用户名: 密码: 验证码:
密度、季节和种源对马铃薯微型薯繁育影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前解决马铃薯因病毒侵染退化、提高单产的有效方法是繁殖和使用脱毒种薯,脱毒种薯能够大面积推广应用必须有优质、高效的种薯繁育体系作为保障。随着高效低成本繁育技术的不断发展,缩短种薯繁育年限,是种薯繁育体系发展的趋势。微型薯繁育是种薯繁育体系建设的重要环节,如何提高微型薯的繁殖系数,提高单位面积有效微型薯的数量,降低微型薯的生产成本,对种薯繁育体系的建设具有非常重要的意义。本研究围绕华中农业大学建立的以试管薯为核心的二年制种薯繁育体系中的微型薯生产这一环节,深入开展不同密度、不同季节以及不同种源生产微型薯的研究,探明在这三种因素下,植株的冠层发育、光能截获与转化、干物质生产与分配以及微型薯大小和分布的基本特征,其主要研究结果如下。
     1、微型薯大小分布符合负指数曲线。本研究以4个马铃薯品种,春秋2个生产季节,试管薯直播和试管薯母苗顶端扦插2种种植方式,观察了200粒(株)/m2、400粒(株)/m2和600粒(株)/m2三个种植密度下单位面积微型薯形成数量、块茎大小的变化。结果表明,一个微型薯群体中,随着块茎重量级别的增加,块茎数量逐渐减少。所有试验处理的微型薯大小分布均符合y=N(e-λbn-1-e-λbn”)的负指数方程(y为重量等级n的微型薯数量,N为单位面积的微型薯数量,e为自然常数2.71828,λ为微型薯平均重量的倒数,bn和bn-1分别为微型薯重量等级n的上限和下限),块茎大小的分布形式取决于单位面积块茎数量和块茎平均重量两个参数。
     2、种植密度通过增加单株数提高了单位面积的微型薯形成数量。不同品种在不同生长季节的结果表明,单株块茎形成数随密度增加有下降趋势,极差在每株0.5个左右,但其变异显著小于密度增加对单位面积块茎形成总数的影响,其极差在2倍左右,证明密度是影响微型薯形成数量的主要因素。
     3、种植密度通过调控块茎对光合产物的竞争影响微型薯平均重量。研究观察到,在所有试验处理中,植株干重与作物的累积光能截获量具有y=a+bx直线相关(y为植株干重;x为累积光能截获量)。不同品种的块茎干重分配率在75-85%之间,主要由品种遗传特性控制,不同密度间没有显著差异。因此,块茎干重与累积光能截获量也具有显著的直线相关。本研究证明,光能截获率与叶面积指数的相互关系符合Beer定律,高密度主要通过增加前期冠层覆盖率和叶面积指数增加了光能截获量。但光能累积截获量与块茎平均重量的相关分析表明,随着密度增加其斜率显著降低,说明单个块茎所获得的光合产物随密度增加而减少,提高密度增加了块茎间对光合产物的竞争。
     4、试管薯直播能有效提高微型薯的繁殖效率。相同密度下的试管薯直播,单位面积的微型薯数量、单株结薯个数、单株微型薯重量均大于顶端扦插,因而在微型薯生产中,可采用以试管薯直播为主、顶端扦插为辅的方式进行微型薯生产,能显著提高微型薯的繁殖效率,降低生产成本。
     5、本研究提出了微型薯生产的适宜技术。根据块茎大小分布模型及种植密度与块茎数量、光能截获量和微型薯重量的相互关系,按照对微型薯的大小需求确定适宜的种植密度,以提高单位面积有效微型薯的数量,从而降低微型薯生产成本。
Virus-free seed potato is an effective measure to reduce yield loss resulted from virus infection. A shorter seed potato production system is of most importance in China's agrisystem to ensure seed quality. The minituber efficiently produced under protected conditions has been proved capable to rapid seed potato propagation. However, obvious differences in minituber production efficiency have been reported widely. To look into the factors influencing number of tubers formed and tuber size, impacts of growing methods and plant density were investigated in spring and autumn seasons. The main results are as follows.
