用户名: 密码: 验证码:
自洽场理论Fourier空间解法:ABC星型与线型嵌段共聚物相图计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软物质的自组织已经成为凝聚态物理领域的一个研究热点。预测、发现和理解软物质自组装的新的有序结构及研究软物质自组织过程中的动力学等问题将为我们深入理解分子组装的物理机制以及进行新材料的结构设计作出贡献。嵌段共聚物作为研究软物质自组织现象的一个主要对象,在本体和溶液体系中,可以形成多种有趣的有序结构。现在已知的是,AB两嵌段高分子本体可以形成四种微相分离结构:交替层状结构(L)、六角排列柱状相(C)、体心立方球状结构(S)和双连续Gyroid结构(G)。Matsen于1994年采用自洽场方法计算得到了AB嵌段高分子的相图。最近,在Gyroid相区附近又发现了一种具有Fddd空间群的O70结构。
     当前,自洽平均场理论已经成为研究高分子体系相平衡态结构问题十分重要的理论方法。该方法最初由英国理论物理学家Edwards于上世纪60年代中期提出,随后由Helfand, Noolandi等将该理论引入到了嵌段共聚物等多相高分子体系中。过去十几年来,对探索自洽场理论数值解法的努力大大推进了该理论在高分子科学领域中的应用。目前发展成熟的自洽场理论数值解法包括:Matsen-Schick谱方法、Fredrickson-Drolet实空间解法和Rasmussen等提出的准谱方法,它们分别提出于上世纪九十年代中期、末期和本世纪初。这些方法各有优缺点。Matsen-Schick谱方法中,空间变量函数以某些具有设定空间群对称性的基函数展开,进而在Fourier空间求解自洽场方程。该方法适用于计算所设定结构对称性的形态的自由能,在计算体系相图方面优势显著,但不适用于新形态的预测。Drolet-Fredrickson实空间方法和准谱方法等虽然可以预测嵌段共聚物的新结构,但是计算大尺寸体系时较难得到十分规整有序的结构。而且,对那些复杂双连续型网络结构(如Gyroid、金刚石结构、Fddd等)的搜索不仅十分困难,在确定这些复杂结构的对称性空间群方面更有所欠缺。最近,鉴于在线型嵌段共聚物中发现的有序结构多为中心对称结构,Guo等提出了一种可用于搜索中心对称结构的具有一定“普适性”的谱方法。在该方法中,所有空间变量函数以余弦函数展开,进而在Fourier空间进行求解自洽场方程。然而,在嵌段共聚物某些体系中,如星型共聚物体系、嵌段共聚物共混体系等,会有出现非中心对称结构。因此,对具有非中心对称结构的嵌段共聚物体系的新结构预测方面Guo等发展的方法将不再适用,需要继续发展新的方法。在此背景下,本论文主要目的是发展一种具有真正普适性的方法:不仅能搜索嵌段高分子体系所有可能出现的结构(包括中心对称结构和非中心对称结构),又能够从计算结果中分析所得结构的对称性方面的信息,从而方便地确定一些复杂结构的对称空间群。将这些结构作为备选态采用传统的谱方法进行自由能的精确计算,有望可以得到体系的精确相图。为此,我们进一步拓展了Guo等的谱方法。其基本思想是:基于嵌段共聚物可以形成规则的有序周期性结构,我们可以将与空间有关的所有变量进行Fourier级数(包括余弦函数和正弦函数)展开,使自洽场理论方程均在Fourier空间求解。该方法可以近似看作:起初我们给定一个具有所有空间群对称性的“基函数库”,随着整个计算迭代过程进行,会自动筛选出与设定体系分子参数相匹配的那些具有某些对称性的基函数。从而实现搜索新结构的功能。本方法的缺点是,由于空间变量的Fourier展开项个数受限于计算能力的制约,在计算过程中,只能取有限个基函数展开。这将会给计算结果的准确性带来影响。
     方法建立后,我们对其可靠性和有效性进行了检验。首先,采用此方法考察了最简单的AB两嵌段高分子体系。我们成功得计算得到了AB嵌段共聚物本体体系中已知的四种结构:层状结构、六角柱状结构、体心立方球状结构和Gyroid双连续结构。然后,我们将该方法用于ABC三嵌段高分子的形态的预测。同样,我们成功的预测出了线型高分子体系中已经实验观察到和理论预测出来的一些典型结构,如交替型结构、核壳型结构、复合型结构等等。最后,对ABC星型高分子体系的结构预测做了考察。计算得到了该体系中典型的几种二维柱状多边形结构:[6.6.6],[8.8.4],[8.6.4;8.6.6],[10.6.4;10.6.6],[12.6.4;8.6.4],[12.6.4]等。综合对以上几个体系的检验,我们得出结论:本论文中发展的自洽场理论Fourier空间解法具备嵌段高分子体系中的结构预测功能,可以被用来研究和搜索嵌段共聚物中的新的有序相结构。
     在嵌段共聚物相分离实验中,X射线衍射方法是测定其形成的有序结构的重要方法。根据散射理论,我们推导出了以Fourier空间数值解的具体形式表达的体系散射函数。以此为基础,分别讨论了AB两嵌段高分子、ABC线型和星型嵌段高分子体系中已知的有序结构的散射性质,得到了这些结构的散射强度与散射波矢模的关系图谱,将这些计算结果同实验结果进行了对比,在这些有序结构(包括已知的那些复杂性网络结构)的散射特征方面理论计算和实验结果取得了十分一致的结论。这些结果表明:该方法具备确定有序态结构的能力,包括对于那些复杂的双连续网络型结构的对称性的确定,从而使得该方法在预测复杂嵌段共聚物相形态方面具有各大的优势。
     ABC星型嵌段共聚物由于其特殊的链拓扑结构,赋予了它们十分独特的自组装行为。鉴于目前对该体系的本体组装行为理解还不是十分深入,为了较好的认识该类型嵌段高分子的本体中的组装形态,我们采用前面提出的自洽场理论Fourier空间解法对ABC星型嵌段共聚物体系的本体平衡态相分离形态做了详细的考察。为了提高计算效率,并考虑到ABC星型高分子在三个支链链长相当时多形成二维柱状多边形结构,所以我们将自洽场计算限定在二维空间中。我们主要考察了两类星型共聚物体系。第一类为三组分具有相同的相互作用,我们称之为对称相互作用体系,χABN=χBCN=χACN=30.0,第二类则为非对称相互作用体系,χABN=χBCN=25.0,χACN=37.0。我们分别计算得到了这两类体系的三元相图。在对称相互作用体系中,计算得到了六种二维柱状多边形结构,包括:[6.6.6]、[8.6.4;8.6.6]、[8.8.4]、[10.6.4;10.6.6]、[12.6.4;8.6.4]和[12.6.4];将该计算结果同Monte Carlo模拟、DPD模拟等方法的结果进行了比较,得到了一致的结果。在第二类体系中,则只得到了四种有序结构:[8.6.4;8.6.6]、[8.8.4]、[10.6.4;10.6.6]和[12.6.4]。我们将第二类体系计算结果同实验中ISP体系发现的结构做了对比,发现在相转变规律上得到了一致的定性结论,但在定量的相转变点上存在一些不一致性。这种不一致性可能是由于自洽场计算中所设定的分子参数等同实验实际体系不一致的原因。
     相比于AB两嵌段共聚物体系来说,ABC三嵌段高分子体系具有更多可调参数,这就赋予了该体系更加丰富且更难穷尽的有序结构。在ABC线型嵌段高分子本体相行为方面,实验和理论都做了一些有意义的工作。实验中主要详细考察了两个体系:ISO和SBM (SEBM)体系,理论计算等方面目前已得到的两个相图也均是对应于这两类体系。这些实验和理论研究工作均是给出了固定链段间相互作用参数情况下,不同的组分比例而对应的平衡态相结构的信息。为了从另外一个侧面对ABC三嵌段高分子体系本体相行为作一些深入了解,即固定组分比例而改变链段间的相互作用参数,考察体系的有序结构将怎样变化,我们主要考察了对称体系中,即χABN=χBCN,fA=fC,相互作用参数χABN和χACN的变化对嵌段高分子的平衡态结构的影响。为了提高数值计算稳定性和计算效率,我们将体系限定在弱分凝至中等强度分凝情况下进行考察。我们探讨了三个不同组分体积分数时的情况,分别是:fA=fC=0.201、fA=fC=0.25和fA=fC=0.18。我们发现,在不同的组分相互作用情况下,第一个体系可以形成多种不同的有序结构,包括交替型球状相、交替型柱状相、交替型Gyroid、交替型金刚石结构和Gyroid结构。对于第二类体系,通过改变相互作用参数,我们得到了交替型Gyroid和三层层状结构两种形态。第三类体系计算结果表明,在不同的组分相互作用参数下,体系可以发生从层+球结构向三层层状相的转变。我们分别对这些相转变过程的物理机制做了初步的探讨。
     综上所述,本论文发展了自洽场理论Fourier空间解法,本方法同时具备预测新结构和确定所得结构对称性信息的功能。应用该方法我们分别研究了ABC星型嵌段共聚物和ABC线型嵌段共聚物的本体相行为,计算得到了它们的相图。
Self-organization of soft condensed matters has been one of the hot topics in the field of condensed matter physics. Full understanding of their structural formations, along with their dynamics features during phase transitions will make contributions to design novel functional materials. Soft matters include polymers, colloids, surfactant, biomacromolecules etc. As a typical soft matter, block copolymers have taken considerable attentions for decades due to their fruitful nano-scale ordered structures and potential applications. It has been well known that there are five equilibrium ordered phases in block copolymer melts, alternating lamellae, hexagonally-packed cylinders, center-body cubic spheres, double gyroid and Fddd (O70).
