用户名: 密码: 验证码:
SPH基本问题研究及其在高速水下物体流场模拟中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光滑粒子流体动力学(SPH)中,物质域由具有质量和体积的点(粒子)离散;跟踪每个粒子的运动,可得到物质构型的变化。因此计算介质大变形时,可避免基于网格算法常遇到的网格畸变。SPH常采用基于密度的求解过程,能方便处理连续介质力学中高速、超高压情况。
     高速水下物体,会导致超空穴。基于Euler描述研究空穴流的方法,主要包括势流理论和“流体输运方程结合两类空化模型”的方法。势流方法,不考虑空穴内汽体;这是因为汽体质量太小,其惯性对水流动力学条件影响很小。基于势流中边界元或面源法需要数值迭代得到空穴界面。第二种方法,考虑汽体与水流关系,因此能揭示更多空穴流图景,也需要数值迭代得到空穴界面;该类方法常基于压力的求解过程,处理速度尺度为1000 m·s~(-1)的高亚声速物体驱动的显著压缩流动,没有基于密度求解过程的算法方便。
     空穴表面是物质界面。界面在SPH中是这些界面上的粒子集合。因此SPH可自然跟踪物质界面。因此,若SPH能计算高速水下物体驱动的流动,则它可能会自然得到空穴发展。其基于密度求解的过程也能方便处理显著压缩流动。因此探索这样的工作是有必要的。本文面向于自编程实现SPH计算100 m·s~(-1)低亚声速和1000m·s~(-1)高亚声速的水下物体驱动的流动(简称高速驱动流动),并相应研究SPH几个基本问题——稳定性、固壁条件施加、后处理及空穴表面提取。
     本文的高速驱动流动计算模型中,固壁多,固壁折角多,运动与静止固壁位置关系复杂;这要求对复杂形状固壁,固壁条件施加算法统一、简便,否则程序通用性大大降低。而SPH对函数的近似在边界处被截断,即边界缺陷需要在施加边界条件时得到改善。但能改善该缺陷的镜像虚粒子法(Ghost Particle Method)与仿粒子法(Dummy Particle Method),对不同形状固壁,施加算法没有统一性,对复杂形状固壁,算法也不简便。本文提出简便性与通用性改善虚粒子方法(CUI-GPM),对折角和弯曲固壁,算法统一;并用于流动和热传导计算。高速驱动流动中,空穴导致流体与物体发生很大分离,应用CUI-GPM时,无法准确计算空穴回射流。于是提出DPM与GPM结合方法:DPM施加无滑移条件,物体速度直接赋予虚粒子;采用GPM思路,虚粒子的密度更新和流体相同;由此计算得到较符合实际的回射流。
     为提取SPH所得空穴界面以与空穴的理论形状对比,研究了SPH的后处理。SPH传统后处理方法,无法直接得到连续云图、等值线、流线,以及微积分运算和切片等,限制了其结果显示。本文考虑将粒子集网格化形成三角单元集,将粒子作为节点,利用FEM后处理技术实现SPH后处理与成熟后处理技术的链接。Delaunay三角化提供粒子集的网格化技术,但它在非凸区域粒子集上会得到不包含质量的空白单元。本文提出所谓“单元称重”法去除空白单元,保留下的单元作为后处理的有限单元。基于上述思路,可方便提取自由表面和超空穴界面。
     算法稳定性研究及其结果,为高速驱动流动计算提供参考依据。本文引入SPH矩阵格式研究作为粒子集的SPH稳定性。研究表明,张力不稳定的原因是采用空间坐标来标记粒子位置[72];也得到了Swegle关于张力不稳定性的充分条件。张力稳定必要条件,要求光滑长度因子(光滑长度比粒子间距)取在光滑函数一阶导数极值点;该取值同时也使光滑函数Fourier变换分量达到极大,同时也是光滑函数对光滑长度的极大值点。
     稳定性分析得到了满足张力稳定必要条件的数值声速。稳定必要条件指出应选择与流动相契合的物理模型,否则计算出现虚假压缩率。因此在高速驱动流动计算中,为水选择了合适的物态方程。对稳定必要条件的分析得知,误差频率应远小于时间积分频率,并据此得到了CFL条件的Courant数,为时间步长取值提供了依据。根据该必要条件,还得到流动压缩率和“误差频率与时间积分频率比值”的关系,并计算得到Monaghan[10]与Morris[95]提出的微可压流动的计算保持稳定时压缩率的变化范围,为考察高速驱动流动的计算稳定与合理,提供了参考。
     基于以上研究结果并应用于高速驱动流动的计算,本文得到了稳定的计算过程,流动压缩率保持在合理范围。SPH所得空穴、与独立膨胀原理和实验所得空穴形状一致,表明SPH计算高速驱动流动的适用性。计算显示,物体在水中启动时空穴尾部有明显回射流;而从发射筒射入水时,空穴尾部回射流较小,尾部界面近似垂直在物体表面。而物体后体的存在,使空穴相对变小。高亚声速与低亚声速下的空穴形态发展表明,显著压缩流动使空穴在长度方向不对称,并使空穴尺寸比流动不可压时更大,这符合既有的理论结果。
     本文实现了SPH计算高速水下物体流场的工作。相应提出的固壁条件施加算法,为利用SPH自编程计算“含较复杂形状的固壁”的问题提供了途径。相应提出的后处理方法,为SPH形成通用后处理器提供了可供实用的途径。算法稳定性研究,给出了时间步长、光滑长度取值及物理模型选择等方面的理论依据。
Smoothed Particle Hydrodynamics (SPH) discretizes the configuration by a set of particles with the properties of mass and volume. By tracing the motion of each particle, the variation history of the configuration could be derived. The mesh distortion, which occurs usually in the methods based on girds when they are applied to compute the large deformation in continuum mechanics, is thus avoided in SPH because of its meshless property. It also masters the high speed and hyperpressure problems in continuum mechanis well with a density-based algorithm.
     Supercavities are induced for the high speed underwater moving bodies. Two classes of methods based on the Euler formulation, i.e. potential theory and transportation equations with two kinds of cavitation models, are the two main ways for studying the supercavity flows. The potential theory neglects the vapor in the supercavity, because the mass in the cavity is so tiny that its inertial applies little effect on the dynamics of the water flow. Massive iterations are performed to seek the cavity surface in this method. The relationship between the vapor and water flows is included in the second type methods and it thus reveals much more characteristics in the cavity flows. Much more iterations are performed to derive the supercavity in the second type methods. The second type ones, which are mainly realized with the pressure-based algorithm, are relatively inconvenient, comparing with the ones with density-based algorithm, to process the flows with considerable compression.