     1. Tuber size distribution of minitubers follows a negative exponential curve. With4potato varieties which were grown from microtubers and tip-cuttings of the microtuber plants under protected conditions of spring and autumn seasons, the number of tubers formed and tuber weight were investigated at plant densities of200,400and600microtubers or plants/m2. The results showed that number of tubers decreased as tuber weight category increasing, which could be represented as y=N(e-λbn-1-e-λbn)(where, y is the number of tubers of weight category n, N is total number of tubers per unit area, λ stands for the reciprocal of mean tuber weight, bn and bn-1are upper and lower limit of tuber weight category n, respectively, and e is the natural constant2.71828). The distribution pattern is determined by two parameters, total number of tubers and mean tuber weight.
     2. Plant density is a main factor controlling number of tubers per unit area. In different growing seasons, it was observed that tuber formed per plant was decreased in each variety tested as plant density increased, the maximum difference was about0.5tubers/plant. However, the total number of tubers formed per unit area was about2folds between the highest and lowest densities, suggesting that the minitubers produced largely related to the plant density.
     3. Competition between tubers for photoassimilates, which is elevated as plant density increasing, is causal for mean tuber weight. The results demonstrated that, for all the experimental treatments, there was a linear relationship between plant dry weight and accumulated radiation interception of the crop, which followed a formular of y=a+bx (where, y is plant dry weight while x stands for accumulated radiation interception). The dry matter partitioning rates among the varieties tested were between75-85%with a genotype-dependent feature, but no obvious difference existed between plant densities. Consequently, similar relationship was established between tuber dry weight and accumulated radiation interception in present research. The results also showed that the relationship between leaf area index and percentage of radiation interception fitted well to the Beer's Law. The higher plant density had a larger radiation interception in early stage of plant growth in comparison with the lower plant density. However, a smaller value of the slope, calculated for the correlation between mean tuber weight and accumulated radiation interception, was accompanied with higher plant density suggesting a less amount of photoassimilates transmitted to the tubers of higher plant density than that to the tubers of lower one.
     4. Microtubers are super over tip-cuttings for improving the production efficiency of the minitubers. The number of minitubers harvested, tubers per plant and mean tuber weight were higher in the crop grown from microtubers than the crop of tip-cuttings for all the varieties investigated. It is feasible, therefore, to produce minitubers mainly with microtubers and complemented with tip-cuttings for the sake of enhancing productivity and minimizing the production cost.
     5. The findings of present research are informative for optimal minituber production. Based on the tuber size distribution model reconfirmed and the relationships established between plant density and tuber formation, radiation interception and tuber weight, an optimal plant density for specific variety can be estimated by given a desired tuber weight to produce more sized minitubers with reasonably lower production cost.
引文
1.卞春松,金黎平,谢开云,段绍光,屈冬玉.不同基质对马铃薯高效生产影响.种子,2003,131(5):103-105.
    2.陈永康.施肥时提高微型薯剪枝扦插产量的初步研究.见:陈伊里主编,中国马铃薯学术研讨文集.中国马铃薯学术研讨会,青岛,1996,哈尔滨:黑龙江科学技术出版社,1996,268-272.
    3.程天庆,孙慧生,张鹤龄.马铃薯良种繁育.见:黑龙江省农业科学院马铃薯研究所主编,中国马铃薯栽培学.北京:中国农业出版社,1994,131-152.
    4.戴朝曦.全能食物-马铃薯.森林与人类,2008,(10):8-29.
    5.佟屏亚,赵国磐.马铃薯史略.北京:中国农业科技出版社,1991,35-47.
    6.董玲,廖华俊,陈静娴,潘美芳.脱毒马铃薯微型薯产量影响因素的研究.安徽农业科学,2002,30(6):839,846.
    7.董玲,陈静娴,廖华俊,潘美芳.安徽省脱毒马铃薯种薯生产体系模式.安徽农学通报,2003,9(1):27-28.
    8.董玲,陈静娴,廖华俊,潘美芳.脱毒马铃薯试管苗与扦插苗微型薯生产比较.安徽农业科学,2003,31(1):22-24.
    9.董红平,邹曾硕.施用植物生长调节剂对网室马铃薯种薯生产的影响.中国马铃薯,2005,19(3):153-154.
    10.董淑英,‘陈振德,孙静,李梅.马铃薯脱毒试管苗和扦插苗的微型薯生产比较实验.中国马铃薯,2001,15(1):29-30.
