J. Y. Kim, I. S. Chang, D. H. Shin, et al. Membrane Fouling Control through the Change of the Depth of a Membrane Module in a Submerged Membrane Bioreactor for Advanced Wastewater Treatment [J]. Desalination.2008, (231):35-43
    [83]A.W. Zularisam, A.F. Ismail, M.R. Salim, et al. The Effects of Natural Organic Matter (NOM) Fractions on Fouling Characteristics and Flux Recovery of Ultrafiltration Membranes [J]. Desalination,2007,(212):191-208.
    [84]J. H. Kweon, D. F. Lawler. Investigation of Membrane Fouling by Synthetic and Natural Particles [J]. Water Science and Technology,2004,50(12):279-285.
    [85]E. K. Lee, V. Chen, A. G. Fane. Natural organic matter (NOM) fouling in low pressure membrane filtration-effect of membranes and operation modes [J]. Desalination,2008, (218):257-270.
    [86]T. Carroll, S. King, S. R. Gray, et al. The Fouling of Microfiltration Membranes by NOM after Coagulation Treatment [J]. Water Research,2000,34(11):2861-2868.
    [87]宫美乐,袁国梁.我国微孔滤膜研究现状与发展[J].膜科学与技术,2003,23(4):186-189.
    [88]白晓琴,赵英,顾平.膜分离技术在饮用水处理中的应用[J].水处理技术,2005,31(9):1-5.
    [89]Yuan W, Zydney A L. Humic acid fouling during ultrafiltration [J]. Environmental Science and Technology,2000,34(23):5043-5050.
    [90]R. Bian, R. Watanabe, G. Ozawa, et al. Fouling of Ultrafiltration [J]. J. Japan Waterworks Association.1998,67(3):11-19
    [91]董秉直,夏丽华,陈艳等.混凝处理防止膜污染的作用与机理[J].环境科学学报,2005,25(4):530-534.
    [92]王捷,张宏伟,贾辉等预处理技术在膜饮用水处理中的研究进展[J].天津工业大学学报,2005,24(5):98~104.
    [93]Veronique Lahoussin-Turcaud, et al. Fouling in Tangential-Flow Ultrafiltration:the effect of colloid size and coagulation pretreatment [J]. Journal of Membrane Science,1990, 52:173-190.
    [94]董秉直,李伟英,秦祖群等.用超滤膜处理长江水[J].膜科学与技术,2005,25(1):34~37.
    [95]李伟英.长江原水超滤膜处理工艺研究[D].上海:同济大学博士论文,2002.
    [96]管晓涛,王全金,董秉直.膜分离技术在给水处理中的应用研究[J].华东交通大学学报,2001,18(1):41-43.
    [97]董秉直,曹达文,管晓涛等.混凝对膜过滤的影响[J].中国给水排水,2002,18(12):11-13.
    [98]S. J. Xia, X. Li, R. P. Liu, et al. Pilot Study of Drinking Water Production with Ultrafiltration of Water from the Songhuajiang River (China)[J]. Desalination,2005, (179):369-374.
    [99]G. Galjaard, P. Buijs, E. Beerendonk, et al. Pre-Coating (EPCE (R)) UF Membranes for Direct Treatment of Surface Water[J]. Desalination,2001,(139):305-316.
    [100]董秉直,曹达文,李伟英等.硫酸铝混凝条件的变化对膜分离特性的影响[J].膜科学与技术,2003,23(6):4~7.
    [101]董秉直,王洪武,冯晶等.混凝预处理对超滤膜通量的影响[J].环境科学,2008,29(10):2783~2787.
    [102]K. Kimura, Y. Hane and Y. Watanabe. Effect of Pre-Coagulation on Mitigating Irreversible Fouling During Ultrafiltration of Surface Water [J]. Water Science and Technology,2005, 51(6-7):93-100.
    [103]董秉直,曹达文,龚海宁等.混凝和超滤膜联用处理淮河水的中试试验[J].水处理技术,2004,30(6):356~358.