     The supercavity surface, in fact, is the interface between mediums. Mediums’interface, in SPH, is regarded as a set of particles. Theoretically, SPH could conveniently and naturally provides the cavity’s development, if it could realize the flows driven by the high speed underwater bodies. Because it is performed with a density-based algorithm, it thus treats the considerable compression well in the flows. The work in this thesis, which is performed to numerically study the low-subsonic and high-subsonic flows driven respectively by underwater high speed bodies with speeds of 100 m·s~(-1) and 1000 m·s~(-1) (for simplicity, we’ll refrence it as high speed driven flows), is realized by the code developed by us with SPH. Along with the work, a basic problem, i.e. the stabitliy of SPH, is also studied, and two important techniques are proposed to implement the wall boundary conditions and to process the SPH data respectively. Especially, the supercavity surface could be easily extracted by the post-processing techniques proposed here.
     Complicate relative position between static and dynamic walls which have complex geometries exist in the computational models of the high speed driven flows. Too many walls with too many angles and relative motion between walls challenge the universality and simplicity of the implementation algorithm for the wall boudanry conditions. If the algorithm is restrict only to simple shape walls or changes for different shape walls, the universality of the complete SPH code is thus reduced rapidly. And the Boundary Deficience of SPH (BDS), i.e. the SPH approximation being truncated near the wall, requires a remedy when the boundary conditions are being implemented. However, the methods, i.e. the Ghost Particle Method (GPM) and Dummy Particle Method (DPM), which could remedy BDS, are neither inconvenient to be implemented on complex geometrical walls and neither universal for different shape walls. A Convenience and Universality Improved Ghost Particle Method (CUI-GPM) is thus proposed to universally treat the walls with angles or curvatures. Its applications in the fluids and heat conduction exhibit its feasibilities and reasonabilities. Regretfully, CUI-GPM encounters difficulties in the computations of high speed driven flows. Because the supercavity separates the fluid from the body, which arouse the errors in the interpolation of CUI-GPM, and re-entry jet at the tail of the supercavity could not be mastered well in SPH. Another boundary implementation algorithm, which combines the DPM and GPM, is thus advised. DPM realizes the non-slippery condition by directly assigning the body speed to the ghost particles, and GPM refreshes the density on ghost particles as that on fluid particles. With the latter route, the re-entry jets derived by SPH accords the practical ones.
     For extracting the supercavity surface and comparing it with the theoretical shape, the post-processing of SPH is studied. Traditional post-processing technique could not supply continuous color contours, continuous contour lines and streamlines, and slices of the datas, etc. A relatively new post-process technology is thus presented, which supplies a route to tansforme the SPH data into the FEM data, and the developed post-processing technology for FEM are employed for SPH. The Delaunay triangulation algorithm transforms the SPH particle sets into the meshes with a set of triangular elements. However, for the particle set on the non-convex domain, the Delaunay triangulation results some empty elements which contains no mass, these empty elements should be deleted from the original element set. Thus, a so called“Element Mass Weighting”Method (EMWM) is presented to delete those empty elements. And the rest elements with their nodes (particles) and the datas on them are employed as the FEM data to process the SPH data. The EMWM with Delaunay triangulation is very convenient to extract the supercavity’s surface.
     The stability analysis with its results supplies the basis for the computation of the high speed driven flows. The matrix form of SPH is imported to study the stability of the SPH particle set. The intrinsic reason of the Tensile Instability (TI) is found to be caused by the Euler coordinates of particles, and the sufficient condition of TI, which was ever given by Swegle, is also derived here. The Tensile Stability Prerequisite (TSP) requires the smoothing length factor (the ratio of smoothing length to the particle interval) equals the extreme point of the first order derivative of the smoothing function. The value of the smoothing factor is also found to be equal to the smoothing function’s extreme point with respect to the smoothing length, which also makes the Fourier tansformation of the smoothing function attain its extreme value.
     The TSP yields the value of the numerical sound speed. The TSP also requires that a correct and suitable physical model of the medium should be chosen for the flow otherwise the spurious compression occurs in the computation. Consequently, a proper state equation of the water is chosen in the computation of high speed driven flow. The implication of the TSP, i.e. the frequence of the error should be far smaller than that of the time integration, is also revealed and which yields the Courant number of CFL condition, which supplies the reasonable refrence to choose the time step size. It could consequently yield the flow compression that satisfies the stability prerequisite, which yields the empirical values of the flow compression from the studies of Monaghan[10] and Morris[95] for observing and checking the stability and reasonability of a computation case with weakly compression flows. This supplies the theoretical route to observe and check the reasonability of the computation case of the high speed driven flow.
     Based on the results derived above and with their application in the computation of the high speed driven flow, stable and reasonable computational cases are perfomed, during which the compression varies in a reasonable limit. The supercavity derived by SPH accords well with the ones given by the Principle of Independent Expansion of the Cross Sections of the Supercavity and experiments, which shows the feasibility of applying SPH to calculate the high speed driven flows. The numerical results also indicate that, the re-entry jet occurs obviously at the tails of the supercavities when the bodies start in the water, and that the re-entry jet is not obvious when the bodies start in a lauch canister and the cavity tail is almost perpendicular to the bodies’s surface. It can also be found that the length of the caity is reduced for the body with a longer afterbody. The asymmetry along the axis of the supercavity is found to be induced by the compression in the flow which also futher enlarges the size of the supercavity.
     The numerical studies of the flows driven by high speed underwater bodies are realized by SPH. The implementation algorithms of the wall boundary, which was proposed as a technique to realize the work above, relatively enable SPH to be conveniently developed for complex shapes walls in engineering. And the post-processing algorithms advised above supplies a practical route to realize a universal post-processor of SPH. And the stability analysis of SPH provides the information to construct and perform a reasonable and stable computation case.