    11.董淑英,陈振德,孙静,李梅.基质对马铃薯脱毒试管苗扦插生产微型薯的影响.见:陈伊里主编,面向21世纪的中国马铃薯产业.中国马铃薯学术研讨会,昆明,2000,哈尔滨:哈尔滨工业大学出版社,2000,170-172.
    12.董淑英,崔潇,李瑾,岳文辉.基质类型对脱毒马铃薯微型薯生产的影响.山东农业科学,2008,12(9):35-36.
    13.杜珍,杨春,邢承玉.脱毒小薯现代化生产工艺指标的研究.马铃薯杂志,1996,10(1):1-7.
    14.方志明.品种、密度、基质对马铃薯产量的影响.中国马铃薯,2000,14(3):156-157.
    15.高慧君.马铃薯抗癌肿病高产品种的茎尖脱毒及脱毒微型薯生产技术.西昌农业科技,1990,23(3):15-16.
    16.高凯,刘忠玲,赵爱菊,王胜亮,王自力.中原地区马铃薯脱毒移栽时间对微型薯的影响.中国马铃薯,2003,17(3):162-163.
    17.郭冬花,芦雪青.马铃薯脱毒扦插苗的温室沙床生产技术.中国马铃薯,2002,16(1):45.
    18.郭洪云,宋新玲,陈滨波,刘连航.NAA和2,4-D对脱毒马铃薯扦插苗生长及产量的影响.马铃薯杂志,1998,12(2):74-76.
    19.何庆学.雾化栽培马铃薯源流库关系及提高其结薯能力的研究.[硕士学位论文].重庆:西南农业大学图书馆,2003.
    20.胡建军,何卫,王克秀,桑有顺,唐铭霞,陈涛,陈萍萍,谢江.马铃薯脱毒种薯快繁技术及其数量经济关系研究.西南农业学报,2008,21(3):737-739.
    21.黄大恩,田恒林,田祚茂,吴承金,唐春风,牟仁斌,李大春.马铃薯脱毒种薯标准化生产技术研究—Ⅰ不同密度栽培对块茎大小、单株结薯及产量的影响.中国马铃薯,2001,15(5):302-304.
    22.黄大恩,田恒林,吴承金,田祚茂,李大春,沈艳芬,赵迎春.马铃薯脱毒种薯标准化生产技术研究—Ⅱ不同时期栽培对块茎大小、单株结薯及产量的影响.中国马铃薯,2002,5:279-281.
    23.贾忠福,马永红.马铃薯脱毒原原种生产技术.中国马铃薯,2003,17(3):185.
    24.金辉.马铃薯脱毒试管苗组培快繁及脱毒种薯的生产技术.贵州农业科学,2002,30(2):29-31.
    25.金辉.贵州省盘县马铃薯脱毒种薯繁育体系及产业发展的研究.[硕士学位论文].武汉:华中农业大学图书馆,2006.
    26.景晓兰,李学武,彭燕文,张普.脱毒马铃薯多次收获效益与技术.贵州农业科学,2009,22(4):46.
    27.景晓兰.脱毒马铃薯原原种网室生产技术.中国马铃薯,2001,15(6):363-364.
    28.李殿军,苏允华,乔雪静,孙东显.不同基质生产马铃薯脱毒原原种产量比较.中国马铃薯,2005,19(2):87-88.
    29.李攻轶,梁杰,张雅奎,吴凌娟,董传民.气雾法生产马铃薯核心小薯技术研究简报.中国农学通报,2001,15(5):95-96.
    30.李勇,高云飞,刘伟婷,宿飞飞,刘尚武,王绍鹏,邱彩玲,吕典秋,吕文河.马铃薯脱毒试管苗在不同扦插密度条件下的产量性状和经济参数的分析.中国马铃薯,2009,23(3):133-138.
    31.李文刚.马铃薯种薯微型化及其在良种繁育体系中的价值.内蒙古农业科技,2002,(1):1-3.
    32.李文刚,梁东超,杜宝社,戚毓中,宁怀玉.马铃薯脱毒微型种薯生产及其繁育推广模式—铃田模式.中国马铃薯,2002,16(2):92-94.
