用户名: 密码: 验证码:
异密度循环流化床焚烧含油污泥炉内整体模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含油污泥是石油开采和加工过程中产生一种有害污泥,它不仅占用大量的土地资源,对周围的土壤、空气、地下水都会造成污染。针对含油污泥自身的燃烧特性,上海交通大学提出一种采用异密度循环流化床焚烧处理含油污泥的方法。异密度循环流化床是一种采用石英砂颗粒作为流化床媒体物料、组合式高温漩涡分离器、炉膛为变截面结构形式的循环流化床。为了更好地应用这种异密度循环流化床焚烧处理含油污泥的技术,本文结合含油污泥的燃烧特性,建立了异密度循环流化床炉内焚烧含油污泥的整体数学模型,通过编制程序计算出相关炉内参数,并与现场试验数据进行对比与分析。
     首先,对含油污泥的燃烧特性进行了实验研究,给出了含油污泥样品的理化特性数据,进行了含油污泥的热解与燃烧热重分析与差热分析实验,通过对比分析了含油污泥的燃烧与热解的热重曲线,发现含油污泥的可燃物质来自于其热解产物。为此,在不同温度下,进行了含油污泥的恒温热解研究,测定了含油污泥在不同温度下主要热解产物的产率,并给出了这些热解产物的产率以及挥发分析出的实验关联方程式。另外,还在一个小型流化床实验台进行了含油污泥的燃烧实验,实验表明含油污泥不仅在密相区发生燃烧,而且在稀相区已有一部分挥发分燃烧。
     其次,建立了异密度循环流化床相关的子模型,主要包括炉内传热模型与流动模型。并重点研究了石英砂床料磨损与破碎模型、密相区表面固体颗粒夹带率的数学模型、组合式高温漩涡分离器的分级分离效率模型等。在完成这些子模型之后,结合这些子模型构建了非等高小室模型。即依据所建各子模型,构建各小室的质量平衡方程与能量平衡方程来求解炉内的温度分布、炉内传热系数分布以及气相成分分布等炉内燃烧特性参数。
     最后,进行了20t/h异密度循环流化床炉内焚烧含油污泥现场实验。描述了20t/h异密度循环流化床焚烧处理含油污泥现场启动、调试与运行测试方法。对比分析了掺烧水煤浆的三种工况实验数据与整体数学模型结果,发现模拟计算值与实验值都基本吻合,这说明本论文所建立的异密度循环流化床焚烧处理含油污泥炉内整体数学模型是合适的、可靠的。之后,以所建立整体数学模型为基础,通过改变整体数学模型中的相关参数,包括含油污泥的焚烧处理量、含油污泥挥发分含量、灰分含量与水分含量、过量空气系数、炉膛高度及受热面面积等参数,来模拟分析这些参数的变化对炉内燃烧特性的影响。模拟发现炉内温度一般随含油污泥的焚烧处理量的增加、含油污泥挥发分含量的增加、灰分含量与水分含量减少、炉膛高度与炉内受热面面积的减少而增加。但是,过量空气系数的变化对炉内温度的影响在炉膛下部和上部呈现出不同的特点。在炉膛下部,当过量空气系数增加时,由于送入的冷风量增加,床温会随着过量空气系数增加而降低,而在炉膛上部,过量空气系数过高或过低都可能导致炉温下降。除此之外,还同时模拟分析了其他炉内燃烧特性参数如炉内换热系数、烟气成分随这些参数变化的影响结果。
Oily sludge is one kind of hazardous sludge, which is usually, generated during the crude oil exploitation and processing activities. Oily sludge has contamination on soil, air, and underground water. According to the combustion characteristics of oily sludge, incineration of oily sludge in the differential density circulating fluidized bed is generally adopted. As mentioned herein, the term“different density circulating fluidized bed”refers to a circulating fluidized bed with an interior horizontal cyclone separator, variable section, and quartzite particles as its bed materials. In order to optimize this kind technology, an overall mathematical model on differential density fluidized beds for the incineration of oily sludge was developed. Some parameters were obtained from a compute program. And the computed value from the overall model was close to the experimental value.
     Firstly, the proximate analysis, ultimate analysis, low heating value, contents and group composition of chloroform extract and the inorganic materials of the oily sludge were given. In order to further investigate and obtain the combustion characteristics of oily sludge, the pyrolysis and combustion of oily sludge were studied through some thermal analyses, which included the thermogravimetric (TG) analysis and the differential thermal analytical (DTA) analysis. It was found that the combustion of oily sludge might be the combustion of the products of its pyrolysis. Secondly, an experiment for measurements of main components of the volatile from oily sludge pyrolysis was carried out. Some mathematic correlations about the compositions of volatile from oily sludge devolatilization were achieved on the experimental results. Finally, the combustion experiment of oily sludge was carried out in a lab-scale circulating fluidized bed. It was found that the release and combustion of volatiles from oily sludge took place not only in the dense region but also in the dilute region.