引文
1张雄,刘岩.无网格法.北京:清华大学出版社& Springer. 2004:1~100
    2 G. R. Liu, M. B. Liu.光滑粒子流体动力学——一种无网格粒子法.韩旭,杨刚,强洪夫译.湖南大学出版社. 2005:1~300
    3张锁春.光滑质点流体动力学(SPH)方法(综述).计算物理. 1996, 13(4): 385~397
    4 Lucy L.B. A Numerical Approach to the Testing of Fusion Process. Astronomical Journal. 1977, 88:1013~1024.
    5 Ted Belytschko, Wing Kam Liu, Brian Moran.连续体和结构体的非线性有限元.庄茁译.清华大学出版社.2002:1~200
    6 ANSYS Inc. ANSYS FLUENT 12.0 Documentation. 2009.
    7傅德薰,马延文.计算流体力学.高等教育出版社. 2002. 1~100
    8 O.C. Zienkiewicz, R.L.Taylor.有限元方法(第三卷)流体动力学.符松,刘扬扬译.第5版.清华大学出版社. 2008:1~70
    9杨魏,刘树红,吴玉林.基于VOF方法的圆柱箱中液体晃动阻尼计算.力学学报. 2009, 41(6): 936~940
    10 J. J. Monaghan. Simulating Free Surface Flow with SPH. Journal of Computational Physics. 1994,110:399~406
    11 J. J. Monaghan. Gravity Currents and Solitary Waves. Physica D. 1996, 98:523~533
    12 Hui Sun. A Boundary Element Method Applied to Strongly Nonlinear Wave-Body Interaction Problems. PHD Thesis of Norwegian University of Science and Technology. 2007:1~100
    13 Michael Dean Neaves. Hypervelocity Underwater Projectile Calculations Using a Preconditioning Algorithm// 41st Aerospace Sciences Meeting and Exhibit. Reno, Nevada. AIAA 2003:1286.
    14张有为.固体火箭水下工作特性研究.中国科学技术大学博士学位论文. 2007:1~80
    15 Sukky JUN, Wing Kam Liu, Ted Belytschko. Explicit Reproducing Kernel Particle Methods for Large Deformation Problems. International Journal for Numerical Methods in Engineering. 1998, 41:137~166
    16周岱,陈思,董石麟,等.弹性力学静力问题的SPH方法.工程力学. 2008,25(9): 28~38
    17 Walter C. Welton, Stephen B. Pope. PDF Model Calculations of Compressible Turbulent Flows Using Smoothed Particle Hydrodynamics. Journal of Computational Physics. 1997, 134:150~168
    18 R. Issa, E. S. Lee, D. Violeau, et al. Incompressible Separated Flows Simulations with the Smoothed Particle Hydrodynamics Gridless Method. International Journal for Numerical Methods in Fluids. 2005, 47:1101~1106
    19 Leonardo Di G. Sigalotti, Jaime Klapp, Eloy Sira, et al. SPH Simulations of Time-Dependent Poiseuille Flow. Journal of Computational Physics. 2003,191: 622~638
    20 J. W. Swegle, D. L. Hicks, S.W.Attaway. Smoothed Particle Hydrodynamics Stability Analysis. Journal of Computational Physics. 1995, 116: 123~134
    21 Luca Massidda. ARMANDO, a SPH Code for CERN——Some theory, A short Tutorial, the Code Description and Some Examples. European Organization For Nuclear Research. CERN-AB-Note-2008-039-ATB. 2008
    22 Oscar Agertz, Ben Moore, etc. Fundamental Differences between SPH and Grid Methods. Mon. Not. R. Astron. Soc. 2006: Arxiv:astro-ph/0610051v1 2OCT
    23 Paul W. Cleary, J. J. Monaghan. Conduction Modelling Using Smoothed Particle Hydrodynamics. Journal of Computational Physics. 1999, 148:227~264
    24高永琪,顾建农.超空泡鱼雷有关流体动力分析.海军工程大学学报. 2005, 17(3): 57~60
    25谭顺谋.水下快车—美国研制超高速潜艇.舰艇博览. 2007, 02A:33~34
    26张学伟.超空泡形态特性的试验与数值模拟研究.哈尔滨工业大学博士学位论文..2008:1~100
    27曹伟,魏英杰,王聪,等.超空泡技术现状、问题与应用.力学进展. 2006, 36 (4): 571~579
    28王献孚.空化泡和超空化泡流动理论及应用.国防工业出版社. 2009:1~100
    29 Inanc Senocak. Computational Methodology For the Simulation of Turbulent Cavitating Flows. PHD Thesis of University of Florida. 2002:1~100.
    30穆利军,蔡远文.国外战略导弹的现状及发展趋势.兵工自动化. 2007, 26(4):L03~L07
    31予阳.海底刺出的长矛——美俄潜射导弹比较.国际瞭望.2003,466(5)
    32倪火才.潜载导弹水下发射技术的发展趋势分析.舰载武器. 2001, 1:8~16
    33蔡廷湘.水下点火与水下发射.舰载武器. 1999, 4:7~12
    34罗金玲,何海波.潜射导弹的空化特性研究.战术导弹技术. 2004, 3:14~17
    35罗金玲,毛鸿羽.导弹出水过程中气/水动力学的研究.战术导弹技术. 2004, 4:23~25
    36 Yong-sheng Cheng, Hua Liu. Mathematical Modeling of Fluid Flows for Underwater Missile Launch//Conference of Global Chinese Scholars on Hydrodynamics: 492~497. hliu@sjtu.edu.cn.
    37张有为,王晓宏.导弹水下点火推力峰值问题的数值研究.应用力学学报. 2007, 24(1):298~301
    38 Larry D. Libersky, P. W. Randles, Ted C. Carney, etc. Recent Improvements in SPH Modeling of Hypervelocity Impact. International Journal of Impact Engineering. 1997, 20:525~532.
    39 Lucio Mayer, Thomas Quinn, James Wadsley, Joachim Stadel. Formation of Giant Planets by Fragmentation of Protoplanetary Disks. Science. 2002, 298:1756~1758
    40 J. K. Chen, J. E. Beraun, Ted. C. Carney. A Corrective Smoothed Particle Method for Boundary Value Problems in Heat Conduction. International Journal for Numerical Methods in Engineering. 1999, 46:231~252
    41 J. J. Monaghan. SPH without a Tensile Instability. Journal of Computational Physics. 2000, 159:290~311.
    42 Larry D. Libersky, Petschek A.G. Smooth Particle Hydrodynamics with Strength of Materials. Advances in the Free Lagrange Method, Lecture Notes in Physics. 1990, 395:248~257.
    43 T. Rabczu, kS. P. Xiao, M. Sauer. Coupling of Mesh-Free Methods with Finite Elements: Basic Concepts and Test Results. Communications in Numerical Methods in Engineering. 2006, 22:1031~1065.
    44王吉.光滑粒子法与有限元的耦合算法及其在冲击动力学中的应用.中国科学技术大学博士学位论文. 2006:1~80
    45 V. Roubtsova, R. Kahawita. The SPH Technique Applied to Free Surface Flows. Computers & fluids. 2006, 35:1359~1371
    46 Songdong Shao. Incompressible SPH Simulation of Wave Breaking and Overtopping with Turbulence Modeling. International Journal for Numerical Methods in Fluids. 2006, 50:597~621
    47 D. Violeau, R. Issa. Numerical modelling of complex Turbulent Free-Surface Flows with the SPH Method: an Overview. International Journal for Numerical Methods in Fluids. 2007, 53:277~304.