     Self-consistent field theory (SCFT) has been one of the most important and successful theories in polymer science. The SCFT has its origin in the work of Edwards in 1960s. Later, this theory was adapted explicitly to treat block copolymers by Helfand and Noolandi etc. During last decades, establishment of various numerical methods for solving SCFT equations, which include "spectral method" proposed by Matsen and Schick in 1994, "real-space method" proposed by Drolet and Fredrickson in 1999 and "pseudo-spectral method" proposed by Rasmussen etc. in 2001, have greatly improved the applications of SCFT in the field of polymer science. These methods have their advantages and disadvantages. Take "real-space method" for instance, although this method is good at searching new ordered structures in block copolymers, difficulties are encountered at reaching long-range ordered structures and determination of space group of complex ordered phases, especially those of complex networks, like gyroid and Fddd. For Matsen-Schick spectral method, all spatially varying functions are expanded in terms of basis functions with priori symmetry and SCFT equations are cast in Fourier space. Consequently, the spectral method is only good at computation of phase diagrams. Recently, Guo et al proposed a generic method for solving SCFT equations, in which all spatially varying functions are expanded in terms of cosine functions, provided that most of ordered phases observed experimentally are centrosymmetric. There are, however, some non-centrosymmetric structures in block copolymer melts, especially in star-shaped terpolymers, where the generic method for SCFT is no longer valid. Under this situation, we aim at proposing a generic approach to solution of self-consistent field theory (SCFT) equations for block copolymers, which combines the capabilities of searching new ordered phases (including centrosymmetric and non-centrosymmetric structures) and determination of space groups of obtained structures together. In this method, all spatially varying functions are expanded in terms of Fourier series (including cosine and sine functions) which are essential determined by computational box parameters. Then, SCFT equations can be cast in terms of expansion coefficients. This method can be looked as an expansion of Matsen-Schick spectral method. The advantage of the approach consists in fact that structural symmetries of resulting ordered phases can be easily deduced from expansion coefficients of nonzero values, which will be clearly demonstrated for complex phases in block copolymers.
     To evaluate the capabilities of generic Fourier-space method for SCFT, we firstly applied this method to AB diblock copolymer melts. As expected, we successfully obtained the ordered phases including alternating lamellae, hexagonally-packed cylinders, body-centered cubic spheres and double gyroid. Then, the equilibrium ordered phases in ABC linear triblock copolymers melts are computed using the generic Fourier method proposed. Some typical phases, including alternating type, core-shell type and the decorated type structures, are obtained successfully. For some non-centrosymmetric structures in ABC star-shaped terpolymers, we extend the Fourier method to the equilibrium phases in ABC star-shaped terpolymers. Some two-dimensional cylindrical structures are computed, among which are [6.6.6], [8.8.4], [8.6.4;8.6.6], [10.6.4;10.6.6], [12.6.4;8.6.4], [12.6.4]. Note that [6.6.6] and [10.6.4; 10.6.6] are two typical structures of non-centrosymmetric space group. With the above verifications, a conclusion is reached that the generic Fourier method for SCFT is capable of searching new ordered structures with any space groups.
     Structural determinations of ordered phases in experiments are made via small-angle X-ray scattering (SAXS) method. We have mentioned that the Fourier method proposed aims at combination of capabilities of searching new structures and of determination of space-groups of obtained ordered phases. In order to make a close comparison with SAXS results in experiments, derivations of the scattering intensities of ordered phases in terms of Fourier coefficients in our method is made. Then, the scattering intensities of some typical ordered morphologies in AB diblock copolymers and ABC triblock copolymers are computed and compared with those in experiments. A good consistence between the theoretical scattering functions and those in experiments proves the capability of determination of space groups of ordered structures in block copolymers.
     ABC star-shaped terpolymers have attracted attentions for years due to their fruitful ordered morphologies. The most distinction of phase behaviors of star terpolymers from that of linear triblock copolymers lies in fact that junction points in ABC star terpolymers be arranged along one-dimensional lines resulting from topological constraint, while in linear ABC triblock copolymers two-dimensional plane could be allowed for the connecting points between neighboring blocks. The spatial arrangement of junction point in star-shaped terpolymers leads to two-dimensional cylinder-type morphologies under assumption that three polymer chains are totally incompatible and long enough. With the generic Fourier method for SCFT, the equilibrium phases of ABC star-shaped terpolymers have been studies. Two broad types are investigated in detail:one with symmetric interactions,χABN=χBCN=χACN=30.0, and one with asymmetric interactions,χABN=χBCN=25.0,χACN=37.0, corresponding to ISP star-shaped terpolymers. The triangle phase diagrams are obtained. For the former, six ordered morphologies are obtained, including [6.6.6], [8.6.4;8.6.6], [8.8.4], [10.6.4; 10.6.6], [12.6.4;8.6.4] and [12.6.4], which is in consistence with those simulations by Monte Carlo and DPD. For asymmetric interactions, two series of star terpolymers are studied, A1.0B1.0Cx, A1.0B1.8Cx. After comparison with experimental results for ISP, a qualitative agreement is reached, while there are few quantitative agreements. These discrepancies maybe due to the inconsistence of molecular parameters used in SCFT with those in real star terpolymers, which are hardly determined experimentally for now, like Flory-Huggins interaction parameter, statistical segment length, etc.
     ABC linear triblock copolymers reveal fruitful phase behaviors in comparison with AB diblock copolymers, due to their vast parameter space. Thanks to efforts of experimental and theoretical workers on block copolymers, some knowledge has been collected on equilibrium phase behaviors of ABC linear triblock copolymers. Only few samples of ABC linear triblock copolymers, however, have been studied in detail, including ISO and SBM (SEBM). The phase diagrams that have been computed theoretically are for these two types of triblock copolymers, which provide the information of equilibrium phases under each molecular parameter. For obtaining another insight into phase behaviors of ABC linear triblock copolymers, we studied in detail the effects of interaction parameters upon phases with fixed volume fractions of each segment. For simplicity, our focus are located on symmetric samples,χABN=χBCN,fA=fC. We have studied three samples, fA=fC=0.201, fA=fC=0.25 and fA=fC=0.18. For the first one, four different ordered phases have been obtained:alternating sphere, alternating cylinders, alternating gyroid, alternating diamond and double gyroid, while there are two phases including alternating gyroid and lamellae for the second sample. For the third, lamellae and a decorated phase, spheres on lamellae are computed with various interaction parameters. The physical mechanism underlying these phase transitions with varying interaction parameters is discussed.