     Secondly, some sub-models of the differential density circulating fluidized bed including the heat transfer model and the hydrodynamics model were developed. Morevoer, the model on attrition and fragmentation of quartzite particles as medium material, the model on solids entrainment flux on the surface of the dense region, and the model on separation efficiency on cyclone separator, and so on, were especially studed. On the other hand, a kind of so-called unequal height cell model combining the above-discussed sub-models was developed so as to achieve the temperature distribution, the heat exchange coefficient distribution, and concentration profiles of the main combustible components of the oily sludge combusted in the bed.
     Finally, some experiments were carried out in one 20t/h differential density circulating fluidized bed. To the beginning, the startup, debug, and operation of the 20t/h differential density circulating fluidized bed were introduced. And then, we compared the experimental results of three behaviour of co-firing of oily sludge with coal–water slurry with their predicted results. It was found that the experimental results were close to the simulation results from the developed overall mathematical model, which showed that the overall mathematical model was appropriate and reliable for simulation of the incineration of oily sludge in a differential density fluidized bed. Based on this developed overall mathematical model, some main parameters were introduced to simulate incineration of oily sludge in a differential density fluidized bed. Those parameters included the feed of oily sludge, the volatile content of oily sludge, the ash content of oily sludge, the water content of oily sludge, the excess air factor, the height of the bed, and the aera of the heat exchange. The results of simulations showed that the bed temperature increases with the increase of the feed of oily sludge, the increase of the volatile content of oily sludge, the decrease of the ash content of oily sludge, the decrease of the water content of oily sludge, the decrease of the height of the bed, and the decrease of the area of the heat exchange. However, in the lower part of bed, the bed temperature decreases with the increase of the excess air factor, but in the upper part of bed, it was found that the bed temperature would decrease while the excess air factor deviates from some value of the excess air factor. In addition, the simulations of the changes of those parameters to the heat transfer coefficient and the main flue components were done simultaneously.
引文
[1] N. Vasudevan, P. Rajaram, Bioremediation of oil sludge contaminated soil, Environment International, 2001, 26(5-6): 409-411.
    [2]赵玉鹏,李性伟,吴大军等,油田采出液中含油污泥无害化处理研究,国际华人石油与石油化工科技研讨会论文集,1998,677-681.
    [3]黄松芝,刘真凯,赖晓雪,孤东油田含油污泥现状及处理技术,油气田环境保护,2002,(1):88-92.
    [4]刘子龙,王蓉莎,姚日远,含油污泥资源化技术的研究及应用,石油天然气学报, 2006,28(4):136–138.
    [5]宋丹,含油污泥处理技术的研究,石油化工环境保护,2006,29(2):38-42.
    [6] L. Mater, R.M. Sperb, L.A.S. Madureira, etc., Proposal of a sequential treatment methodology for the safe reuse of oil sludge-contaminated soil, Journal of Hazardous Materials, 2006,136(3): 967-971.
    [7]赵东风,路帅,含油污泥焦化处理反应条件的优化,石油大学学报(自然科学版),2002,26(4):90-91.
    [8] T.L. Propst, R.L. Lochmiller, C.W. Qualls, etc. , In situ (mesocosm) assessment of immunotoxicity risk to small mammals inhabiting petrochemical waste sites, Chemosphere, 1999, 38 (5) :1049–1067.
    [9] M.E. Zappi, B.A. Rogers, C.L. Teeter, etc., Bioslurry treatment of a soil contaminated with low concentrations of total petroleum hydrocarbons, Journal of Hazardous Materials, 1996,46 (1): 1–12.
    [10]刘晓娟,刘静,张宁生,油气田污泥无害化处理途径探讨,油气田环境保护,2004,14(02):32-35.
    [11] M. Inguanzo, J.A. Menéndez, E. Fuente, etc., Reactivity of pyrolyzed sewage sludge in air and CO2 , Journal of Analytical and Applied Pyrolysis , 2001,58–59: 943–954.
    [12] Erwan Autret, Francine Berthier, Audrey Luszezanec, etc., Incineration of municipal and assimilated wastes in France: Assessment of latest energy and material recovery performances, Journal of Hazardous Materials, 2007,139(3): 569-574.
    [13] B.K. Gogoi, N.N. Dutta, P. Goswami, etc., A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site, Advances in Environmental Research,2003, 7 (4): 767–782.
    [14] I. Lazar , S. Dobrota, A. Voicu,etc., Microbial degradation of waste hydrocarbons in oily sludge from some Romanian oil fields. Journal of Petroleum Science and Engineering, 1999, 22(1-3):151–160.
    [15] I.M. Head, R.P.J. Swannell, Bioremediation of petroleum hydrocarbon contaminants in marine habitats, Current Opinion in Biotechnology, 1999, 10 (3): 234–239.