    [104]K. Khatib, J. Rose, O. Barres, et al. Physico-Chemical Study of Fouling Membrane Mechanisms of Ultrafiltration Membrane on Biwa Lake [J]. Journal of Membrane Science, 1997, (130):53-62.
    [105]N. Y. Jang, Y. Watanabe and S. Minegishi. Performance of Ultrafiltration Membrane Processs Combined with Coagulation/Sedimentation [J]. Water Science and Technology.2005,51(6-7): 209-219.
    [106]M. H. Cho, C. H. Lee and S. Lee. Influence of Floc Structure on Membrane Permeability in the Coagulation-MF Process [J].Water Science and Technology.2005,51(6-7):143-150.
    [107]董秉直,陈艳,高乃云等.混凝对膜污染的防治作用[J].环境科学,2005,26(1):90~93.
    [108]M. Pirbazari, B. N. Badriyha, V. Ravindran. MF-PAC for Treating Waters Contaminated with Natural and Synthetic Organics [J]. AWWA,1992,84(12):95-103.
    [109]董秉直,曹达文,范瑾初等.UF膜过滤天然原水阻力特性的研究[J].水处理技术,2001,27(2):80~83.
    [110]董秉直,曹达文,范瑾初.粉末活性炭-超滤膜处理黄浦江原水的研究[J].上海环境科学,2003,22(11):731-735.
    [111]Lin Ch-F, Liu S-H, Hao OH. Effect of functional groups of humic substances on UF performance [J]. Wat Res,2001,35 (2):395-402.
    [112]C. Anselme, I. Baudin. Drinking Water Production by Ultrafiltration and PAC Adsorption-First Year of Operation for a Large Capacity Plant[C]. International Workshop on Membrane Applications for Water&Wastewater Treatment.Beijing China,1999
    [113]董秉直,陈艳,高乃云等.粉末活性炭—超滤膜处理微污染原水试验研究[J].同济大学学报,2005,33(6):775~777.
    [114]王晓莲,彭永臻,王宝贞等.PAC-UF组合系统在饮用水处理中的试验研究[J].水处理技术,2005,31(3):56~60.
    [115]王磊,王旭东,刘莹等.臭氧预氧化对城市二级处理水中残留有机物分子量分布的影响及超滤膜阻力变化分析[J].膜科学与技术,2006,26(2):27~31.
    [116]Wataru Nishijima, Fahmi, Tsukasa Mukaidani, et al. DOC Removal by Multi-Stage Ozonation-Biological Treatment [J].Water Research,2003, (37):150-154.
    [117]G T Seo, T S Lee, B H Moon, et al. Ultrafiltration Combined with Ozone for Domestic Laundry Wastewater Reclamation and Reuse [J]. Water Supply,2001, 1(5-6):387-392.
    [118]Sawada S, Sumida I, Matsumoto K. Membrane filtration of surface water in the presence of ozone [J]. Water Supply,2001,1 (5-6):41-50.
    [119]Hoshino M, Mori Y, et al. Advanced water treatment system using ozone and ozone resistent microfiltration module [J]. Wat Sci Technol,2001, (1):5-6.
    [120]S. H. Lee, B. C. Lee, S. Y. Moon, et al. Evaluation of a MF Membrane System Composed of Precoagulation-Sedimentation and Chlorination for Water Reuse [J]. Water Science and Technology.2006,54(10):115-121.
    [121]Pierre Cote, Diana Mourato, Christian Cungerich, et al. Immersed membrane filtration for the production of drinking water:Case studies [J]. Desalination,117 (1998):181-188.
    [122]王磊,福士宪一.运行条件对超滤膜污染的影响[J].中国给水排水,2001,17(10):1~4.
    [123]顾国维,何义亮.膜生物反应器在污水处理中的研究和应用[M].北京:化学工业出版社,1999.