    33.李文刚.马铃薯脱毒种薯微型化繁育推广体系研究进展.见:陈伊里,屈冬玉主编,中国马铃薯研究与产业开发.中国马铃薯学术研讨会,昆明,2004,哈尔滨:哈尔滨工程大学出版社,2004,108-112.
    34.梁贵秋.马铃薯脱毒微型薯的网室生产.广西热带农业,2007,23(6):23-24.
    35.刘尚前,刘志增,王晓春,刘广雷.抗生素对脱毒马铃薯扦插苗成活率及生长发育的影响.中国马铃薯,2006,20(2):96-98.
    36.刘忠雄.植物生长调节剂对马铃薯脱毒扦插苗生长的影响.安徽农业科学,2007,35(27):8487,8513.
    37.柳俊,聂碧华,蔡兴奎,陈亮、谢从华.马铃薯二年制脱毒种薯体系建设及其关键技术改良.中国马铃薯,2006,20(6):321-325.
    38.柳俊,谢从华.马铃薯退化与试管薯应用技术.长江蔬菜,1998,20(8):1-4.
    39.柳俊,谢从华.马铃薯退化及防治技术进展.见:陈伊里主编,面向21世纪的中l国马铃薯产业.中国马铃薯学术研讨会,昆明,2000,哈尔滨:哈尔滨工程大学出版社,2000,118-125.
    40.卢泳全,陈伊里,吕文河,徐艳波,杜春雨.营养液栽培法在马铃薯研究中的应用.马铃薯杂志,1999,13(4):240-244.
    41.吕典秋,李学湛,何云霞,白艳菊,张儒喜,朱财.马铃薯脱毒原原种栽培基质筛选和栽培技术的研究.杂粮作物,2002,22(1):46-47.
    42.吕世安,黄元勋,吴承金,黄大恩.马铃薯脱毒种薯二级体系的实践探讨.见:陈伊里,屈冬玉主编,中国马铃薯研究与产业开发.中国马铃薯学术研讨会,昆明,2003,哈尔滨:哈尔滨工程大学出版社,2003,341-345.
    43.吕世安.对脱毒马铃薯种薯生产二级体系的探讨.湖北民族学院学报,2001(3):20-22.
    44.吕树鸣.有土、无土繁育方式下马铃薯微型薯发育的机理比较研究.[硕士学位论文].重庆:西南农业大学图书馆,2005.
    45.孟兆军,尹江,崔红军.冀西北高寒山区微型薯高效生产技术研究.马铃薯杂志,2000,14(1):9-12.
    46.男相日.马铃薯脱毒原种的工厂长化生产.黑龙江农业科学,2000,14(1):26-27.
    47.牛秀群,孙林祥,蒲建刚,王廷杰.马铃薯微型薯脱毒种薯繁育技术应用.见:陈伊里主编,中国马铃薯研究进展.中国马铃薯学术研讨会,内蒙古呼和浩特,1999,哈尔滨:哈尔滨工程大学出版社,1999,190-193.
    48.潘俊峰.不同营养成分对马铃薯脱毒微型薯经济产量的影响.见:陈伊里主编,面向21世纪的中国马铃薯产业.中国马铃薯学术研讨会,昆明,2000,哈尔滨:哈尔滨工程大学出版社,2000,210-213.
    49.庞淑敏,周建华,方贯娜.提高温室马铃薯试管苗成活率的关键技术.蔬菜,2002,(1):11.
    50.庞万福,王清玉,张恭,崔绍玉,田金玉,栗明,王秀英,常风山.无土栽培生产培养基质筛选.马铃薯杂志,1997,11(3):144-147.
    51.裴晖平,王多成,盛平,秦嘉海,肖占文,王治江,吴琴.不同废弃物混合基质对脱毒马铃薯原原种生长发育和经济效益的影响.长江蔬菜,2010,12(20):66-69.
    52.蒲建刚,孙林祥,王廷杰,牛秀群.无土栽培生产脱毒马铃薯微型种薯施肥技术研究.中国马铃薯,2000,14(4):205-207.
    53.蒲育林.马铃薯微型薯活力及其调控机理研究.[博士学位论文].兰州:甘肃农业大学图书馆,2008.
    54.乔海明,候志臣,郝志君.马铃薯脱毒小薯(minituber)快繁技术研究和利用.见:陈伊里主编,中国马铃薯研究与产业开发.中国马铃薯学术研讨会,北京,2003,哈尔滨:哈尔滨工程大学出版社,2003,206-211.