    [16] N. Vasudevan, P. Rajaram, Bioremediation of oil sludge-contaminated soil, Environment International, 2001, 26 (5-6): 409-411.
    [17] A.N. Shkidchenko, E.N. Kobzev, S.B. Petrikevich, etc., Biodegradation of black oil by microflora of the Bay of Biscay and biopreparations, Process Biochemistry, 2004, 39 (11):1671–1676.
    [18] Bassam Mrayyan, Mohammed N. Battikhi, Biodegradation of total organic carbons (TOC) in Jordanian petroleum sludge, Journal of Hazardous Materials, 2005, 120 (1): 127–134.
    [19]王洪君,张忠智,李庆忠,堆肥法处理含油污泥研究进展,环境污染治理技术与设备,2002,3(4):86-89.
    [20] Ramzi F. Hejazi, Tahir Husain, Faisal I. Khan, Landfarming operation of oily sludge in arid region—human health risk assessment, Journal of Hazardous Materials, 2003, 99 (3):287–302.
    [21] L. Suominen, M.M. Jussila, K. Ma kelainen, etc., Evaluation of the Galega–Rhizobium galegae system for the bioremediation of oil-contaminated soil, Environmental Pollution, 2000, 107 (2): 239—244.
    [22] Raymond C.Loehr, Matthew T. Webster, Performance of long-term, field-scale bioremediation processes, Journal of Hazardous Materials, 1996,50(2-3):105-128.
    [23]李凡修,含油污泥无害化处理及综合利用的途径,油气田环境保护,1998,8(3):42-44.
    [24]魏小芳,张忠智,罗一菁等,石油烃优势降解菌在处理含油污泥中的应用,石油化工高等学校学报,2005,18(4):8-11.
    [25] Wei Ouyang, Hong Liu, V. Murygina, etc., Comparison of bio-augmentation and composting for remediation of oily sludge: A field-scale study in China, Process Biochemistry, 2005, 40(12):3763-3768.
    [26]金一中,陈小平,陈雪明等,含油污泥处理技术进展.环境污染与防治,1998,20(4):30-32.
    [27] R. Boopathy, Factors limiting bioremediation technologies, Bioresource Technology, 2000,74 (1): 63–67.
    [28]张中杰,炼厂含油污泥处理技术综述,中国科技信息,2005,3:9.
    [29] Joseph J. Santoleri, Heat recovery—an economic benefit to hazardous waste incineration systems, Journal of Heat Recovery Systems, 1983, 3(2):145-155.
    [30] K.R.G. Hein, J.M. Bemtgen, EU clean coal technology—co-combustion of coal and biomass, Fuel Processing Technology, 1998, 54(1-3):159–169.
    [31] J. Werther, T. Ogada, Sewage sludge combustion, Progress in Energy and Combustion Science, 1999, 25(1): 55–116.
    [32] JoséCorella, JoséM. Toledo, Incineration of doped sludges in fluidized bed. Fate and partitioning of six targeted heavy metals. I. Pilot plant used and results, Journal of Hazardous Materials, 2000, 80(1-3): 81-105.
    [33] Gyo Woo Lee, Sung Jun Lee, Jongsoo Jurng, etc., Co-firing of paper sludge with high-calorific industrial wastes in a pilot-scale nozzle-grate incinerator, Journal of Hazardous Materials, 2003, 101 (3): 273–283.
    [34]刘安平,含油污水中固体废物固化与燃煤混烧的可行性,油气田环境保护, 2005, 15(1):37-39.
    [35] B. Leckner, L.-E. ?mand, K. Lücke,etc., Gaseous emissions from co-combustion of sewage sludge and coal/wood in a fluidized bed, Fuel, 2004, 83 (4-5): 477–486.
    [36] Thomas Malkow, Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal, Waste Management, 2004, 24 (1): 53–79.
    [37] Pavel Stasta, Jaroslav Boran, Ladislav Bebar, etc., Thermal processing of sewage sludge, Applied Thermal Engineering, 2006, 26 (13):1420–1426.
    [38] Giuseppe Mininni, Vincenzo Lotito, Roberto Passino, etc., Influence of sludge cake concentration on the operating variables in incineration by different types of furnaces, Water Science and Technology, 1998, 38(2):71-78.
    [39] Athur White, Dale Mayrose, John F. Mullen, Replacement of a multiple hearth by a fluid bed incinerator the Greensboro case history, Waste Management, 2000, 20(8):703-709.
    [40]赵虎仁,苏燕京,叶艳等,石油炼厂含油污泥无害化处理初步研究,石油与天然气化工,2003, 32(6):396-398.
    [41]黄松芝,刘真凯,赖晓雪,孤东油田含油污泥现状及处理技术.油气田环境保护,2002,3(1):88-92.
    [42]刘晓娟,刘静,张宁生,油气田污泥无害化处理途径探讨,油气田环境保护,2004, 14(2):32-35.