    48 J.J. Monaghan, A. Kocharyan. SPH simulation of multi-phase flow. Computer Physics Communications. 1995, 87:225~235
    49 X.Y. Hu, N.A. Adams. A multi-phase SPH method for macroscopic and mesoscopic flows. Journal of Computational Physics. 2006, 213:844~861
    50 M. Omang, S. B?rve, J. Trulsen. Shock Collisions in 3D Using anAxi-Symmetric Regularized Smoothed Particle Hydrodynamics Code. Shock Waves. 2007,16:467~475.
    51 M. Omang, S. B?rve, J. Trulsen. SPH in spherical and cylindrical coordinates. Journal of Computational Physics. 2006, 213:391~412
    52 J. Bonet, Miguel X. Rodriguez-Paz. Hamiltonian Formulation of the Variable-h SPH Equations. Journal of Computational Physics. 2005, 209:541~558.
    53 J. Bonet, S. Kulasegaram, M.X. Rodriguez-Paz, etc. Variational Formulation for the Smooth Particle Hydrodynamics (SPH) Simulation of Fluid and Solid Problems. Computer Methods in Applied Mechanics and Engineering. 2004, 193:1245~1256.
    54 J. J. Monaghan, D. J. Price. Variational Principles for Relativistic Smoothed Particle Hydrodynamics. Mon. Not. R. Astron. Soc. 2001, 328:381~392.
    55 B. Ben Moussa and J. P. Vila. Convergence of SPH Method for Scalar Nonlinear Conservation Laws. SIAM Journal on Numerical Analysis. 2000, 37(3): 863~887.
    56 R. Di Lisio, E. Grenier, M. Pulvirenti. The Convergence of the SPH Method. Computers Math. Applic. 1998, 35(1/2):95~102.
    57 Ted. Belytschko, Y. Krongauz, J. Dolbow, et al. On the Completeness of Meshfree Particle Methods. International Journal for Numerical Methods in Engineering. 1998, 43:785~819
    58 M. B. Liu, G. R. Liu. Restoring Particle Consistency in Smoothed Particle Hydrodynamics. Applied Numerical Mathematics. 2006,56:19~36.
    59 M. B. Liu, G. R. Liu, K. Y. Lam. Constructing Smoothing Functions in Smoothed Particle Hydrodynamics with Applications. Journal of Computational and Applied Mathematics. 2003, 155:263~284
    60 J. K. Chen, J. E. Beraun, C. J. Jih. Completeness of Corrective Smoothed Particle Method for Linear Elastodynamics. Computational Mechanics. 1999, 24:273~285
    61周进雄,李梅娥,张红艳,等.再生核质点法研究进展.力学进展.2002, 32 (4):535~544.
    62郑兴,段文洋.光滑粒子流体动力学二阶算法精度研究.水科学进展. 2008, 19(6):821~827.
    63崔青玲.无网格RKPM法及其在轧制中的应用.东北大学博士学位论文. 2005:1~80
    64秦义校,程玉民.温度场分析的重构核粒子边界无单元法.机械工程学报. 2008, 44(6):95~100.
    65 L. Cueto-Felgueroso, I. Colominas, G. Mosqueira, etc. On the Galerkinformulation of the Smoothed Particle Hydrodynamics Method. International Journal for Numerical Methods in Engineering. 2004, 60:1475~1512.
    66 S. Wong, Y. Shie. Galerkin based Smoothed Particle Hydrodynamics. Computers and Structures. 2009, doi:10.1016/j.compstruc.2009.04.010
    67 J. Bonet, S. Kulasegaram. Correction and Stabilization of Smooth Particle Hydrodynamics Methods with Applications in Metal Forming Simulations. International Journal for Numerical Methods in Engineering. 2000, 47: 1189~1214.
    68 Gary A. Dilts. Moving-Least-Squares-Particle Hydrodynamics—I. Consistency and Stability. International Journal for Numerical Methods in Engineering. 1999, 44:1115~1155.
    69李声远.平滑粒子流体动力学(SPH)方法的稳定性. 2003年度航天第十信息网学术交流会. 2003
    70傅学金,强洪夫,杨月诚.固体介质中SPH的拉伸不稳定性问题研究进展.力学进展. 2007, 37:375~386.
    71 Dinshaw S. Balsara. Von Neumann Stability Analysis of Smoothed Particle Hydrodynamics-Suggestions for Optimal Algorithms. Journal of Computational Physics. 1995, 121:357~372
    72 Ted Belytschko, Yong Guo, Wing Kam Liu, et al. A Unified Stability Analysis of Meshless Particle Methods. International Journal for Numerical Methods in Engineering. 2000, 48:1359~1400
    73 J. P. Morris. A study of the Stability Properties of Smoothed Particle Hydrodynamics// Proceedings of The Astronomical Society of Australia. Australia. 1995:Astro-ph/9503124 3 Apr 1995.
    74 C. T. Dyka, R. P. Ingel. An Approach for Tension Instability in Smoothed Particle Hydrodynamics (SPH). Computers & Structures. 1995, 57:573~580.
    75 R. Vignjeic, J. Campell, Larry. D. Libersky. A Treatment of Zero-Energy Modes in the Smoothed Particle Hydrodynamics Method. Computer Methods in Applied Mechanics and Engineering, 2000, 184:67~85
    76 J. K. Chen, J. E. Beraun, C. J. Jih. An Improvement for Tensile Instability Smoothed Particle Hydrodynamics. Computational Mechanics. 1999, 23: 279~287
    77 Leonardo Di G.Sigalotti, Hender Lopez. Adaptive Kernel Estimation and SPH Tensile Instability. Computers & mathematics with applications. 2007, doi: 10. 1016/j.camwa.2007.03.007.
    78 D. L. Hicks, L. M. Liebrock. SPH Hydrocodes Can Be Stabilized with Shape-Shifting. Computers and Mathematics with Applications. 1999,38:1~16
    79 G. Guenther, D. L. Hicks, J. W. Swegle. Conservative Smoothing Versus Artificial Viscosity. Sandia Report. 1994, SAND94-1853.UC-705.