    55.屈冬玉,庞万福,谢发成,连勇.松针土作基质生产脱毒微型薯试验研究.马铃薯杂志,1999,13(1):15-16.
    56.屈冬玉,谢开云,金黎平,庞万福.大力推进三代种薯繁育体系建设,提高中国马铃薯种薯质量和生产水平.见:陈伊里主编,全国马铃薯免耕栽培现场观摩暨产业发展研讨会。中国马铃薯专业委员会年会暨学术研讨会,辽宁本溪和南宁,2007,哈尔滨:哈尔滨工程大学出版社,2006,9-15.
    57.任月梅.冀北高寒区微型薯生产廉价基质筛选.中国马铃薯,2004,18(2):94-95.
    58.石瑛.黑龙江省马铃薯种薯生产.中国马铃薯,2004,18(5):282-286.
    59.苏跃,冯泽蔚,胡虎.不同培养方式对脱毒马铃薯原原种产量的影响.贵州农业科学,2009,37(4):24-25.
    60.孙慧生,杨元军.中国马铃薯种薯生产.见:陈伊里,屈冬玉主编,中国马铃薯研究与产业开发.中国马铃薯学术研讨会,昆明,2003,哈尔滨:哈尔滨工程大学出版社,2003,1-9.
    61.孙慧生,刘文涛.标准化、规模化、产业化繁育脱毒种薯为中国马铃薯产业发展做贡献.见:陈伊里主编,中国马铃薯大会论文集.中国作物学会马铃薯专业委员会学术年会,北京,2008,哈尔滨:哈尔滨工程大学出版社,2008,289-293.
    62.唐国永.青海省脱毒种薯体系简介.青海科技,1999,6(1):40-41.
    63.腾宗瑶,张畅.绪论.见:黑龙江省农业科学院马铃薯研究所主编,中国马铃薯栽培学.北京:中国农业出版社,1994,21-26.
    64.王斌,高丽莉.糠醛渣与蛭石混合基质对马铃薯试管苗生长发育的影响.甘肃农业科技,2011,12(8):9-10.
    65.王朝贵,白永生,顾霄,顾尚敬.高寒山区脱毒马铃薯原原种繁殖基质筛选试验.现代农业科技,2011,34(11):126-128.
    66.王朝贵,顾霄,王朝海,顾尚敬,程娜,王胜难,白永生.不同厚度松针腐殖土繁殖脱毒马铃薯原原种研究初报.现代农业科技,2010,3(4):103-106.
    67.王春梅.甘肃定西马铃薯脱毒种薯繁育体系建设.种子,2003,12(5):110-112.
    68.王凤义,陈伊里,秦听,吕文河,田兴亚.不同种植密度对种薯产量和块茎大小的影响.马铃薯杂志,1996,10(4):203-207.
    69.王凤玉,石瑛,卢翠华,秦傒,吕文河,陈伊里,田兴亚.中国马铃薯种薯生产标准化研究进展.见:陈伊里,屈冬玉主编,中国马铃薯研究与产业开发.中 国马铃薯学术研讨会,昆明,2003,哈尔滨:哈尔滨工程大学出版社,2003,77-82.
    70.王怀利.马铃薯脱毒种薯快繁推广体系的探讨.马铃薯杂志,1999,13(3):170-172.
    71.王培伦,杨元军,董道峰,黄传红,马伟青,孙慧生.二季作区脱毒马铃薯种薯繁殖技术规程.中国马铃薯,2001,15(2):102-104.
    72.王维东,张丽霞.摘取腋芽薯对脱毒马铃薯扦插苗生产微型薯产量的影响.中国马铃薯,2003,17(3):169-170.
    73.王玉娥,杨永智,密盛,刘俊珍,王利利.马铃薯脱毒粒型种薯生产及其应用的研究.见:陈伊里主编,中国马铃薯学术研讨文集.中国马铃薯学术研讨会,青岛,1996,哈尔滨:黑龙江科学技术出版社,1996,293-299.
    74.王玉娥,杨永志,密盛,刘俊珍.马铃薯脱毒苗扦插密度对微型薯数量及大小分布的影响.青海农林科技,1994,(1):16-18.