    [43] Liu Zhiqiang, Liu Zhihua, Li Xiaolin, Status and prospect of the application of municipal solid waste incineration in China, Applied Thermal Engineering, 2006, 26 (11) :1193–1197.
    [44] Rong Yan, David Tee Liang, Leslie Tsen, Case studies––Problem solving in fluidized bed waste fuel incineration, Energy Conversion and Management, 2005, 46 (7) 1165–1178.
    [45] Le Guevel T, Thomas P, Fuel flexibility and petroleum coke combustion at Provence 250MW CFB, Proceedings of the international conference on fluidized bed combustion, 2003:643–649.
    [46]姜秀民,马玉峰,崔志刚等,水煤浆流化悬浮高效洁净燃烧技术研究与应用,化学工程,2006, 34(1):62-65.
    [47]姜秀民,油污泥的异密度循环流化床燃烧处理方法,中国,发明专利,CN200410089304.6, 2005.06.08.
    [48]房德山,循环流化床锅炉整体动态数学模型及运行特性分析[D],南京,东南大学, 2004.
    [49]冯俊凯,岳光溪,吕俊复,循环流化床燃烧锅炉,北京,中国电力出版社,2003,14-22.
    [50]雍玉梅,循环流化床锅炉大型化的数值模拟[D],北京,中国科学院,2004.
    [51]路春美,程世庆,韩奎华等,循环流化床锅炉设备与运行,北京,中国电力出版社,2008,1-9.
    [52]林宗虎,魏敦菘,安恩科等,循环流化床锅炉,北京,化学工业出版社,2004,1-16.
    [53]刘德昌,陈汉平,张世红等,循环流化床锅炉运行及事故处理,北京,中国电力出版社,2006,1-3.
    [54]卢啸风,大型循环流化床锅炉设备与运行,北京,中国电力出版社,2006,1-5.
    [55]朱皑强,芮新红,循环流化床锅炉设备及系统,北京,中国电力出版社,2004,1-11.
    [56]党黎军,循环流化床锅炉的启动调试与安全运行,北京,中国电力出版社,2002,1-16.
    [57] S.A. Razzak, S. Barghi, J.-X. Zhu, Electrical resistance tomography for flow characterization of a gas–liquid–solid three-phase circulating fluidized bed, Chemical Engineering Science, 2007, 62(24):7253-7263.
    [58] Guilin Piao, Shigeru Aono, Motohiro Kondoh, etc., Combustion test of refuse derived fuel in a fluidized bed, Waste Management, 2000, 20 (5-6): 443-447.
    [59] D. Shin, S. Jang, J. Hwang, Combustion characteristics of paper mill sludge in a lab-scale combustor with internally cycloned circulating fluidized bed, Waste Management, 2005, 25 (7) :680–685.
    [60] Fabrizio Scala, Riccardo Chirone, Fluidized bed combustion of alternative solid fuels, Experimental Thermal and Fluid Science, 2004, 28(7):691–699.
    [61] E. J. Anthony, Fluidized bed combustion of alternative solid fuels; status, successes and problems of the technology, Progress in Energy and Combustion Science, 1995, 21(3):239-268.
    [62] Fabrizio Scala, Riccardo Chirone, Fluidized bed combustion of alternative solid fuels, Experimental Thermal and Fluid Science, 2004, 28(7): 691–699.
    [63] Lingsheng Zhou, Xiumin Jiang, Jianguo Liu, A population model of quartzite particles in a lab-scale fluidized bed due to the thermal fragmentation, Powder Technology, 2009, 188(3):277-282.
    [64] Qinhui Wang, Zhongyang Luo, Xuantian Li,etc., A mathematical model for a circulating fluidized bed (CFB) boiler, Energy, 1999,24(7): 633-653.
    [65] V. Mathiesen, T. Solberg, B. H. Hjertager, An experimental and computational study of multiphase flow behavior in a circulating fluidized bed, International Journal of Multiphase Flow, 2000, 26(3):387-419.
    [66] Jinghai Li, Congli Cheng, Zhongdong Zhang, etc., The EMMS model—its application, development and updated concepts, Chemical Engineering Science, 1999, 54(22):5409-5425.
    [67] Daizo Kunii, Octave Levenspiel, The K-L reactor model for circulating fluidized beds, Chemical Engineering Science, 2000, 55(20):4563-4570.
    [68]张永哲,徐向东,循环流化床锅炉动态数学模型与仿真研究,中国电机工程学报,2000,20(12):84-88.
    [69]沈来宏,燃煤循环流化床模型与试验研究,热能动力工程,2000,15(3):249-251.
    [70]李政,循环流化床锅炉通用整体数学模型、仿真与性能预测[D],北京,清华大学,1994 .
    [71]李政,倪维斗,王哲等,循环流化床实时动态数学模型研究,动力工程,1999,19(2):33 -36.