     As a conclusion, we proposed a generic Fourier-space method for solving SCFT equations. This method combines the capabilities of searching new structures in block copolymers and determination of space groups of ordered phases. With this method, equilibrium phase behaviors of ABC star-shaped triblock copolymers and ABC linear triblock copolymers have been investigated, where phase diagrams are obtained.
引文
[1]de Gennes, P. G. Soft Matter (Nobel Lecture)[J]. Angewandte Chemie-International Edition in English 1992,31, (7),842-845.
    [2]de Gennes, P. G Soft Matter[J]. Reviews of Modern Physics 1992,64, (3), 645-648.
    [3]Chaikin, P. M.; Lubensky, T. C., Principles of Condensed Matter Physics[M]. Cambridge University Press:Cambridge,1997.
    [4]Jones, R. A. L., Soft Condensed Matter[M]. New York:Oxford University Press, 2002.
    [5]Larson, R. G, The Structure and Rheology of Complex Fluids[M]. Oxford University Press:Oxford,1999.
    [6]Kleman, M.; Lavrentovich,O. D., Soft Matter Physics:An Introduction[M]. New York:Springer,2003.
    [7]Hamley, I. W., Introduction to Soft Matter-Revised Edition:Synthetic and Biological Self-Assembling Materials[M]. Chichester:John Wiley & Sons, Ltd,2007.
    [8]陆坤权;刘寄星,软物质物理学导论[M].北京:北京大学出版社,2006.
    [9]Zvelindovsky, A. V., Nanostructured Soft Matter:Experiment, Theory, Simulation and Perspectives. Dordrecht:Springer,2007.
    [10]Daoud, M.; Williams, C. E., Soft Matter Physics[M]. New York:Springer-Verlag, 1999.
    [11]Matsen, M. W.; Schick, M. Stable and Unstable Phases of a Diblock Copolymer Melt[J]. Physical Review Letters 1994,72, (16),2660-2663.
    [12]Tyler, C. A.; Morse, D. C. Orthorhombic Fddd network in triblock and diblock copolymer melts[J]. Physical Review Letters 2005,94, (20).
    [13]Takenaka, M.; Wakada, T.; Akasaka, S.; Nishitsuji, S.; Saijo, K.; Shimizu, H.; Kim, M. I.; Hasegawa, H. Orthorhombic Fddd network in diblock copolymer melts[J]. Macromolecules 2007,40, (13),4399-4402.
    [14]Leibler, L. Theory of Microphase Separation in Block Co-Polymers[J]. Macromolecules 1980,13, (6),1602-1617.
    [15]Dobrynin, A. V.; Erukhimovich, I. Y. Computer-Aided Comparative Investigation of Architecture Influence on Block Copolymer Phase-Diagrams[J]. Macromolecules 1993,26, (2),276-281.
    [16]Mayes, A. M.; Delacruz, M.O. Microphase Separation in Multiblock Copolymer Melts[J]. Journal of Chemical Physics 1989,91,(11),7228-7235.
    [17]Werner, A.; Fredrickson, G. H. Architectural effects on the stability limits of ABC block copolymers[J]. Journal of Polymer Science Part B-Polymer Physics 1997,35, (5),849-864.
    [18]Foster, D. P.; Jasnow, D.; Balazs, A. C. Macrophase and Microphase Separation in Random Comb Copolymers[J]. Macromolecules 1995,28, (9),3450-3462.
    [19]Shinozaki, A.; Jasnow, D.; Balazs, A. C. Microphase Separation in Comb Copolymers[J]. Macromolecules 1994,27, (9),2496-2502.
    [20]Uneyama, T.; Doi, M. Density functional theory for block copolymer melts and blends[J]. Macromolecules 2005,38, (1),196-205.
    [21]Fredrickson, G. H.; Helfand, E. Fluctuation Effects in the Theory of Microphase Separation in Block Copolymers[J]. Journal of Chemical Physics 1987,87, (1), 697-705.
    [22]Helfand, E.; Wasserman, Z. R. Block Copolymer Theory.4. Narrow Interphase Approximation [J]. Macromolecules 1976,9, (6),879-888.
    [23]Helfand, E.; Wasserman, Z. R. Block Copolymer Theory.5. Spherical Domains[J]. Macromolecules 1978,11, (5),960-966.
    [24]Helfand, E.; Wasserman, Z. R. Block Co-Polymer Theory.6. Cylindrical Domains[J]. Macromolecules 1980,13, (4),994-998.
    [25]Semenov, A. N. Contribution to the Theory of Microphase Layering in Block-Copolymer Melts[J]. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki 1985, 88,(4),1242-1256.
    [26]Broseta, D.; Fredrickson, G. H.; Helfand, E.; Leibler, L. Molecular-Weight and Polydispersity Effects at Polymer Polymer Interfaces[J]. Macromolecules 1990,23, (1),132-139.
    [27]Milner, S. T.; Witten, T. A.; Cates, M. E. A Parabolic Density Profile for Grafted Polymers[J]. Europhysics Letters 1988,5, (5),413-418.
    [28]Likhtman, A. E.; Semenov, A. N. Stability of the Obdd Structure for Diblock Copolymer Melts in the Strong Segregation Limit[J]. Macromolecules 1994,27,(11), 3103-3106.
    [29]Likhtman, A. E.; Semenov, A. N. Theory of microphase separation in block copolymer/homopolymer mixtures[J]. Macromolecules 1997,30, (23),7273-7278.
    [30]Olmsted, P. D.; Milner, S. T. Strong segregation theory of bicontinuous phases in block copolymers[J]. Macromolecules 1998,31, (12),4011-4022.
    [31]Fredrickson, G. H. Stability of a Catenoid-Lamellar Phase for Strongly Stretched Block Copolymers[J]. Macromolecules 1991,24, (11),3456-3458.
    [32]Olmsted, P. D.; Milner, S. T. Strong-Segregation Theory of Bicontinuous Phases in Block-Copolymers[J]. Physical Review Letters 1994,72, (6),936-939.
    [33]Bates, F. S.; Schulz, M. F.; Khandpur, A. K.; Forster, S.; Rosedale, J. H.; Almdal, K.; Mortensen, K. Fluctuations, Conformational Asymmetry and Block-Copolymer Phase-Behavior[J]. Faraday Discussions 1994,7-18.
    [34]Hajduk, D. A.; Gruner, S. M.; Rangarajan, P.; Register, R. A.; Fetters, L. J.; Honeker, C.; Albalak, R. J.; Thomas, E. L. Observation of a Reversible Thermotropic Order-Order Transition in a Diblock Copolymer[J]. Macromolecules 1994,27, (2), 490-501.
    [35]Matsen, M. W.; Bates, F. S. Unifying weak- and strong-segregation block copolymer theories[J]. Macromolecules 1996,29, (4),1091-1098.
    [36]Phan, S.; Fredrickson, G. H. Morphology of symmetric ABC triblock copolymers in the strong segregation limit[J]. Macromolecules 1998,31, (1),59-63.
    [37]Ohta, T.; Kawasaki, K. Equilibrium Morphology of Block Copolymer Melts[J]. Macromolecules 1986,19, (10),2621-2632.
    [38]Kawasaki, K.; Ohta, T.; Kohrogui, M. Equilibrium Morphology of Block Copolymer Melts.2[J]. Macromolecules 1988,21, (10),2972-2980.