    75.温利军.冀北马铃薯脱毒微型薯生产技术调查.见:陈伊里主编,中国马铃薯研究与产业开发.中国马铃薯学术研讨会,北京,2003,哈尔滨:哈尔滨工程大学出版社,2003,325-328.
    76.文国宏.网棚生产马铃薯脱毒原原种的栽培方式初探.见:陈伊里主编,马铃薯产业与西部开发.中国马铃薯学术研讨会,北京,2001,哈尔滨:哈尔滨工程大学出版社,2001,213-216.
    77.吴凌娟,张雅奎,温福君,董传民.马铃薯茎尖脱毒技术在大兴安岭种薯生产上的应用.马铃薯杂志,1998,12(3):163-165.
    78.吴毅歆,谢庆华,谢发成.贵州省扶贫办实施马铃薯脱毒良繁体系的对策探讨.种子,2002,12(2):56-57.
    79.肖旭峰.马铃薯微型薯生产技术研究.[硕士学位论文].长沙:湖南农业大学图书馆,2005.
    80.肖旭峰,刘明月.试管苗不同种植密度对马铃薯微型薯的影响.中国马铃薯,2010,24(5):275-277.
    81.肖英奎,张艳平,张强,粒继曼,乔件磊.马铃薯微型薯气雾营养液研究综述.农机化研究,2011,11(10):220-223.
    82.谢从华,陈耀华,田恒林.种植密度与马铃薯块茎大小的分布—Ⅰ密度与块茎生长的关系.马铃薯杂志,1991a,5(2):70-78.
    83.谢从华,田恒林,陈耀华.种植密度与马铃薯块茎大小的分布—Ⅱ块茎大小分布的数学模型及其应用.马铃薯杂志,1991b,5(3):141-147.
    84.谢从华,吴承金,田恒林.西南山区马铃薯脱毒种薯体系研究.见:陈伊里主编,中国马铃薯学术研讨文集.中国马铃薯学术研讨会,青岛,1996,哈尔滨:黑龙江科学技术出版社,1996,268-272.
    85.谢庆华,吴毅歆,张勇飞,张丽芬.马铃薯脱毒试管苗无土栽培高产机理的研究.中国马铃薯,2000,14(2):67-69.
    86.谢庆华,吴毅歆,张勇飞,张丽芬.脱毒马铃薯试管苗剪尖扦插无土繁殖研究.中国马铃薯,2000,14(3):135-137.
    87.修英涛,曹嘉颖,孙周平,田野,姜河.不同无土栽培方式对马铃薯脱毒小薯繁育的影响.辽宁农业科学,2003,4(2):1-3.
    88.余显荣,李艳.马铃薯脱毒试管苗剪尖次数与繁殖系数及经济收益分析.马铃薯杂志,1996,10(4):219-221.
    89.杨春,杜珍,齐海英,王秀英,杜培斌.萘乙酸、吲哚丁酸、赤霉素对脱毒马铃薯苗扦插成活率的影响.马铃薯杂志,1998,12(4):199-202.
    90.杨春,齐海英,崔根芳.提高马铃薯试管苗扦插成活率的关键技术.中国马铃薯,2001,15(3):173.
    91.杨春,齐海英,王秀英,崔根芳.马铃薯脱毒小薯无土栽培营养基质的筛选.中国马铃薯,2000,14(3):166-167.
    92.杨红平等.不同浓度激素不同营养液对小薯的数量和重量的影响.马铃薯杂志,1998,12(4):228-229.
    93.杨培军,张慧琴,张宏熹,王晓煜,赵东.不同品种、密度、基质对马铃薯微型薯产量的影响.宁夏农林科技,2005,11(1):38-39.
    94.杨万林.马铃薯脱毒原原种生产技术.中国马铃薯,2001,15(4):231.
    95.杨元军.马铃薯脱毒小薯雾培结薯特点及增产效果.园艺学报,2002,29(4):333-336.
    96.尹作全.马铃薯脱毒小薯无基质喷雾栽培技术研究初报.马铃薯杂志,1999,13(1):23-24.
    97.曾军,苏珍山,蔡建荣.马铃薯脱毒试管苗无土栽培基质的筛选.中国马铃薯,2002,16(1):27-28.