    80 M. B. Liu, G. R. Liu, K. Y. Lam. Adaptive Smoothed Particle Hydrodynamics for High Strain Hydrodynamics with Material Strength. Shock Waves. 2006, 15(1):21~29
    81 Anatoly N. Parshikov, Stanislav A. Medin. Smoothed Particle Hydrodynamics Using Interparticle Contact Algorithms. Journal of Computational Physics. 2002, 180:358~382
    82 S.-H.Cha, A. P. Whitworth. Implementations and tests of Godunov-type particle hydrodynamics. Mon. Not. R. Astron. Soc. 2003, 340: 73~90
    83徐志宏,汤文辉,张若棋.改进的接触算法及其在光滑粒子流体动力学中的应用.国防科学技术大学学报. 2006,28(4):32~36
    84沈智军,吕桂霞,沈隆钧. SPH方法中的Riemann解与人工粘性.计算数学. 2006, 28(4):433~448
    85 Jiannong Fang, Aurle Parriaux, Martin Rentschler, et al. Improved SPH Methods for Simulating Free Surface Flows of Viscous Fluids. Applied Numerical Mathematics. 2008: doi:10.1016/j.apnum.2008.02.003.
    86 M. B. Liu, G. R. Liu, K. Y. Lam. A One-Dimensional Meshfree Particle Formulation for Simulating Shock Waves. Shock Waves. 2003, 13: 201~211
    87 Moubin Liu, Paul Meakin, Hai Huang. Dissipative Particle Dynamics with Attractive and Repulsive Particle-Particle Interactions. Physics of Fluids .2006, (18): 017101
    88 Charles E. Knapp. An Implicit Smooth Particle Hydrodynamic Code. PHD thesis of University of New Mexico. LosAlamos National Laboratory. 2000: 1~100
    89 A.K. Chaniotis, C.E. Frouzakis J.C. Lee, et al. Remeshed Smoothed Particle Hydrodynamics for the Simulation of Laminar Chemically Reactive Flows. Journal of Computational Physics. 2003,191:1~17
    90强洪夫,高巍然.完全变光滑长度SPH法及其实现.计算物理. 2008, 28 (5):569~575
    91 P. W. Randles, L. D. Libersky. Normalized SPH with stress points. International Journal for Numerical Methods in Engineering. 2000, 48: 1445~ 1462
    92 L. D. Libersky, P. W. Randles. Boundary Conditions In A Meshless Staggared Particle Code. 1998: LA-UR-98-590.
    93 J. Campbell, R. Vignjevic, L. Libersky. A Contact Algorithm for Smoothed Particle Hydrodynamics. Computer Methods in Applied Mechanics andEngineering. 2000,184:49~65
    94 R. Vignjevic, T. De Vuyst and J. Campbell. The Use of a Homogeneous Repulsive Force for Contact Treatment in SPH. Fifth World Congress on Computational Mechanics. Austria. 2002.
    95 J. P. Morris, Patrick J. Fox, Yi Zhu. Modeling Low Reynolds Number Incompressible Flows using SPH. Journal of Computational Physics. 1997, 136: 214~226
    96 Fangming Jiang, Monica S.A. Oliveira, Antonio C.M. Sousa. SPH Simulation of Transition to Turbulence for Planar Shear Flow Subjected to a Streamwise Magnetic Field. Journal of Computational Physics. 2006, 217: 485~501.
    97 Angela Ferrari, Michael Dumbser, Eleuterio F. Toro, etc. A new 3D Parallel SPH Scheme for Free Surface Flows . Computers & Fluids, 2009,38:1203-1217
    98 F. Jiang, M. S. A. Oliveira, A. C. M. Sousa. SPH Simulation of Low Reynolds Number Planar Shear Flow and Heat Convection. Mat.-wiss. u. Werkstofftech. 2005, 36(10): DOI: 10.1002/mawe.200500921.
    99 Riadh Ata and Azzeddine Soulaimani. A Stabilized SPH Method for Inviscid Shallow Water Flows. International Journal for Numerical Methods in Fluids. 2005, 47:139~159
    100 Paul Cleary, Joseph Ha, Vladimir Alguine, et al. Flow Modelling in Casting Processes. Applied Mathematical Modelling. 2002, 26:171~190
    101 J. J. Monaghan, A. Kos, N. Issa. Fluid Motion Generated by Impact. Journal of waterway, Port Coastal and Ocean Engineering. 2003, DOI: 10. 1061 /(ASCE) 0733-950X(2003)129:6(250)
    102 J. Kajtar, J. J. Monaghan. SPH Simulations of Swimming Linked Bodies. Journal of Computational Physics. 2008, 227:8568~8587
    103 Limin Wang, Wei Ge, Jinghai Li. A New Wall Boundary Condition in Particle Methods. Computer Physics Communications. 2006, 174: 386~390
    104 M. Omang, S. B?rve, J. Trulsen. Numerical Simulations of Shock Wave Reflection Phenomena in Non-Stationary Flows Using Regularized Smoothed Particle Hydrodynamics (RSPH). Shock Waves. 2006, 16:167~177
    105 S. Kulasegaram, J. Bonet, R. W. Lewis, etc. High Pressure Die Casting Simulation Using a Lagrangian Particle Method. Communication in Numerical Methods in Engineering. 2003, 19:679~687
    106 J. Feldman, J. Bonet. Dynamic Refinement and Boundary Contact Forces in SPH with Applications in Fluid Flow Problems. International Journal for Numerical Methods in Engineering. 2007:DOI: 10.1002/nme.2010.
    107 A. Colagrossi, G. Colicchio, D. Le Touze. Enforcing Boundary Conditions inSPH Applications Involving Bodies with Right Angles. SPHERIC–Smoothed Particle Hydrodynamics European Research Interest Community. Second International Workshop. Madrid .2007.
    108 Mehmet Yildiz, Afzal Suleman. SPH with Improved Ghost Particle Boundary Treatment. SPHERIC–Smoothed Particle Hydrodynamics European Research Interest Community. Second International Workshop, Madrid. 2007.
    109 E.-S. Lee, C. Moulinec, R. Xu, et al. Comparisons of Weakly Compressible and Truly Incompressible Algorithms for the SPH Mesh Free Particle Method. Journal of Computational Physics. 2008, 227:8417~8436
    110毛益明,汤文辉.自由表面流动问题的SPH方法数值模拟.解放军理工大学学报(自然科学版). 2001, 2(5):92~94
    111张键,陆利蓬,刘恩洲. SPH方法在溃坝流动模拟中的应用.自然科学进展. 2006,16(10):1326~1330
    112李梅娥,周进雄.不可压流体自由表面流动的SPH数值模拟.机械工程学报. 2004,40(3):5~9
    113 Songdong Shao, Edmond Y.M. Lo. Incompressible SPH Method For Simulating Newtonian and Non-Newtonian flows with a Free Surface. Advances in Water Resources .2003, 26:787~800.