    [39]Zheng, W.; Wang, Z. G. Morphology of Abc Triblock Copolymers [J]. Macromolecules 1995,28, (21),7215-7223.
    [40]Matsen, M. W.; Whitmore, M. D. Accurate diblock copolymer phase boundaries at strong segregations [J]. Journal of Chemical Physics 1996,105, (21),9698-9701.
    [41]Matsen, M. W. Testing strong-segregation theory against self-consistent field theory for block copolymer melts[J]. Journal of Chemical Physics 2001,114, (23), 10528-10530.
    [42]Matsen, M. W.; Gardiner, J. M. Anomalous domain spacing difference between AB diblock and homologous A(2)B(2) starblock copolymers[J]. Journal of Chemical Physics 2000,113, (5),1673-1676.
    [43]Matsen, M. W.; Bates, F. S. Testing the strong-stretching assumption in a block copolymer microstructure[J]. Macromolecules 1995,28, (26),8884-8886.
    [44]Semenov, A. N. Theory of Block-Copolymer Interfaces in the Strong Segregation Limit[J]. Macromolecules 1993,26, (24),6617-6621.
    [45]Likhtman, A. E.; Semenov, A. N. An advance in the theory of strongly segregated polymers[J]. Europhysics Letters 2000,51, (3),307-313.
    [46]Ball, R. C.; Marko, J. F.; Milner, S. T.; Witten, T. A. Polymers Grafted to a Convex Surface[J]. Macromolecules 1991,24, (3),693-703.
    [47]Goveas, J. L.; Milner, S. T.; Russel, W. B. Corrections to strong-stretching theories[J]. Macromolecules 1997,30, (18),5541-5552.
    [48]Matsen, M. W. SCF Theory and Its Applications[J].2006.
    [49]Fredrickson, G. H.; Ganesan, V.; Drolet, F. Field-theoretic computer simulation methods for polymers and complex fluids[J]. Macromolecules 2002,35, (1),16-39.
    [50]Fredrickson, G H. Computational field theory of polymers:opportunities and challenges[J]. Soft Matter 2007,3, (11),1329-1334.
    [51]Fredrickson, G. H. Theoretical profits[J]. Nature Materials 2008,7, (4),261-263.
    [52]Fredrickson, G H., The Equilibrium Theory of Inhomogeneous Polymers Oxford University Press:New York,2006.
    [53]Schmid, F. Self-consistent-field theories for complex fluids[J]. Journal of Physics-Condensed Matter 1998,10, (37),8105-8138.
    [54]Muller, M.; Schmid, F., Incorporating fluctuations and dynamics in self-consistent field theories for polymer blends. In Advanced Computer Simulation Approaches for Soft Matter Sciences Ii,2005; Vol.185, pp 1-58.
    [55]Shi, A. C., Self-Consistent Field Theory of Block Copolymers.2004.
    [56]Edwards, S. F. The Statistical Mechanics of Polymers with Excluded Volume[J]. Proc. Phys. Soc.1965,85,613-624.
    [57]Edwards, S. F. Theory of Polymer Solutions at Intermediate Concentration[J]. Proceedings of the Physical Society of London 1966,88, (560P),265-&.
    [58]Helfand, E. Theory of Inhomogeneous Polymers-Fundamentals of Gaussian Random-Walk Model[J]. Journal of Chemical Physics 1975,62, (3),999-1005.
    [59]Helfand, E. Block Copolymer Theory.3. Statistical-Mechanics of Microdomain Structure[J]. Macromolecules 1975,8, (4),552-556.
    [60]Hong, K. M.; Noolandi, J. Theory of Inhomogeneous Multicomponent Polymer Systems[J]. Macromolecules 1981,14, (3),727-736.
    [61]Hong, K. M.; Noolandi, J. Theory of Interfacial-Tension in Ternary Homopolymer-Solvent Systems[J].Macromolecules 1981,14, (3),736-742.
    [62]Noolandi, J.; Hong, K. M. Interfacial Properties of Immiscible Homopolymer Blends in the Presence of Block Copolymers [J]. Macromolecules 1982,15,(2), 482-492.
    [63]Hong, K. M.; Noolandi, J. Theory of Phase-Equilibria in Systems Containing Block Co-Polymers [J]. Macromolecules 1983,16, (7),1083-1093.
    [64]Noolandi, J.; Hong, K. M. Theory of Block Co-Polymer Micelles in Solution[J]. Macromolecules 1983,16, (9),1443-1448.
    [65]Noolandi, J.; Hong, K. M. Effect of Block Copolymers at a Demixed Homopolymer Interface [J]. Macromolecules 1984,17, (8),1531-1537.
    [66]Whitmore, M. D.; Noolandi, J. Theory of Phase-Equilibria in Block Copolymer Homopolymer Blends[J]. Macromolecules 1985,18, (12),2486-2497.
    [67]Whitmore, M. D.; Noolandi, J. Theory of Micelle Formation in Block Copolymer Homopolymer Blends[J]. Macromolecules 1985,18, (4),657-665.
    [68]Vilgis, T. A.; Noolandi, J. Theory of Homopolymer Block Copolymer Blends-the Search for a Universal Compatibilizer[J]. Macromolecules 1990,23,(11), 2941-2947.
    [69]Whitmore, M. D.; Noolandi, J. Theory of Adsorbed Block Copolymers[J]. Macromolecules 1990,23, (13),3321-3339.
    [70]Noolandi, J. Interfacial-Tension in Incompatible Homopolymer Blends with Added Block Copolymer[J]. Makromolekulare Chemie-Rapid Communications 1991, 12, (8),517-521.
    [71]Shi, A. C.; Noolandi, J. Binary-Mixtures of Diblock Copolymers Phase-Diagrams with a New Twist[J]. Macromolecules 1995,28, (9),3103-3109.
    [72]Noolandi, J.; Shi, A. C.; Linse, P. Theory of phase behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions[J]. Macromolecules 1996,29, (18),5907-5919.
    [73]Shi, A. C.; Noolandi, J.; Desai, R. C. Theory of anisotropic fluctuations in ordered block copolymer phases[J]. Macromolecules 1996,29, (20),6487-6504.
    [74]Yeung, C.; Shi, A. C.; Noolandi, J.; Desai, R. C. Anisotropic fluctuations in ordered copolymer phases[J]. Macromolecular Theory and Simulations 1996,5, (2), 291-298.
    [75]Laradji, M.; Shi, A. C.; Desai, R. C.; Noolandi, J. Stability of ordered phases in weakly segregated diblock copolymer systems[J]. Physical Review Letters 1997,78, (13),2577-2580.
    [76]Laradji, M.; Shi, A. C.; Noolandi, J.; Desai, R. C. Stability of ordered phases in diblock copolymer melts[J]. Macromolecules 1997,30, (11),3242-3255.
    [77]Shi, A. C.; Noolandi, J. Theory of inhomogeneous weakly charged polyelectrolytes[J]. Macromolecular Theory and Simulations 1999,8,(3),214-229.
    [78]Drolet, F.; Fredrickson, G. H. Combinatorial screening of complex block copolymer assembly with self-consistent field theory[J]. Physical Review Letters 1999,83, (21),4317-4320.
    [79]Tzeremes, G.; Rasmussen, K. O.; Lookman, T.; Saxena, A. Efficient computation of the structural phase behavior of block copolymers[J]. Phys. Rev. E 2002,65, (4), 041806.
    [80]Wang, J. F.; Wang, Z. G.; Yang, Y. L. Nature of disordered micelles in sphere-forming block copolymer melts[J]. Macromolecules 2005,38, (5),1979-1988.
    [81]Tang, P.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Morphology and phase diagram of complex block copolymers:ABC star triblock copolymers[J]. Journal of Physical Chemistry B 2004,108, (24),8434-8438.