    98.张丽霞,侯志臣,王占海,高韶斌,高忠仁,李爱红.生产马铃薯微型薯蛭石铺覆厚度的筛选.中国马铃薯,2005,19(1):48.
    99.张延丽,扎西普尺,杨喜珍,扎西次仁,丹增旺姆.脱毒马铃薯无土栽培微型薯生产研究.中国园艺文摘通报,2011,12(9):42-43.
    100.张小红.3种植物生长调节剂对马铃薯原原种植株徒长的调控作用.甘肃农业科技,2009,(6):36-38.
    101.张仲平.搞好良种繁育体系建设发展优质高效的马铃薯产业-昆明市马铃薯产业发展的思路和对策.云南农业科学,2003,2(21):102-105.
    102.赵国琦,贾霄云,陈利.环境因素对马铃薯脱毒扦插苗和小薯生产的影响.见:陈伊里主编,中国马铃薯研究进展.中国马铃薯学术研讨会,内蒙古呼和浩特,1999,哈尔滨:哈尔滨工程大学出版社,1999,173-176.
    103.赵国琦,王和平,王官茂,郭秀莲,闫振贵.乌盟马铃薯脱毒种薯的生产与体系建设.马铃薯杂志,1997,11(3):177-180.
    104.郑光华.蔬菜无土栽培与绿色食品生产.中国蔬菜,1996,23(2):1-3.
    105.周平,王朝海,顾尚敬,王朝贵,白永生,程娜.马铃薯脱毒苗不同培土次数对脱毒薯产量的影响.现代农业科技,2011,4(2):127-128.
    106.朱汉武.对加快定西马铃薯良繁体系建设的建议.种子科技,2006,4(5):19-20.
    107.祝红艺,柴岩,刘晓凤,孙平阳,韩稳社,韩宝利.几种脱毒小薯培养基质的比较研究.吉林农业科学,2000,25(5):51-53.
    108.祝红艺,柴岩,刘小凤,朝宝利,朝稳社,孙平阳.马铃薯试管苗扦插密度试验研究.陕西农业科学,2000,23(11):6-7.
    109. Abdulnour J, Roy G, Desjardins Y. Effect of supplemental lighting, substrate (potting mix) volume and plant densities on potato minituber production during winter greenhouse culture in Quebec. Acta Hortic,2003,619:53-58.
    110. Allen EJ, Scott RK. An analysis of growth of the potato Crop. Journal of Agricultural Science(Cambridge), 1980,94:583-606.
    111. Boersig MR, Wagner S A. Hydroponic systems for production of seed tubers. Am Potato J,1988,165:470-471.
    112. Boyd NS, Gordon R, Martin RC. Relationship between leaf area index and ground cover in potato under different management conditions. Potato Research,2002,45: 117-129.
    113. Burstall L, Harris PM. The estimation of percentage light interception from leaf area index and percentage ground cover in potatos. Journal of Agricultural Science(Cambridge),1983,100:241-2442.
    114. Farran I, Mingo-Castel A. Poato minituber production using aeroponics:effect of plant density and harvesting interveal. Potato Research,2006,83:47-52.
    115. Fahem M, Haverkort A J. Comparison of the growth of potato crops grown in autumn and spring in North Afric. Potato Research,1988,31:557-568.
    116. Firman DM, Allen E J. Relationship between light interception, ground cover and leaf area index in potatoes. Journal of Agricultural Science(Cambridge),1989,113: 355-359.
    117. Grigoriadou K, Leventakis N. Large scale commercial production of potato minitubers, using in vitro techniques. Potato Research,1999,42:607-610.
    118. Haverkort AJ, Bicamumpaka M. Correlations between intercepted radiation and yield of potato crops infested by Phytophthora infestans in central Africa. Netherlands J of Plant Pathology,1986,92:239-247.
    119. Haverkort AJ, Harris PM. A model for potato growth and yield under tropical highland conditions. Agr Forest Metetrol,1987,39:271-281.
    120. Haverkort AJ, Harris PM. Conversion coefficients between intercepted solar radiation and tuber yields of potato crops under tropical highlands conditions. Potato Research,1986,29:529-533.
    121. Haverkort AJ, Waart M, Bodlaender KB A. Interrelationships of the number of initial sprouts, stems, stolons and tubers per potato plant. Potato Research,1990,33: 269-274.