    [72]李政,倪维斗,张巍,循环流化床整体物料平衡通用动态数学模型,清华大学学报, 1997, 37 (2):24-27.
    [73]倪维斗,李政, 220t/h清华循环流化床锅炉的建模与仿真.燃烧科学与技术, 1995, 1(3):219- 225.
    [74] Hannes J P. Mathematical modelling of circulating fluidized bed combustion. Doctor Dissertaiton of RWTH, 1996.
    [75]王勤辉,循环流化床锅炉总体数学模型及性能试验[D],杭州,浙江大学,1997.
    [76]王勤辉,骆仲涣,李绚天等,循环流化床锅炉氮氧化物的生成与分解模型,燃料化学学报, 1998, 26(2):108-113.
    [77] V. Mathiesen, T. Solberg ,B. H. Hjertager., An experimental and computational study of multiphase flow behavior in a circulating fluidized bed, International Journal of Multiphase Flow, 2000,26(3):387-419.
    [78] Hannes J P, The IEA-Model for circulating fluidized bed combustion, 13th Int. Conf. on Fluidized Bed Combustion, 1995, 287-296.
    [79] Remberg C G ,Nemet A ,Fett F N, Towards a more general process model for power plants with atmospheric or pressurized fluidized bed combustion,14th Int.Conf.on Fluidized Bed Combustion, 1997,1139-1114.
    [80] P.Basu, Heat transfer in fast fluidized bed combustors.Chemical Engineering Science, 1990, 45(10):3123-3136.
    [81] P. Basu, Combustion of coal in circulating fluidized-bed boilers: a review, Chemical Engineering Science, 1999, 54:5547-5557.
    [82] Subbarao, D., P. Basu, A model for heat transfer in circulating fluidized beds, Int. J. of Heat Mass Transfer, 1986, 39(3):487-489.
    [83]邓任生,刘腾飞,金涌,1995~1998年国内发表的流态化文献综述,化学反应工程与工艺, 2000, 16(1):85-99.
    [84]王勤辉,循环流化床锅炉总体数学模型及其与工业试验比较的研究,工程热物理学报, 1998, 19(2):251-255.
    [85]岑可法,倪明江,骆仲泱等.循环流化床锅炉理论设计与运行,北京:中国电力出版社, 1998.
    [86]杨晨,大型循环流化床锅炉整体动态数学模型的建模与仿真方法研究[D],重庆,重庆大学, 1999.
    [87]杨晨,何祖威,大型循环流化床锅炉整体动静态数学模型的建模方法研究,动力工程,2002, 22(4):1841-1846.
    [88]杨晨,何祖威,大型循环流化床锅炉整体动态模型的构成及其求解方法,化工学报,2001, 52(12): 1083-1089.
    [89]方建华,循环流化床煤热解-碳燃烧技术实验研究及燃烧过程数学模化[R],北京,中国科学院,1997.
    [90]王丽,循环流化床外置换热器实验研究及循环流化床垃圾焚烧炉设计和数值模拟[D],北京,中国科学院,2001.
    [91]杨波,循环流化床锅炉燃烧过程的数值模拟[D],北京,中国科学院,2000.
    [92]倪维斗,李政,220t/h清华循环流化床锅炉的建模与仿真,燃烧科学与技术,1995, 1(3):199-225.
    [93]蒋宏利,循环流化床内的流体动力学特性与燃烧特性[D],西安,西安交通大学, 2001.
    [94]杨晨,何祖威,辛明道,大型循环流化床锅炉固体颗粒流动及分布的数值模拟,燃烧科学与技术,2000,6(3):238-243.
    [95]王文选,循环流化床中石油焦与煤混烧特性研究[D],南京,东南大学, 2002.
    [96] Yang Chen, Gou Xiaolong, Dynamic modeling and simulation of a 410 t/h Pyroflow CFB boiler, Computers & Chemical Engineering, 2006,31(1):21-31.
    [97] Qinhui Wang, Zhongyang Luo, Mingjiang Ni ,Kefa Cen. Particle population balance model for a circulating fluidized bed boiler, Chemical Engineering Journal, 2003, 93(2):121-133.
    [98] Suresh Sriramulu, Samir Sane, Pradeep Agarwal etc., Mathematical modeling of fluidized bed combustion 1. Combustion of carbon, Fuel , 1996,75(12):1351-1362.
    [99] B.V.Reddy, P.Basu, A model for heat transfer in a pressurized circulating fluidized bed furnace. International Journal of HEAT and MASS TRANSFER, 2001, 44(15):2877-2887.
    [100] H. T. Bi, N. Ellis, I. A. Abba, etc., A state-of-the-art review of gas-solid turbulent fluidization, Chemical Engineering Science, 2000, 55 (21) :4789-4825.
    [101] D. Bai, E. Shibuya, Y. Masuda, etc., Distinction between upward and downward flows in circulating fluidized beds, Powder Technology, 1995, 84 (1): 75-81.