    [82]Matsen, M. W. Phase-Behavior of Block-Copolymer Homopolymer Blends[J]. Macromolecules 1995,28, (17),5765-5773.
    [83]Matsen, M. W. Stabilizing New Morphologies by Blending Homopolymer with Block-Copolymer[J]. Physical Review Letters 1995,74, (21),4225-4228.
    [84]Matsen, M. W. Thin films of block copolymer[J]. Journal of Chemical Physics 1997,106, (18),7781-7791.
    [85]Matsen, M. W.; Bates, F. S. Block copolymer microstructures in the intermediate-segregation regime[J]. Journal of Chemical Physics 1997,106, (6), 2436-2448.
    [86]Koneripalli, N.; Levicky, R.; Bates, F. S.; Matsen, M. W.; Satija, S. K.; Ankner, J.; Kaiser, H. Ordering in blends of diblock copolymers [J]. Macromolecules 1998,31, (11),3498-3508.
    [87]Matsen, M. W. Self-assembly of block copolymers in thin films[J]. Current Opinion in Colloid & Interface Science 1998,3, (1),40-47.
    [88]Matsen, M. W. Gyroid versus double-diamond in ABC triblock copolymer melts[J]. Journal of Chemical Physics 1998,108, (2),785-796.
    [89]Matsen, M. W.; Thompson, R. B. Equilibrium behavior of symmetric ABA triblock copolymer melts[J]. Journal of Chemical Physics 1999,111,(15), 7139-7146.
    [90]Matsen, M. W. Equilibrium behavior of asymmetric ABA triblock copolymer melts[J]. Journal of Chemical Physics 2000,113,(13),5539-5544.
    [91]Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C. Predicting the mesophases of copolymer-nanoparticle composites[J]. Science 2001,292, (5526), 2469-2472.
    [92]Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C. Block copolymer-directed assembly of nanoparticles:Forming mesoscopically ordered hybrid materials[J]. Macromolecules 2002,35, (3),1060-1071.
    [93]Matsen, M. W. New fast SCFT algorithm applied to binary diblock copolymer/homopolymer blends[J]. Macromolecules 2003,36, (25),9647-9657.
    [94]Tang, P.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Morphology and phase diagram of complex block copolymers:ABC linear triblock copolymers[J]. Physical Review E 2004,69, (3).
    [95]Yang, Y. Z.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Microphases of asymmetric diblock copolymers in confined thin films[J]. Acta Chimica Sinica 2004,62, (17), 1601-1606.
    [96]Wang, R.; Tang, P.; Qiu, F.; Yang, Y. L. Aggregate morphologies of amphiphilic ABC triblock copolymer in dilute solution using self-consistent field theory[J]. Journal of Physical Chemistry B 2005,109, (36),17120-17127.
    [97]Xia, J. F.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Sequence effect on ordering mechanism of linear ABC triblock copolymers[J]. Acta Chimica Sinica 2005,63,(12), 1109-1115.
    [98]Xia, J. F.; Sun, M. Z.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Microphase ordering mechanisms in linear ABC triblock copolymers. A dynamic density functional study[J]. Macromolecules 2005,38, (22),9324-9332.
    [99]Li, J. F.; Fan, J.; Zhang, H. D.; Qiu, F.; Tang, P.; Yang, Y. L. Self-assembled pattern formation of block copolymers on the surface of the sphere using self-consistent field theory[J]. European Physical Journal E 2006,20, (4),449-457.
    [100]Xu, J. J.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Morphology and interactions of polymer brush-coated spheres in a polymer matrix[J]. Journal of Polymer Science Part B-Polymer Physics 2006,44,(19),2811-2820.
    [101]Yang, Y. Z.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Cylindrical phase of diblock copolymers confined in thin films. A real-space self-consistent field theory study [J]. Polymer 2006,47, (6),2205-2216.
    [102]Han, W. C.; Tang, P.; Li, X.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Self-Assembly of Star ABC Triblock Copolymer Thin Films:Self- Consistent Field Theory[J]. Journal of Physical Chemistry B 2008,112,(44),13738-13748.
    [103]Guo, Z. J.; Zhang, G. J.; Qiu, F.; Zhang, H. D.; Yang, Y. L.; Shi, A. C. Discovering ordered phases of block copolymers:New results from a generic Fourier-space approach[J]. Physical Review Letters 2008,101,028301.
    [104]Martinez-Veracoechea, F. J.; Escobedo, F. A. Lattice Monte Carlo simulations of the gyroid phase in monodisperse and bidisperse block copolymer systems[J]. Macromolecules 2005,38, (20),8522-8531.
    [105]Gemma, T.; Hatano, A.; Dotera, T. Monte Carlo simulations of the morphology of ABC star polymers using the diagonal bond method [J]. Macromolecules 2002,35, (8),3225-3237.
    [106]Dotera, T. Tricontinuous cubic structures in ABC/A/C copolymer and homopolymer blends[J]. Physical Review Letters 2002,89, (20).
    [107]Dotera, T. Cell crystals:Kelvin's polyhedra in block copolymer melts[J]. Physical Review Letters 1999,82, (1),105-108.
    [108]Detcheverry, F. A.; Kang, H. M.; Daoulas, K. C.; Muller, M.; Nealey, P. F.; de Pablo, J. J. Monte Carlo simulations of a coarse grain model for block copolymers and nanocomposites[J]. Macromolecules 2008,41,(13),4989-5001.
    [109]Wang, Q.; Yan, Q. L.; Nealey, P. F.; de Pablo, J. J. Monte Carlo simulations of diblock copolymer thin films confined between two homogeneous surfaces [J]. Journal of Chemical Physics 2000,112, (1),450-464.
    [110]Boker, A.; Reihs, K.; Wang, J. G.; Stadler, R.; Ober, C. K. Selectively thermally cleavable fluorinated side chain block copolymers:Surface chemistry and surface properties [J]. Macromolecules 2000,33, (4),1310-1320.
    [111]Wang, Q.; Nealey, P. F.; de Pablo, J. J. Simulations of the morphology of cylinder-forming asymmetric diblock copolymer thin films on nanopatterned substrates [J]. Macromolecules 2003,36, (5),1731-1740.
    [112]Wang, Q.; Nealey, P. F.; de Pablo, J. J. Monte Carlo simulations of asymmetric diblock copolymer thin films confined between two homogeneous surfaces[J]. Macromolecules 2001,34, (10),3458-3470.
    [113]Wang, Q.; Nath, S. K.; Graham, M. D.; Nealey, P. F.; de Pablo, J. J. Symmetric diblock copolymer thin films confined between homogeneous and patterned surfaces:Simulations and theory [J]. Journal of Chemical Physics 2000,112, (22),9996-10010.
    [114]Groot, R. D.; Madden, T. J. Dynamic simulation of diblock copolymer microphase separation [J]. Journal of Chemical Physics 1998,108, (20),8713-8724.
    [115]Groot, R. D.; Madden, T. J.; Tildesley, D. J. On the role of hydrodynamic interactions in block copolymer microphase separation [J]. Journal of Chemical Physics 1999,110, (19),9739-9749.
    [116]Qian, H. J.; Lu, Z. Y.; Chen, L. J.; Li, Z. S.; Sun, C. C. Computer simulation of cyclic block copolymer microphase separation [J]. Macromolecules 2005,38, (4), 1395-1401.
    [117]Soto-Figueroa, C.; Rodriguez-Hidalgo, M. D. R.; Martinez-Magadan, J. M.; Vicente, L. Dissipative particle dynamics study of order-order phase transition of BCC, HPC, OBDD, and LAM structures of the poly(styrene)-poly(isoprene) diblock copolymer[J]. Macromolecules 2008,41, (9),3297-3304.
    [118]Ortiz, V.; Nielsen, S. O.; Discher, D. E.; Klein, M. L.; Lipowsky, R.; Shillcock, J. Dissipative particle dynamics simulations of polymersomes[J]. Journal of Physical Chemistry B 2005,109, (37),17708-17714.