    114田建辉,龙述尧,韩旭,杨刚.在纳观域采用光滑粒子法求解泊肃叶流问题.湘潭大学自然科学学报. 2006, 28(4):79~84
    115 M. B. Liu, G. R. Liu. Meshfree particle simulation of micro channel flows with surface tension. Comput Mech. 2005,35: 332~341
    116 J.J. Monaghan, Mark Thompson, Kerry Hourigan. A Simulation of Fixed and Moving Jets. International Colloquium on Jets, Wakes and Shear Layers. Melbourne , Australia.18-20Aprial, 1994.
    117 S.E. Hieber, P. Koumoutsakos. An Immersed Boundary Method for Smoothed Particle Hydrodynamics of Self-Propelled Swimmers. Journal of Computational Physics. 2008, 227:8636~8654
    118 David Amdahl. Topics in SPH// Workshop on Advances in Smooth Particle Hydrodynamics. Los Alamos National Laboratory. September 21-23, 1993.
    119 Chih-Wei Chiu, Jung-Hong Chuang, Cheng-Chung Lin, etal. Modeling Highly- Deformable Liquid. National Chiao Tung University. TaiWan. jhchuang @csie.nctu.edu.tw.
    120 G. Oger, M. Doring, B. Alessandrini, etc. Two-Dimensional SPH Simulations of Wedge Water Entries. Journal of Computational Physics.2006. 213:803~822.
    121 Daniel Price. Visualisation of SPH data using SPLASH-v1.9.1. July 11 2007.
    122 John Biddiscombe, David Graham, Pierre Maruzewski. InteractiveVisualization and Exploration of SPH Data.// SPHERIC–Smoothed Particle Hydrodynamics European Research Interest Community. Second International Workshop, Madrid. 2007.
    123文建波,周进雄,张红艳,张陵.基于Delaunay三角化的无网格法计算结果后处理.应用力学学报. 2003.4(20),600~601
    124田仲可.基于面片句柄对象的无网格法可视化研究.计算机工程与设计. 2008, 29(13): 3513~3515
    125史宝军,袁明武,陈永强.无网格方法数值结果的可视化方法与实现.工程力学. 2004. 21(6): 51~55
    126柳有权,刘学慧,朱红斌,吴恩华.基于物理的流体模拟动画综述.计算机辅助设计与图形学学报. 2005. 17(12): 2581~2589.
    127 Paul Rosenthal,Stephan Rosswog, Lars Linsen. Direct Surface Extraction from Smoothed Particle Hydrodynamics Simulation Data. School of Engineering and Science of the Jacobs University. Bremen, Germany. { p.rosenthal, s.rosswog, l.linsen } @ iu-bremen.de
    128 Marcus Vesterlund. Simulation and Rendering of a Viscous Fluid using Smoothed Particle Hydrodynamics. Master Thesis of UmU-VRlab. 3rd December 2004:1~50
    129 G. Ala, E. Francomano, A. Tortorici, et al. Smoothed Particle ElectroMagnetics: A Mesh-Free Solver for Transients. Journal of Computational and Applied Mathematics. 2006,191:194-205
    130 J. J. Monaghan, A. Kos. Scott Russell’s Wave Generator. Physics of Fluids. 2000,12(3):622~630
    131 A. Souto Iglesias, L. Perez Rojas, R. Zamora Rodriguez. Simulation of Anti-Roll Tanks and Sloshing Type Problems with Smoothed Particle Hydrodynamics . Ocean Engineering. 2004, 31:1169~1192
    132 G. L. Vaugan, T. R. Healy, K. R. Bryan, etc. An SPH Wave Tank. Civil Engineering in the Oceans. 2006, 6:95~107
    133刘瑛琦.基于SPH方法的数值波浪水槽研究.河海大学硕士学位论文. 2006: 1~60
    134 M. Gomez-Gesteira, D. Cerqueiro, C. Crespo, et al. Green Water Overtopping Analyzed with a SPH Model. Ocean Engineering. 2005, 32:223~238
    135 B Cartwright, J Xia, S Cannon, etc. Motion Prediction of ships and Yachts by Smoothed Particle Hydrodynamics// 2nd High Performance of Yacht Design Conference. Auckland. 14-16 February, 2006.
    136龚凯,刘桦,王本龙. SPH固壁边界处理方法的改进.力学季刊. 2008, 29 (4):507~514
    137杜小弢,吴卫,龚凯,等.二维滑坡涌浪的SPH方法数值模拟.水动力学研究与进展. 2006, 21(5):579~586
    138 B. Ataie-Ashtiani,G. Shobeyri. Numerical Simulation of Landslide Impulsive Waves by Incompressible Smoothed Particle Hydrodynamics. International Journal for Numerical Methods in Fluids. 2008, 56:209~232.
    139 Carla Antoci, Mario Gallati, Stefano Sibilla. Numerical Simulation of Fluid–Structure Interaction by SPH. Computers and Structures. 2007: doi: 10.1016 / j. compstruc. 2007. 01.002
    140 Ashkan Rafiee, Krish P. Thiagarajan. An SPH Projection Method for Simulating Fluid-Hypoelastic Structure Interaction. Computer Methods in Applied Mechanics and Engineering. 2009, 198:2785~2795
    141 P. Kristof, B. Bene, J. Krivanek, etc. Hydraulic Erosion Using Smoothed Particle Hydrodynamics. EUROGRAPHICS. 2009. {pkristof| bbenes| ostava} @purdue. edu, jaroslav@graphics.cornell.edu
    142 D. Violeau, C. Buvat, K. Abed-Meraim, et al. Numerical Modelling of Boom and Oil Spill with SPH. Coastal Engineering. 2007,54(12):895~913
    143 Songdong Shao. Incompressible SPH Simulation of Water Entry of a Free-Falling Object. International Journal for Numerical Methods in Fluids. 2008: Doi: 10.1002/fld.1813
    144 R. A. Dalrymple, B.D. Rogers. Numerical Modeling of Water Waves with the SPH Method. Coastal Engineering. 2006, 53 141~147
    145李强,蔡体敏,何国强,等.液滴碰撞和聚合模型研究.应用数学与力学. 2006, 27(1):60~66
    146 Y. Melean, L.Di G. Sigalotti, A. Hasmy. Modeling the Dynamics of Liquid Drops with SPH. Revista Mexicana De Fisicas. 2006, 52 (3) 38~41
    147 M.Y. Zhang, H. Zhang, L. L. Zheng. Simulation of Droplet Spreading, Splashing and Solidification using Smoothed Particle Hydrodynamics Method. International Journal of Heat and Mass Transfer.2008, 51:3410~3419
    148 Hender Lopez, L. Di G. Sigalotti. Oscillation of Viscous Drops with Smoothed Particle Hydrodynamics. Physical Review E 73. 2006,051201:1~11
    149 J.P. Morris, Y. Zhu, P.J. Fox. Parallel Simulations of Pore-Scale Flow Through Porous Media. Computers and Geotechnics .1999, 25:227~246
    150 Yi Zhu,P. J. Fox. Simulation of Pore-Scale Dispersion in Periodic Porous Media Using Smoothed Particle Hydrodynamics. Journal of Computational Physics.2002, 182, 622~645
    151 M. Ellero, R.I. Tanner. SPH Simulations of Transient Viscoelastic Flows atLow Reynolds Number. Journal of Non-Newtonian Fluid Mech. 2005, 132: 61~72
    152 M. X. Rodriguez-Paz, J. Bonet. A Corrected Smooth Particle Hydrodynamics Method for the Simulation of Debris Flows [J]. Wiley Periodicals, Inc. 2003. DOI 10.1002/num.10083.