    [124]Defrance C, Jaffirin M Y. Comparison between filtration at fixed transmembrane pressure and fixed permeate flux:application to a membrane bioreactor used for wastewater treatment [J]. J Mem Sci,1999,152:203-210.
    [125]Harit K V, Yas R J, Bennett A D, et al. Performance of crostbow microfiltration during constant transpressure and constant flux operation[J]. Internal Dairy J,2002,12:473-485.
    [126][荷兰]Marcel Mulder.膜技术基本原理[M].李琳译.北京:清华大学出版社,1999.
    [127]Yamamoto K, Hisa M, Mahmood T, Matsuot. Direct solid-liquid separation using hollow fiber membrane in activated sludge aeration tank [J]. Wat. Sci. Tech.,1989,21,43-54
    [128]俞开昌,文湘华,卜庆杰等.次临界操作下的膜污染机理研究[J].环境污染治理技术与设备,2004,5(1):23~27.
    [129]Field R W, Wu D, Howell I A, et al. Critical flux for microfiltration fouling [J]. J Membr Sci, 1994,100:259-272.
    [130]周柏青主编.全膜水处理技术[M].北京:中国电力出版社,2006,49~51.
    [131]Tran-Ha, Minh H. W iley Dianne E. Relationship between Membrane Cleaning Efficiency and Water Quality [J]. Journal of Membrane Science,1998,145(1):99-110.
    [132]刘忠洲,张国俊,李红兵.[P].中国专利,申请号:00129852.6.
    [133]C. Visvanathan, B. S. Yang, S. Muttamara, et al. Application of Air Backflushing Technique in Membrane Bioreactor [J]. Water Science and Technology.1997,36(12):259-266.
    [134]S. Muthukuaran, S. E. Kentish and M. Ashokkumar. Mechanisams for the Ultrasonic Enhancement of Dairy Whey Ultrafiltration [J]. Journal of Membrane Science.2005, (258):106-114.
    [135]Wenten I G. Mechanisms and Control of fouling in Crossflow Microfiltration [J]. Filt Sep, 1995, (3):252-253.
    [136]Redkar S G, Kuberkar V, Davis R H. Modeling of Concentration Polarization and depolarization with high frequency backpulsing[J]. J Membr Sci,1996,121:229-242.
    [137]Rodgers V G, Sparks R E. Effects of Transmembrane Pressure Pulsing on Concentration Polarization [J]. J Membr Sci,1992,68:149-168.
    [138]王锦,王晓昌,石磊.在线周期反冲洗超滤膜污染过程研究[J].北京交通大学学报,2005,29(1):56~59.
    [139]王志强,蔡振宇,张志刚等.气—水联合反冲洗膜污染防治技术研究[J].环境污染治理技术与设备,2005,6(8):61~63.
    [140]J.Q.J.C.Verberk, GI.M.Worm, H.Futselaar, et al. Combined Air-Water Flush in Dead-End Ultrafiltration [J]. Water Science and Technology:Water Supply,2001, 1(5-6):393-402.
    [141]C. Cabassud, S. Laborie, L. D. Bourlier, et al. Air Sparging in Ultrafiltration Hollow Fibers: Relationship between Flux Enhancement, Cake Characteristics and Hydrodynamic Parameters [J]. Journal of Membrane Science,2001, (181):57-69.
    [142]郭晓燕,侯毅,张振家.用于自来水深度处理的MF膜污染的清洗方法研究[J].中国给水排水,2006,22(5):99~105.
    [143]王萍,朱宛华.膜污染及清洗[J].合肥工业大学学报,2001,24(2):230~233.
    [144]王磊,福士宪一.影响超滤膜长期、稳定运行的因素分析[J].中国给水排水,2002,18(4):44~46.
    [145]张国俊,刘忠州.膜过程中超滤膜污染机制的研究及其防治技术进展[J].膜科学与技术.2001,21(4):39~45.