    [119]Bailey, T. S. Morphological behavior spanning the symmetric AB and ABC triblock copolymer states[D]. University of Minnesota,2001.
    [120]Auschra, C.; Stadler, R. New Ordered Morphologies in Abc Triblock Copolymers[J]. Macromolecules 1993,26, (9),2171-2174.
    [121]Krappe, U.; Stadler, R.; Voigtmartin, I. Chiral Assembly in Amorphous Abc Triblock Copolymers - Formation of a Helical Morphology in Polystyrene-Block-Polybutadiene-Block-Poly(Methyl Methacrylate) Block-Copolymers (Vol 28, Pg 4558,1995)[J]. Macromolecules 1995,28, (22), 7583-7583.
    [122]Stadler, R.; Auschra, C.; Beckmann, J.; Krappe, U.; Voigtmartin, I.; Leibler, L. Morphology and Thermodynamics of Symmetrical Poly(a-Block-B-Bloch-C) Triblock Copolymers [J]. Macromolecules 1995,28, (9),3080-3097.
    [123]Abetz, V.; Stadler, R. In ABC and BAC triblock copolymers-Morphological engineering by variation of the block sequence,2nd International Symposium on Molecular Order and Mobility in Polymer Systems, St Petersburg, Russia, May 21-24, 1996; St Petersburg, Russia,1996; pp 19-26.
    [124]Balsamo, V.; Stadler, R. In Ellipsoidal core-shell cylindrical microphases in PS-b-PB-b-PCL triblock copolymers with a crystallizable matrix, NATO Advanced Research Workshop on Manipulation of Organization in Polymers Using Tandem Molecular Interactions, Il Ciocco, Italy, May 29-Jun 02,1996; Il Ciocco, Italy,1996; pp 153-165.
    [125]Breiner, U.; Krappe, U.; Stadler, R. Evolution of the "knitting pattern" morphology in ABC triblock copolymers [J]. Macromolecular Rapid Communications 1996,17, (8),567-575.
    [126]Stocker, W.; Beckmann, J.; Stadler, R.; Rabe, J. P. Surface reconstruction of the lamellar morphology in a symmetric poly(styrene-block-butadiene-block-methyl methacrylate) triblock copolymer:A tapping mode scanning force microscope study [J]. Macromolecules 1996,29, (23),7502-7507.
    [127]Breiner, U.; Krappe, U.; Abetz, V.; Stadler, R. Cylindrical morphologies in asymmetric ABC triblock copolymers [J]. Macromolecular Chemistry and Physics 1997,198,(4),1051-1083.
    [128]Erukhimovich, I.; Abetz, V.; Stadler, R. Microphase separation in ternary ABC block copolymers:Ordering control in molten diblock AB copolymers by attaching a short strongly interacting C block[J]. Macromolecules 1997,30, (24), 7435-7443.
    [129]Breiner, U.; Krappe, U.; Thomas, E. L.; Stadler, R. Structural characterization of the "knitting pattern" in polystyrene-block-poly(ethylene-co-butylene)-block-poly(methylmethacryla te) triblock copolymers [J]. Macromolecules 1998,31, (1),135-141.
    [130]Brinkmann, S.; Stadler, R.; Thomas, E. L. New structural motif in hexagonally ordered cylindrical ternary (ABC) block copolymer microdomains[J]. Macromolecules 1998,31, (19),6566-6572.
    [131]Huckstadt, H.; Gopfert, A.; Abetz, V. Influence of the block sequence on the morphological behavior of ABC triblock copolymers [J]. Polymer 2000,41, (26), 9089-9094.
    [132]Abetz, V.; Goldacker, T. Formation of superlattices via blending of block copolymers[J]. Macromolecular Rapid Communications 2000,21,(1),16-34.
    [133]Mogi, Y.; Mori, K.; Kotsuji, H.; Matsushita, Y.; Noda, I.; Han, C. C. Molecular-Weight Dependence of the Lamellar Domain Spacing of Abc Triblock Copolymers and Their Chain Conformations in Lamellar Domains[J]. Macromolecules 1993,26, (19),5169-5173.
    [134]Mogi, Y; Nomura, M.; Kotsuji, H.; Ohnishi, K.; Matsushita, Y.; Noda, I. Superlattice Structures in Morphologies of the Abc Triblock Copolymers[J]. Macromolecules 1994,27, (23),6755-6760.
    [135]Bailey, T. S.; Hardy, C. M.; Epps, T. H.; Bates, F. S. A noncubic triply periodic network morphology in poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers[J]. Macromolecules 2002,35, (18),7007-7017.
    [136]Epps, T. H.; Cochran, E. W.; Bailey, T. S.; Waletzko, R. S.; Hardy, C. M.; Bates, F. S. Ordered network phases in linear poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers [J]. Macromolecules 2004,37, (22),8325-8341.
    [137]Epps, T. H.; Cochran, E. W.; Hardy, C. M.; Bailey, T. S.; Waletzko,.R. S.; Bates, F. S. Network phases in ABC triblock copolymers[J]. Macromolecules 2004, 37, (19),7085-7088.
    [138]Bates, F. S. Network phases in block copolymer melts[J]. Mrs Bulletin 2005, 30, (7),525-532.
    [139]Epps, T. H.; Chatterjee, J.; Bates, F. S. Phase transformations involving network phases in ISO triblock copolymer-homopolymer blends[J]. Macromolecules 2005,38,(21),8775-8784.
    [140]Chatterjee, J.; Jain, S.; Bates, F. S. Comprehensive phase behavior of poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers [J]. Macromolecules 2007,40, (8),2882-2896.
    [141]Tyler, C. A.; Qin, J.; Bates, F. S.; Morse, D. C. SCFT study of nonfrustrated ABC triblock copolymer melts[J]. Macromolecules 2007,40, (13),4654-4668.
    [142]Takano, A.; Wada, S.; Sato, S.; Araki, T.; Hirahara, K.; Kazama, T.; Kawahara, S.; Isono, Y.; Ohno, A.; Tanaka, N.; Matsushita, Y. Observation of cylinder-based microphase-separated structures from ABC star-shaped terpolymers investigated by electron computerized tomography[J]. Macromolecules 2004,37, (26), 9941-9946.
    [143]Hayashida, K.; Kawashima, W.; Takano, A.; Shinohara, Y.; Amemiya, Y.; Nozue, Y.; Matsushita, Y. Archimedean tiling patterns of ABC star-shaped terpolymers studied by microbeam small-angle X-ray scattering [J]. Macromolecules 2006,39, (14),4869-4872.
    [144]Hayashida, K.; Takano, A.; Arai, S.; Shinohara, Y.; Amemiya, Y.; Matsushita, Y Systematic transitions of tiling patterns formed by ABC star-shaped terpolymers[J]. Macromolecules 2006,39, (26),9402-9408.
    [145]Takano, A.; Kawashima, W.; Noro, A.; Isono, Y.; Tanaka, N.; Dotera, T.; Matsushita, Y A mesoscopic Archimedean tiling having a new complexity in an ABC star polymer[J]. Journal of Polymer Science Part B-Polymer Physics 2005,43, (18), 2427-2432.
    [146]Huckstadt, H.; Gopfert, A.; Abetz, V. Synthesis and morphology of ABC heteroarm star terpolymers of polystyrene, polybutadiene and poly(2-vinylpyridine)[J]. Macromolecular Chemistry and Physics 2000,201, (3), 296-307.
    [147]Huang, C. I.; Fang, H. K.; Lin, C. H. Morphological transition behavior of ABC star copolymers by varying the interaction parameters [J]. Physical Review E 2008,77, (3).
    [1]Edwards, S. F. The Statistical Mechanics of Polymers with Excluded Volume[J]. Proc. Phys. Soc.1965,85,613-624.