    [102] Ernst-Ulrich Hartge, Cornelis Klett, Joachim Werther, Dynamic simulation of the particle size distribution in a circulating fluidized bed combustor, Chemical Engineering Science, 2007, 62( 1-2):281-293.
    [103] Tom Ogada, Joachim Wether. Combustion characteristics of wet sludge in a fluidized bed. Fuel.1996, 75(5):617-626.
    [104] A.V.S.S.K.S. Gupta,B.V. Reddy, Bed-to-wall heat transfer modelling in the top region of a CFB riser column with abrupt riser exit geometries, International Journal of Heat and Mass Transfer, 2005,48(21-22):4307-4315.
    [105] G. Nirmal Vijay, B.V. Reddy, Effect of dilute and dense phase operating conditions on bed-to-wall heat transfer mechanism in a circulating fluidized bed combustor, International Journal of Heat and Mass Transfer, 2005, 48(16):3276-3283.
    [106] R.L. Wu, J.R. Grace, C.J. Lim, A model for heat transfer in circulating fluidized beds, Chemical Engineering Science,1990, 45(12):3389-3398.
    [107]朱国桢,徐洋,循环流化床锅炉设计与计算,北京,清华大学出版社,2004,88-89.
    [108] Cristóbal Cortés, Antonia Gil, Modeling the gas and particle flow inside cyclone separators, Progress in Energy and Combustion Science, 2007, 31(9):1111-1122.
    [109] O. Ramachandran, P. C. Raynor, D. Leith, Collection efficiency and pressure drop for a rotary-flow cyclone, Filtration & Separation, 1994,31(6):631-636.
    [110]吕鸿,白崇功,考宏涛等,旋风筒的分级分离效率与其入口风速的关系,硅酸盐学报. 1999,27(4):415-416.
    [111]朱皑强,芮新红,循环流化床锅炉设备及系统,北京,中国电力出版社,2004,40-41.
    [112]李初福,何小荣,陈丙珍等,炼油企业供应链管理中实沸点切割点的优化,化工学报, 2005,56(11):2142-2145.
    [113] Nabajyoti Saikia, Pinaki Sengupta, Pradip Kumar Gogoi, Prakash Ch. Borthakur. Kinetics of dehydroxylation of kaolin in presence of oil field effluent treatment plant sludge. Applied Clay Science,2002, 22 (3): 93– 102.
    [114] Tamer Karayildirim, Jale Yanik, Mithat Yuksel, etc., Characterisation of products from pyrolysis of waste sludges, Fuel, 2006, 85(10-11): 1498–1508.
    [115]华峰,刘志超,热重-差热分析方法研究煤粉的燃烧特性,山东电力技术,1998,24(6):6-10.
    [116]樊越胜,邹峥,高巨宝等,煤粉在富氧条件下燃烧特性的实验研究,中国电机工程学报,2005,25 (24):118-121.
    [117]徐朝芬,孙学信,胡松,基于TGA-DSC-FTIR联用技术研究煤粉的燃烧特性,热能动力工程,2005,20(3):288-290.
    [118]姜秀民,李巨斌,邱健荣,超细化煤粉燃烧特性的研究,中国电机工程学报,2000, 20(6):71-78.
    [119] Zhiqi Wang, Qingjie Guo, Xinmin Liu, etc., Low Temperature Pyrolysis Characteristics of Oil Sludge under Various Heating Conditions, Energy & Fuels, 2007, 21(2) 957-962.
    [120] Afsin Gungor, Two-dimensional biomass combustion modeling of CFB, Fuel, 2008, 87( 8-9):1453-1468.
    [121] Afsin Gungor, Nurdil Eskin, Two-dimensional coal combustion modeling of CFB, International Journal of Thermal Sciences, 2008, 47(2):157-174.
    [122] Francesco Miccio, Sylwester Kalisz, David Baxter,etc., Combustion of liquid bio-fuels in an internal circulating fluidized bed, Chemical Engineering Journal, Volume 143, Issues 1-3, 15 September 2008, Pages 172-179.
    [123] F. Okasha, Modeling of liquid fuel combustion in fluidized bed, Fuel, 2007,86(15):2241-2253.
    [124] Yao Bin Yang, Changkook Ryu, Adela Khor, etc., Effect of fuel properties on biomass combustion. Part II. Modelling approach—identification of the controlling factors, Fuel, 2005, 84(16):2116-2130.
    [125] H. Zhou, A.D. Jensen, P. Glarborg, etc., Numerical modeling of straw combustion in a fixed bed, Fuel, 2005, 84(4):389-403.
    [126] Colomba Di Blasi, Combustion and gasification rates of lignocellulosic chars, Progress in Energy and Combustion Science, 2009, 35(2):121-140.
    [127] Chunshan Li, Kenzi Suzuki, Tar property, analysis, reforming mechanism and model for biomass gasification—An overview, Renewable and Sustainable Energy Reviews, 2009, 13(3):594-604.