    122. Haverkort AJ, Uenk D, Veroude H, Van De Waart M. Relationship between ground cover, intercepted solar radiation, leaf area index and infrared reflectance of potato crops. Potato Research,1991,34:113-121.
    123. Jefferies RA, Mackerron DKL. Radiation interception and growth of irrigated and draughted potato. Field Crops Research,1989,22:101-112.
    124. Karafyllidis DI, Georgakis DN, Stavropoulos NI, Vezyroglou IA, Nianiou EX. Effect of planting density and size of potato minitubers on their yielding capacity. Acta Hortic,1997,462:943-949.
    125. Karafyllidis DI, Georgakis DN, Stavropoulos NI, Vezyroglou I A, Nianiou EX. Effect of planting density and size of potato minitubers on their yielding capacity. Acta Hortic,1997,462:943-949.
    126. Khurana SC, Mclaren JS. The influence of leaf area, light interception and season on potato growth and yield. Potato Research,1982,25:329-342.
    127. Levy D. Propagation of potato by the transfer of transplants of in vitro proliferated shoot cuttings into the field. Scientia Horticulturae,1988,36:165-171.
    128. Lommen WJM, Struik PC. Influence of a single non-destructive harvest on potato plantlets grown for minituber production. Neth J Agric Sci,1992a,40:21-41.
    129. Lommen WJM, Struik PC. Production of potato minitubers by repeated harvesting: Plant productivity and initiation, growth and resorption of tubers. Neth J Agric Sci, 1992b,40:342-358.
    130. Lommen WJM, Struik PC. Production of potato minitubers by repeated harvesting: Effects of crop husbandry on yield parameters. Potato Research,1992c,35: 419-432.
    131. Lommen WJM. Post-harvest characteristics of potato minitubers with different fresh weights and from different harvests. Ⅱ. Losses during storage. Potato Research, 1993,36:273-282.
    132. Lommen WJM, Struik PC. Field performance of potato minitubers with different fresh weights and conventional seed tubers:crop establishment and yield formation. Potato Research,1994,37:301-313.
    133. Lommen WJM, Struik PC. Field performance of potato minitubers with different fresh weights and conventional seed tubers:Multiplication factors and progeny yield variation. Potato Research,1995,38:159-169.
    134. Lommen WJM. How plant density affects number and yield of potato minitubers in a commercial glasshouse production system. Potato Research,2009,52:105-119.
    135. Monteith JL. Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London Series B-Biological Science,1977, 281:277-294.
    136. Mackerron DKL, Marshall B, Jefferies RA. The distributions of tuber sizes in draughted and irrigated crops of potato. Ⅱ. Relation between size and weight of tubers and the variability of tuber-size distributions. Potato Research,1988,31: 279-288.
    137. Rex BL, Russel WA, Wolfe HR. The effect of spacing of seed pieces on yield, quality and economic value for processing of Shepody potato in Manitaba. Am Potato J,1987,64:177-189.
    138. Ritter E, Angulo P, Riga P, Herran C, Relloso J, Sanjose M. Comparision of hydroponic aeroponic cultivation systems for production of potato minitubers. Potato research,2001,44:127-135.
    139. Rolot JL, Seutin H. Soilless production of potato minitubes using a hydroponic technique. Potato Reseach,1999,42:457-469.
    140. Roy RD, Machado VS, Alam SMM, Ali A. Greenhouse production of potato (Solanum tuberosum L. cv. Desiree) seed tubers using in vitro plantlets and rooted cuttings in large propagation beds. Potato Research,1995,38:61-68.
    141. Vodenik ME. Experiences with minituber production from in vitro plantlets in Yugoslavia. Potato Research,1990,33:301.
    142. Vodenik ME, Jenko M. Production and use of minitubers for basic seed potato production in Slovenia. Potato Research,1992,35:69.
    143. Wheeler RM, Mackowial CL, Sager J C, Knott W M, Hinkle C R. Potato growth and yield using Nurtient Film Technique(NFT). Am Potato J,1990,6:177-178.
    144. Xie CH. Physiology of tuber growth and tuber size control in potato (Solanum tuberosum L.). (Ph D dissertation). London:Wye College, University of London, 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700