    [2]Helfand, E. Theory of Inhomogeneous Polymers-Fundamentals of Gaussian Random-Walk Model[J]. Journal of Chemical Physics 1975,62, (3),999-1005.
    [3]Helfand, E. Block Copolymer Theory.3. Statistical-Mechanics of Microdomain Structure[J]. Macromolecules 1975,8, (4),552-556.
    [4]Helfand, E.; Wasserman, Z. R. Block Copolymer Theory.4. Narrow Interphase Approximation[J]. Macromolecules 1976,9, (6),879-888.
    [5]Helfand, E.; Wasserman, Z. R. Block Copolymer Theory.5. Spherical Domains[J]. Macromolecules 1978,11, (5),960-966.
    [6]Helfand, E.; Wasserman, Z. R. Block Co-Polymer Theory.6. Cylindrical Domains[J]. Macromolecules 1980,13, (4),994-998.
    [7]Hong, K. M.; Noolandi, J. Theory of Inhomogeneous Multicomponent Polymer Systems[J]. Macromolecules 1981,14, (3),727-736.
    [8]Matsen, M. W.; Schick, M. Stable and Unstable Phases of a Diblock Copolymer Melt[J]. Physical Review Letters 1994,72, (16),2660-2663.
    [9]Drolet, F.; Fredrickson, G. H. Combinatorial screening of complex block copolymer assembly with self-consistent field theory [J]. Phys. Rev. Lett.1999,83, (21),4317-4320.
    [10]Tzeremes, G.; Rasmussen, K. O.; Lookman, T.; Saxena, A. Efficient computation of the structural phase behavior of block copolymers[J]. Phys. Rev. E 2002,65, (4), 041806.
    [11]Guo, Z. J.; Zhang, G J.; Qiu, F.; Zhang, H. D.; Yang, Y. L.; Shi, A. C. Discovering ordered phases of block copolymers:New results from a generic Fourier-space approach[J]. Physical Review Letters 2008,101,028301.
    [12]Tyler, C. A.; Morse, D. C. Orthorhombic Fddd network in triblock and diblock copolymer melts[J]. Physical Review Letters 2005,94, (20).
    [13]Ranjan, A.; Morse, D. C. Landau theory of the orthorhombic Fddd phase[J]. Physical Review E 2006,74, (1).
    [14]Takenaka, M.; Wakada, T.; Akasaka, S.; Nishitsuji, S.; Saijo, K.; Shimizu, H.; Kim, M. I.; Hasegawa, H. Orthorhombic Fddd network in diblock copolymer melts[J]. Macromolecules 2007,40, (13),4399-4402.
    [15]Tyler, C. A.; Qin, J.; Bates, F. S.; Morse, D. C. SCFT study of nonfrustrated ABC triblock copolymer melts[J]. Macromolecules 2007,40, (13),4654-4668.
    [16]Auschra, C.; Stadler, R. New Ordered Morphologies in Abc Triblock Copolymers[J]. Macromolecules 1993,26, (9),2171-2174.
    [17]Stadler, R.; Auschra, C.; Beckmann, J.; Krappe, U.; Voigtmartin, I.; Leibler, L. Morphology and Thermodynamics of Symmetrical Poly(a-Block-B-Bloch-C) Triblock Copolymers[J]. Macromolecules 1995,28, (9),3080-3097.
    [18]Balsamo, V.; Stadler, R. In Ellipsoidal core-shell cylindrical microphases in PS-b-PB-b-PCL triblock copolymers with a crystallizable matrix, NATO Advanced Research Workshop on Manipulation of Organization in Polymers Using Tandem Molecular Interactions, Il Ciocco, Italy, May 29-Jun 02,1996; Il Ciocco, Italy,1996; pp 153-165.
    [19]Breiner, U.; Krappe, U.; Abetz, V.; Stadler, R. Cylindrical morphologies in asymmetric ABC triblock copolymers[J]. Macromolecular Chemistry and Physics 1997,198,(4),1051-1083.
    [20]Erukhimovich, I.; Abetz, V.; Stadler, R. Microphase separation in ternary ABC block copolymers:Ordering control in molten diblock AB copolymers by attaching a short strongly interacting C block[J]. Macromolecules 1997,30, (24),7435-7443.
    [21]Breiner, U.; Krappe, U.; Thomas, E. L.; Stadler, R. Structural characterization of the "knitting pattern" in polystyrene-block-poly(ethylene-co-butylene)-block-poly(methylmethacryla te) triblock copolymers [J]. Macromolecules 1998,31, (1),135-141.
    [22]Brinkmann, S.; Stadler, R.; Thomas, E. L. New structural motif in hexagonally ordered cylindrical ternary (ABC) block copolymer microdomains[J]. Macromolecules 1998,31, (19),6566-6572.
    [23]Chatterjee, J.; Jain, S.; Bates, F. S. Comprehensive phase behavior of poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers[J]. Macromolecules 2007,40, (8),2882-2896.
    [24]Bates, F. S. Network phases in block copolymer melts[J]. Mrs Bulletin 2005,30, (7),525-532.
    [25]Epps, T. H.; Cochran, E. W.; Hardy, C, M.; Bailey, T. S.; Waletzko, R. S.; Bates, F. S. Network phases in ABC triblock copolymers[J]. Macromolecules 2004,37, (19), 7085-7088.
    [26]Epps, T. H.; Cochran, E. W.; Bailey, T. S.; Waletzko, R. S.; Hardy, C. M.; Bates, F. S. Ordered network phases in linear poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers[J]. Macromolecules 2004,37, (22),8325-8341.
    [27]Bailey, T. S.; Hardy, C. M.; Epps, T. H.; Bates, F. S. A noncubic triply periodic network morphology in poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers[J]. Macromolecules 2002,35, (18),7007-7017.
    [28]Zheng, W:; Wang, Z. G. Morphology of Abc Triblock Copolymers[J]. Macromolecules 1995,28, (21),7215-7223.
    [29]Takano, A.; Wada, S.; Sato, S.; Araki, T.; Hirahara, K.; Kazama, T.; Kawahara, S.; Isono, Y.; Ohno, A.; Tanaka, N.; Matsushita, Y. Observation of cylinder-based microphase-separated structures from ABC star-shaped terpolymers investigated by electron computerized tomography [J]. Macromolecules 2004,37, (26),9941-9946.
    [30]Hayashida, K.; Kawashima, W.; Takano, A.; Shinohara, Y.; Amemiya, Y.; Nozue, Y.; Matsushita, Y. Archimedean tiling patterns of ABC star-shaped terpolymers studied by microbeam small-angle X-ray scattering [J]. Macromolecules 2006,39, (14),4869-4872.
    [31]Hayashida, K.; Takano, A.; Arai, S.; Shinohara, Y.; Amemiya, Y.; Matsushita, Y. Systematic transitions of tiling patterns formed by ABC star-shaped terpolymers [J]. Macromolecules 2006,39, (26),9402-9408.
    [32]Takano, A.; Kawashima, W.; Noro, A.; Isono, Y.; Tanaka, N.; Dotera, T.; Matsushita, Y A mesoscopic Archimedean tiling having a new complexity in an ABC star polymer[J]. Journal of Polymer Science Part B-Polymer Physics 2005,43, (18), 2427-2432.
    [33]Gemma, T.; Hatano, A.; Dotera, T. Monte Carlo simulations of the morphology of ABC star polymers using the diagonal bond method[J]. Macromolecules 2002,35, (8), 3225-3237.
    [34]Dotera, T. Cell crystals:Kelvin's polyhedra in block copolymer melts[J]. Physical Review Letters 1999,82, (1),105-108.
    [35]Tang, P.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Morphology and phase diagram of complex block copolymers:ABC star triblock copolymers[J]. Journal of Physical Chemistry B 2004,108, (24),8434-8438.