    153 D. J. Price, J. J. Monaghan. Smoothed Particle Magnetohydrodynamics–I. Algorithm and Tests in One Dimension. Mon. Not. R. Astron. Soc. 2004, 348: 123~138
    154 Nobuo Matsuda, Ryo Kawabuchi, Yoshihiro Kajimura et al. Improvement of Thrust Efficiency of Laser Fusion Rocket with Shaped Target// The fifth International Conference on Inertial Fusion Sciences and Applications, 2007: doi:10.1088/1742-6596/112/4/042079. Journal of Physics: Conference Series 112 (2008) 042079.
    155邓嘉胤,杨健,王乐勤,等.光滑粒子动力学方法的固液二相流研究.浙江大学学报(工学版). 2007,41(5):853~858
    156 J. P. Morris. Simulating Surface Tension with Smoothed Particle Hydrodynamics. International Journal for Numerical Methods in Fluids. 2000, 33: 333~353
    157 Andrea Colagrossi, Maurizio Landrini. Numerical Simulation of Interfacial flows by Smoothed Particle Hydrodynamics . Journal of Computational Physics. 2003, 191 :448~475
    158韩旭,杨刚,龙述尧. SPH方法在两相流动问题中的典型应用.湖南大学学报(自然科学版). 2007, 34(1):28~32
    159徐立. R-T不稳定性非线性发展和SPH模拟.中国工程物理研究院博士论文. 2002:1~60
    160汤文辉,毛益明. Rayleigh-Taylor不稳定性的SPH模拟.国防科技大学学报. 2004, 26(1):21~23
    161 D. J. Price. Modelling Discontinuities and Kelvin-Helmholtz Instabilities in SPH. 2007: arxiv:0709.2772v2[astro-ph] 19 sep 2007.
    162 Matthias Muller, Simon Schirm, Matthias Teschner. Interactive Blood Simulation for Virtual Surgery Based on Smoothed Particle Hydrodynamics. Technology and Health Care. 2004,12:25~31
    163 Witold Dzwinel. Modeling of Blood Clotting in Capillary Vessels Due to High Acceleration. VECPAR. Valencia, Spain. 2004. AGH University of Science and Technology.
    164 Yeshitila Gebremichael, Gary S. Ayton, Gregory A. Voth. Mesoscopic Modeling of Bacterial Flagellar Microhydrodynamics. Biophysical Journal.2006, 91:3640~3652
    165徐立,孙锦山.一维激波管问题的SPH模拟.计算物理. 2003,20(2):153~156
    166 M. B. Liu, G. R. Liu, Z. Zong, et al. Computer Simulation of High Explosive Explosion Using Smoothed Particle Hydrodynamics Methodology. Computers & Fluids. 2003, 32 : 305~322
    167姚雄亮,于秀波,张阿漫,等.基于SPH方法的水下爆炸初始爆轰过程研究.中国舰船研究. 2008, 3(2):7~10
    168 M. B. Liu, G. R. Liu, K. Y. Lam, et al. Smoothed Particle Hydrodynamics for Numerical Simulation of Underwater Explosion. Computational Mechanics. 2003, 30 :106~118
    169宗智,邹丽,刘谋斌,等.模拟二维水下爆炸问题的光滑粒子(SPH)方法.水动力学研究与进展. 2007, 22(1):61~67
    170 J. W. Swegle, S. W. Attaway. On the Feasibility of Using Smoothed Particle Hydrodynamics for Underwater Explosion Calculations. Computational Mechanics. 1995, 17:I51~168
    171杨刚,韩旭,龙述尧.应用SPH方法模拟近水面爆炸[J].工程力学.2008, 25(4): 204~213
    172周建辉,孙新利,高巍然,等.基于修正SPH方法的爆轰波绕射传播的数值模拟.火炸药学报. 2009,32(1):66~73
    173曾东,成传,贤燕瑛. SPH技术在复合材料高速冲击响应问题中的应用.北京航空航天大学飞机设计研究所.
    174金宏彬.纤维束冲击拉伸的数值模拟.东华大学博士学位论文.2005:1-70
    175贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用.计算物理. 1997, 14(2):155~166
    176齐振伟,蔡清裕.运用率相关连续损伤模型及FE-SPH模拟混凝土侵彻.弹箭与制导学报. 2008.28(2):87~100
    177丁桦,龙丽平,伍彦峰. SPH方法在模拟线弹性波传播中的运用.计算力学学报. 2005, 22(3):320~325
    178卞梁,王肖钧,肖卫国,等.应力波和层裂计算中的光滑粒子法.中国科学技术大学学报. 2007, 37(7):706~723
    179张妹慧,汪继文. SPH法中初始时粒子配置的分析.计算机技术与发展. 2007, 17(6):36~38
    180倪国喜,王瑞利,林忠,等.任意区域上的粒子均匀分布方法.计算力学学报. 2007, 24(4):408~413
    181 Harald Riffert, Heinz Herold, Olaf Flebbe, et al. Numerical Aspects of theSmoothed Particle Hydrodynamics Method for Simulating Accretion Disks. Computer Physics Communications .1995, 89 :1-16
    182 J. Waltz, G. L. Page, S. D. Milder, et al. A Performance Comparison of Tree Data Structures for N-Body Simulation. Journal of Computational Physics. 2002,178:1~14
    183 C. Lia, G. Carraro. Parallel Tree-SPH: A Tool for Galaxy Formation. Astrophysics and Space Science. 2001, 276:1049~1056
    184张晨明,刘瑛琦,李同飞,等. SPH中的内外单元粒子搜索技术.水动力学研究与进展. 2008, 23(3):275~280
    185 Richard J. Goozee, Peter A. Jacobs. Distributed and Shared Memory Parallelism with a Smoothed Particle Hydrodynamics Code. Mathematical Soc. 2003: ANZIAM J. 44 (E) ppC202–C228, 2003. Austral.