    [146]Akira Yuasa. Drinking water production by coagulation-microfiltration and adsorption-ultrafiltration [J]. Water Science Technology,1998,37(10):135-146.
    [147]Glucina K, Alvarez A, Laine J M. Assessment of an integrated membrane system for surface water treatment [J]. Desalination,2000,132(13):73-82.
    [148]米宝霞.中空纤维膜反应器处理微污染原水及有机物分子量分布的研究[D].天津:天津大学,2000.
    [149]莫罹,黄霞,李琳.混凝-微滤膜净化微污染水源水的研究[J].给水排水,2001,27(8):12~15.
    [150]Choi K Y, Dempsey B A. In-line coagulation with low-pressure membrane filtration [J]. Water Research,2004,38(19):4271-4281.
    [151]K. K. Malgorzata. Removal of Natural Organic Matter from Water by In-Line Coagulation/Ultrafiltration Process [J]. Desalination,2006,(200):421-423.
    [152]C. Guigui, J. C. Rouch and L. D. Bourlier. Impact of Coagulation Conditions on the In-Line Coagulation/UF Process for Drinking Water Production [J]. Desalination,2002, (147):95-100.
    [153]Oh J I, Lee S H. Influence of streaming potential on flux decline of microfiltration with in-line rapid pre-coagulation process for drinking water production[J].Journal of Membrane Science, 2005,254(1-2):39-47.
    [154]Judd S J, Hillis P. Optimizations of combined coagulation and microfiltration for water treatment [J]. Water Research,2001,35(12):2895-2904.
    [155]裴亮,董波,姚秉华等.超滤与粉末活性炭组合工艺处理饮用水.工业用水与废水[J].2007,38(4):24~27
    [156]张捍民,张锦,邹联沛等.粉末活性炭与超滤膜联用去除饮用水中污染物的研究[J].哈尔滨建筑大学学报.2001,34(3):60~64
    [157]Thebautt P. Ultrafiltration in drinking water treatment, long term estimation of operating cost and water quality[C]. Proceedings of the Conference Euromembrane. Paris,1992, (6):127-132.
    [158]Kunikane S, et al. A comparative study on the application of membrane technology to the public water supply [J]. Journal of Membrane Science,1995,102(1):149-154.
    [159]马成良.我国超滤、微滤技术发展浅析[J].膜科学与技术,1998,18(5):58-60.
    [160]龚海宁.超滤膜处理淮河水工艺研究[D].上海:同济大学,2003.
    [161]刘林.应用模糊数学[M].西安:陕西科学技术出版社,1996.
    [162]彭放,杨瑞琰,罗文强等.数学建模方法[M].北京:科学出版社,2007.
    [163]王书肖,郝吉明,陆永琪等.火电厂烟气脱硫技术的模糊综合评价[J].中国电力,2001,34(12):58~62.
    [164]李元科.工程最优化设计[M].北京:清华大学出版社,2006.
    [165]Sandhya Babel, Satoshi Takizawa. A study on algae fouling microfiltration membranes with and without chemical pretreatment[C]. IWA Specialty Conference,2004,1443-1450.
    [166]田宝义,何文杰,黄廷林等.预氯化对混凝/超滤工艺处理滦河高藻原水的影响[J].中国给水排水,2009,25(21):56~58.
    [167]卜建伟,何文杰,黄廷林等.低压膜完整性的测试方法研究[J].供水技术,2007,1(3):8-10.
    [168]董秉直,李伟英,陈艳等.用有机物分子量分布变化评价不同处理方法去除有机物的效果[J].水处理技术,2003,29(3):155~158.
    [169]刘成,黄廷林,赵建伟.混凝、粉末活性炭吸附对不同分子量有机物的去除[J].净水技术,2006,25(1):31~33.
    [170]中华人民共和国水利部.2006年中国水资源公报[R],2007
    [171]蒋绍阶,杜成银,刘宗源.膜法在水处理中的优势及应用[J].重庆建筑大学学报.2003,25(6):79~82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700