    [128] Vasilije Manovic, Mirko Komatina, Simeon Oka, Modeling the temperature in coal char particle during fluidized bed combustion, Fuel, 2008, 87(6):905-914.
    [129] Shuyan Wang, Huilin Lu, Yunhua Zhao, etc., Numerical study of coal particle cluster combustion under quiescent conditions, Chemical Engineering Science, 2007, 62(16):4336-4347.
    [130] Priyanka Kaushal, Tobias Pr?ll, Hermann Hofbauer, Model for biomass char combustion in the riser of a dual fluidized bed gasification unit: Part 1—Model development and sensitivity analysis, Fuel Processing Technology, 2008, 89(7)651-659.
    [131] Charles K. Westbrook, Frederick L. Dryer , Chemical kinetic modeling of hydrocarbon combustion,Progress in Energy and Combustion Science, 1984, 10(1):1-57.
    [132] Sen Li, Tongmo Xu, Peng Sun, etc., NOx and SOx emissions of a high sulfur self-retention coal during air-staged combustion, Fuel, 2008, 87(6):723-731.
    [133] E.J. Anthony, E.M. Bulewicz, L. Jia, Reactivation of limestone sorbents in FBC for SO2 capture, Progress in Energy and Combustion Science, 2007, 33(2):171-210.
    [134] Joachim Werther, Gaseous emissions from waste combustion, Journal of Hazardous Materials,2007, 144(3):604-613.
    [135] Deming Mao, Jack R. Edwards, Andrey V. Kuznetsov, Three-dimensional numerical simulation of a circulating fluidized bed reactor for multi-pollutant control, Chemical Engineering Science, Volume 59, Issue 20, October 2004, Pages 4279-4289.
    [136] Afsin Gungor, Prediction of SO2 and NOx emissions for low-grade Turkish lignites in CFB combustors, Chemical Engineering Journal, Volume 146, Issue 3, 15 February 2009, Pages 388-400.
    [137] Estelle Desroches-Ducarne, J. Christophe Dolignier, Eric Marty, etc., Modelling of gaseous pollutants emissions in circulating fluidized bed combustion of municipal refuse, Fuel, Volume 77, Issue 13, October 1998, Pages 1399-1410.
    [138] Ping Lu, Sheng-Rong Xu, Xiu-Ming Zhu, Study on NO heterogeneous reduction with coal in an entrained flow reactor, Fuel, 2009, 88(1):110-115.
    [139] W.J. Zhang, S. Rabiei, A. Bagreev, M.S. Zhuang, Study of NO adsorption on activated carbons, Applied Catalysis B: Environmental, 2008, 83(1-2):63-71.
    [140] Julien Cancès, Jean-Michel Commandré, Sylvain Salvador, NO reduction capacity of four major solid fuels in reburning conditions– Experiments and modeling, Fuel, 2008, 87(3):274-289.
    [141] A. Dutta, P. Basu, An Investigation on Heat Transfer to the Standpipe of a Circulating Fluidized Bed Boiler, Chemical Engineering Research and Design, 2003,81(8):1003-1014.
    [142]《工业锅炉设计计算方法》编委会编,工业锅炉设计计算方法,北京,中国标准出版社,2005:57.
    [143]岑可法,倪明江,骆仲涣,等,循环流化床锅炉理论设计与运行,北京,中国电力出版社,1998.
    [144] Todd S. Pugsley, Franco Berruti, A predictive hydrodynamic model for circulating fluidized bed risers, Powder Technology, 1996, 89(1):57-69.
    [145] Afsin Gungor, Nurdil Eskin, Hydrodynamic modeling of a circulating fluidized bed, Powder Technology, 2007,172 (1): 1–13.
    [146] V. Mathiesen, T. Solberg, B.H. Hjertager, An experimental and computational study of multiphase flow behavior in a circulating fluidized bed, International Journal of Multiphase Flow, 2000,26(3):387-419.
    [147] David Pallarès, Filip Johnsson, Macroscopic modelling of fluid dynamics in large-scale circulating fluidized beds, Progress in Energy and Combustion Science, 2006, 32(5-6):539-569.
    [148] Thrasyvoulos Panidis, Demosthenes D. Papailiou, The structure of two-phase grid turbulence in a rectangular channel: an experimental study, International Journal of Multiphase Flow, 2000, 26(8):1369-1400.
    [149] C. K. K. Lun, Numerical simulation of dilute turbulent gas–solid flows, International Journal of Multiphase Flow, 2000, 26(10):1707-1736.
    [150]徐耀兵,任驰,辛国华,410t/h循环流化床锅炉密相区高度的计算与应用,东北电力技术,2005,9:6-8.
    [151]程乐鸣,岑可法,倪明江等,循环流化床锅炉炉膛热力计算,中国电机工程学报,2002, 22(12):146-151.