    186王裴,洪滔.三维光滑粒子流体动力学并行计算程序.计算物理. 2006.23(4):431~434
    187 G. V. Logvinovich. Developed Cavitation. // Hydrodynamics of flows with free boundaries. Chapter5. Translated by Kiev, Naukova Dumka. 1969:114~135
    188 A. D. Vasin. The Principle of Independence of the Cavity Sections Expansion (Logvinovich’s Principle) as the Basis for Investigation on Cavitation Flows. //Supercavitating Flows. Rto Lectures Series 005. Research and Technology Organisation of North Atlantic Treaty Organisation. 2002
    189 Vladimir N. Semenenko. Artificial Supercavitation. Physics and Calculation. //Supercavitating Flows. Rto Lectures Series 005. Research and Technology Organisation of North Atlantic Treaty Organisation. 2002
    190 K. V. Rozhdestvensky,G. M. Fridman. Supercavitating Nonlinear Flow Problems: Matched Asymptotics. //Supercavitating Flows. Rto Lectures Series 005. Research and Technology Organisation of North Atlantic Treaty Organisation. 2002
    191 G.M. Fridman, A. S. Achkinadze. Review of Theoretical Approaches to Nonlinear Supercavitating Flows. //Supercavitating Flows. Rto Lectures Series 005. Research and Technology Organisation of North Atlantic Treaty Organisation. 2002
    192杨洪澜.非定常超空泡流绕流研究.哈尔滨工业大学博士学位论文. 2007:1~100
    193 Vladimir N. Semenenko. Dynamic Processes of Supercavitation and Computer Simulation. //Supercavitating Flows. Rto Lectures Series 005. Research and Technology Organisation of North Atlantic Treaty Organisation. 2002
    194 E.V. Paryshev. Mathematical Modeling of Unsteady Cavity Flows.// FifthInternational Symposium on Cavitation(Cav2003), Osaka, Japan, Cav03- OS- 7- 014
    195 S. A. Kinnas, H. Sun. Numerical Analysis of Flows Around the Cavitating Hydrofoil. //In the 5th International Symposium On Cavitation(CAV2003). Oska, Japan. 2003, Cav03-OS-1-010.
    196 Sun Hong, S.A.Kinnas. Simulation of Sheet cavitation on Propulsor Blades Using a Viscous/Inviscid Interactive Method. Fifth International Symposium on Cavitation. Wageningern, The Netherlands. 2006, CAV2006-130.
    197杨洪澜.分离点已知的二维水翼超空泡形状研究.哈尔滨商业大学学报(自然科学版). 2006, 22(5):43~59
    198 Y. Delannoy, J. L. Kuent. Two Phase Flow Approach in Unsteady Cavitation Modeling. // Cavitation and Multiphase Flow Forum, ASME-FED. 1990, 98:153~158
    199 H.W. Hoeijmakers, M.E.Jasssens., W. Kwan. Numerical Simulation of Sheet Cavitation. 3rd International Symposium on Cavitation, Grenoble, France. 1998.
    200 Y. Chen, S.D.Heister. Modeling Hydrodynamic Non-Equilibrium in Bubbly and Cavitating Flows. Journal of Fluids Engineering. 1995, 118:172~178
    201 B. R. Shin, Y. Wata., T. Ikohagi. Numerical Simulation of Unsteady Cavitating Flows Using a Homogeneous Equilibrium Model. Comput Mech. 2003, 30: 388~395
    202王国玉,方韬,曹树良,等.非定常粘性空化流动模型及数值模拟.工程热物理学报. 2004, 25:783~785
    203 R. F. Kunz, D.A. Boger, D.R. Stinebring, et al. A Preconditioned Navier-Stokes Method for Two Phase Flows with Application to Cavitation. Compute Fluids. 2002, 29:849~875
    204 I. Senocak, W.shyy. Evaluation of Cavitation Models for Navier-Stokes Computations. FEDSM2002-31011, Proc. Of 2002 ASME Fluids Engineering Division Summer Meeting Montreal. 2002.
    205郭建红,鲁传敬,陈瑛,潘展程.基于输运方程类空化模型的通气空泡流数值模拟.力学季刊. 2009, 30(3): 378~384
    206陈瑛,鲁传敬,吴磊.三维小空化数空泡流数值方法.计算物理. 2008, 25(2):263~271
    207王海斌,张嘉钟,王聪,等.加速度对自然超空泡特性影响的数值仿真研究.工程力学. 2007, 24(1):18~22
    208黄海龙.超空泡航行体绕流三维数值模拟.哈尔滨工业大学博士学位论文.2008:1~70
    209 Chad E. Sparks, Ronald L. Hinrichsen. Comparison and Validation of Smooth Particle Hydrodynamic (SPH) and Coupled Euler Lagrange (CEL) Techniques for Modeling Hydrodynamic Ram. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Austin, Texas. 18~21 April 2005,
    210 Hongbin Jin, Xin Ding. On Criterions for Smoothed Particle Hydrodynamics Kernels in Stable Field . Journal of Computational Physics.2005, 202:699~709
    211 G. Oger, M. Doring, B. Alessandrini, et al An Improved SPH Method: Towards Higher Order Convergence. Journal of Computational Physics. 2007, 225: 1472~1492
    212 Fulk David Allen. A Numerical Analysis of Smoothed Particle Hydrodynamics. PhD Thesis of School of Engineering of the Air Force Institute of Technology of Air University. 1994:1~200
    213 Jingsen Ma, Wei Ge. Is Standard Symmetric Formulation Always Better for Smoothed Particle Hydrodynamics. Computers and Mathematics with Applications. 2007: doi:10.1016/j.camwa.2007.08.010
    214 Jean Luc Lacome. Smoothed Particle Hydrodynamics Method in LS-DYNA. LS-DYNA Anwenderforum, Bamberg, 2004.
    215周培德.计算几何—算法分析与设计.清华大学出版社. 2000:1~150
    216 A.D. Vasin. Supercavities in Compressible Fluid. //Supercavitating Flows. Rto Lectures Series 005. Research and Technology Organisation of North Atlantic Treaty Organisation. 2002
    217贾力平.空化器诱导超空泡特性的数值仿真与试验研究.哈尔滨工业大学博士学位论文. 2007:1-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700