    [152] G. L?ffler, S. Kaiser, K. Bosch, etc., Hydrodynamics of a dual fluidized-bed gasifier—Part I: simulation of a riser with gas injection and diffuser, Chemical Engineering Science, 2003, 58(18):4197-4213.
    [153] J.F.Davidson, Circulating fluidised bed hydrodynamics, Powder Technology, 2000, 113(3):249–260.
    [154] Young Tag Kim, Byung Ho Song, Sang Done Kim, Entrainment of solids in an internally circulating fluidized bed with draft tube, Chemical Engineering Journal, 1997, 66(2):105-110.
    [155] L. F. de Diego, P. Gayán, J. Adánez, Modelling of the flow structure in circulating fluidized beds, Powder Technology, 1995, 85(1):19-27.
    [156]王辉,姜秀民,刘建国等,石英砂流化床床料的磨损实验与灰色关联分析,化工学报,2006,57(5):1133-1137.
    [157]胡元中,王慧,邹鲲等,超滑和界面摩擦及耗散过程--关于摩擦机理微观研究的思考与展望,摩擦学学报,2000,20(4):313:316.
    [158]许中明,黄平,考虑接触界面材料微观结构与势能参数的滑动摩擦计算研究,摩擦学学报, 2006,26(2):159:163.
    [159]高红,郑颖人,冯夏庭,材料屈服与破坏的探索,岩石力学与工程学报,2006,25(12): 2515-2522.
    [160]戴雄杰,摩擦学基础,上海,上海科学技术出版社,1984.
    [161]赵阳升,冯增朝,万志军,试论岩体动力破坏的最小能量原理,岩石力学与工程学报,2003, 22(11):1781-1783.
    [162] Changfu You, Hailiang Zhao, Xuchang Xu, etc., Effect of spatial inhomogeneity and temporal fluctuation of particle distributions on interparticle collision rate in particulate flows, Powder Technology, 2007, 172(3):188-192.
    [163] R. C. Senior, J. R. Grace, Integrated particle collision and turbulent diffusion model for dilute gas-solid suspensions, Powder Technology, 1998, 96( 1,2) 48-78.
    [164]王芳,欧阳洁,张红平等,不等粒径流化床的硬球模拟,应用基础与工程科学学报,2005,13(3):238-246.
    [165]郑焕武,碰撞时间的定量计算,四川师范大学学报(自然科学版),2001,24 (3):307-309.
    [166]程易,魏飞,郑雨等,下行床气固两相流动计算流体力学模拟,化工学报,2000,51(3):344-352.
    [167]陈波,童培庆,瓮模型中多粒子动力学的研究,物理学报, 2005,54 (12):5554-5558.
    [168]焦照勇,马淑红,刘中山,对一个力学碰撞问题的讨论, COLLEGE PHYSICS(大学物理), 2006,25(3):27-29.
    [169]夏建新,韩鹏,水沙流中离散颗粒流动应力关系,力学学报,2004,36(2):213-217.
    [170]孙其诚,王光谦,沙粒起跃的动态模拟,中国沙漠,2001,21:17-21.
    [171] Elliot Martin A,范辅弼等译,煤利用化学,北京,化学工业出版社,1991,144-149,332-333.
    [172]张晶瑶,张凤鹏,马万昌等,加热温度变化对岩石强度的影响,金属矿山,1996,(12): 6-8.
    [173] Dacombe P., Pourkashanian M., Williams A, etc., Combustion-induced fragmentation behavior of isolated coal particles, Fuel, 1999, (78):1847-857.
    [174]李爱民,池涌,严建华等,大颗粒炭在流化床中燃烧的热应力破碎理论,煤炭学报,1998,23(2):208-211.
    [175] R. Chirone, L. Massimilla, P. Salatino, Comminution of carbons in fluidized bed combustion, Progress in Energy and Combustion Science, 1991, 17(4):297-326.
    [176] R. Chirone, L. Massimilla, Primary fragmentation in fluidized bed combustion of anthracites, Powder Technology, 1991, 64(3):249-258.
    [177] H.T Zhang,K.F. Cen,J.H. Yan,The fragmentation of coal particles during the coal combustion in a fluidized bed, Fuel, 2002, 81(14):1835-1840.
    [178]李之光,热力设备模型实验研究基础,北京,国防工业出版社,1973.
    [179] Cristóbal Cortés, Antonia Gil, Modeling the gas and particle flow inside cyclone separators, Progress in Energy and Combustion Science, 33( 2007):409-452.
    [180]罗晓兰,陈建义,时铭显,旋风分离器粒级效率计算方法,石油化工设备,1999.
    [181]李庆扬,王能超,易大义,数值分析(第3版),武汉,华中科技大学出版社,1986,204-208.
    [182]李斌,TEXACO水煤浆气化炉的建模及仿真研究[D],重庆,重庆大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700