    [36]Huang, C. I.; Fang, H. K.; Lin, C. H. Morphological transition behavior of ABC star copolymers by varying the interaction parameters [J]. Physical Review E 2008,77, (3).
    [1]Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L.; Fetters, L. J. Ordered Bicontinuous Double-Diamond Structure of Star Block Copolymers-a New Equilibrium Microdomain Morphology [J]. Macromolecules 1986,19, (8),2197-2202.
    [2]Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Bicontinuous Microdomain Morphology of Block Copolymers.1. Tetrapod-Network Structure of Polystyrene Polyisoprene Diblock Polymers[J]. Macromolecules 1987,20, (7), 1651-1662.
    [3]Matsen, M. W.; Schick, M. Stable and Unstable Phases of a Diblock Copolymer Melt[J]. Physical Review Letters 1994,72, (16),2660-2663.
    [4]Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. The Gyroid-a New Equilibrium Morphology in Weakly Segregated Diblock Copolymers[J]. Macromolecules 1994,27, (15),4063-4075.
    [5]Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Complex Phase-Behavior of Polyisoprene-Polystyrene Diblock Copolymers near the Order-Disorder Transition [J]. Macromolecules 1994,27, (23),6922-6935.
    [6]Khandpur, A. K.; Forster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition [J]. Macromolecules 1995,28, (26), 8796-8806.
    [7]Wondaraschek, H.; Muller, U., International Tables for Crystallography Volume A1:Space-Group Symmetry[M]. Dordrecht:Kluwer Academic Publishers,2004.
    [8]Shmueli, U., International Tables for Crystallography Volume B: Reciprocal Space[M]. Dordrecht:Kluwer Academic Publishers,2004.
    [9]Epps, T. H.; Cochran, E. W.; Bailey, T. S.; Waletzko, R. S.; Hardy, C. M.; Bates, F. S. Ordered network phases in linear poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers [J]. Macromolecules 2004,37, (22),8325-8341.
    [10]Zheng, W.; Wang, Z. G. Morphology of Abc Triblock Copolymers[J]. Macromolecules 1995,28, (21),7215-7223.
    [11]Tyler, C. A.; Qin, J.; Bates, F. S.; Morse, D. C. SCFT study of nonfrustrated ABC triblock copolymer melts[J]. Macromolecules 2007,40, (13),4654-4668.
    [12]Guo, Z. J.; Zhang, G. J.; Qiu, F.; Zhang, H. D.; Yang, Y. L.; Shi, A. C. Discovering ordered phases of block copolymers:New results from a generic Fourier-space approach[J]. Physical Review Letters 2008,101,028301.
    [13]Bailey, T. S.; Hardy, C. M.; Epps, T. H.; Bates, F. S. A noncubic triply periodic network morphology in poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers[J]. Macromolecules 2002,35, (18),7007-7017.
    [14]Epps, T. H.; Bailey, T. S.; Waletzko, R.; Bates, F. S. Phase behavior and block sequence effects in lithium perchlorate-doped poly(isoprene-b-styrene-b-ethylene oxide) and poly(styrene-b-isoprene-b-ethylene oxide) triblock copolymers [J]. Macromolecules 2003,36, (8),2873-2881.
    [15]Chatterjee, J.; Jain, S.; Bates, F. S. Comprehensive phase behavior of poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers [J]. Macromolecules 2007,40, (8),2882-2896.
    [16]Huckstadt, H.; Goldacker, T.; Gopfert, A.; Abetz, V. Core-shell double gyroid morphologies in ABC triblock copolymers with different chain topologies[J]. Macromolecules 2000,33, (10),3757-3761.
    [17]Shefelbine, T. A.; Vigild, M. E.; Matsen, M. W.; Hajduk, D. A.; Hillmyer, M. A.; Cussler, E. L.; Bates, F. S. Core-shell gyroid morphology in a poly(isoprene-block-styrene-block-dimethylsiloxane) triblock copolymer[J]. Journal of the American Chemical Society 1999,121, (37),8457-8465.
    [18]Mogi, Y.; Mori, K.; Matsushita, Y.; Noda, I. Tricontinuous Morphology of Triblock Copolymers of the Abc Type[J]. Macromolecules 1992,25, (20),5412-5415.
    [19]Matsushita, Y.; Tamura, M.; Noda, I. Tricontinuous Double-Diamond Structure Formed by a Styrene-Isoprene-2-Vinylpyridine Triblock Copolymer [J]. Macromolecules 1994,27, (13),3680-3682.
    [20]Mogi, Y.; Kotsuji, H.; Kaneko, Y.; Mori, K.; Matsushita, Y.; Noda, I. Preparation and Morphology of Triblock Copolymers of the Abc Type[J]. Macromolecules 1992, 25, (20),5408-5411.
    [21]Mogi, Y.; Nomura, M.; Kotsuji, H.; Ohnishi, K.; Matsushita, Y.; Noda, I. Superlattice Structures in Morphologies of the Abc Triblock Copolymers[J]. Macromolecules 1994,27, (23),6755-6760.
    [22]Epps, T. H.; Cochran, E. W.; Hardy, C. M.; Bailey, T. S.; Waletzko, R. S.; Bates, F. S. Network phases in ABC triblock copolymers[J]. Macromolecules 2004,37, (19), 7085-7088.
    [23]Stadler, R.; Auschra, C.; Beckmann, J.; Krappe, U.; Voigtmartin, I.; Leibler, L. Morphology and Thermodynamics of Symmetrical Poly(a-Block-B-Bloch-C) Triblock Copolymers[J]. Macromolecules 1995,28, (9),3080-3097.
    [24]Auschra, C.; Stadler, R. New, Ordered Morphologies in Abc Triblock Copolymers[J]. Macromolecules 1993,26, (9),2171-2174.
    [25]Krappe, U.; Stadler, R.; Voigtmartin, I. Chiral Assembly in Amorphous Abc Triblock Copolymers-Formation of a Helical Morphology in Polystyrene-Block-Polybutadiene-Block-Poly(Methyl Methacrylate) Block-Copolymers (Vol 28, Pg 4558,1995)[J]. Macromolecules 1995,28, (22), 7583-7583.
    [26]Stocker, W.; Beckmann, J.; Stadler, R.; Rabe, J. P. Surface reconstruction of the lamellar morphology in a symmetric poly(styrene-block-butadiene-block-methyl methacrylate) triblock copolymer:A tapping mode scanning force microscope study [J]. Macromolecules 1996,29, (23),7502-7507.
    [27]Breiner, U.; Krappe, U.; Abetz, V.; Stadler, R. Cylindrical morphologies in asymmetric ABC triblock copolymers [J]. Macromolecular Chemistry and Physics 1997,198,(4),1051-1083.
    [28]Abetz, V.; Goldacker, T. Formation of superlattices via blending of block copolymers [J]. Macromolecular Rapid Communications 2000,21, (1),16-34.
    [29]Hayashida, K.; Kawashima, W.; Takano, A.; Shinohara, Y.; Amemiya, Y.; Nozue, Y.; Matsushita, Y Archimedean tiling patterns of ABC star-shaped terpolymers studied by microbeam small-angle X-ray scattering [J]. Macromolecules 2006,39, (14),4869-4872.
    [1]Bates, F. S.; Fredrickson, G. H. Block copolymers-Designer soft materials[J]. Physics Today 1999,52, (2),32-38.
    [2]Hamley, I. W., The Physics of Block Copolymers[M]. Oxford University Press: New York,1998.
    [3]Bates, F. S.; Fredrickson, G. H. Block Copolymer Thermodynamics-Theory and Experiment[J]. Annual Review of Physical Chemistry 1990,41,525-557.
    [4]Bates, F. S. Network phases in block copolymer melts[J]. Mrs Bulletin 2005,30, (7),525-532.
    [5]Matsen, M. W.; Schick, M. Stable and Unstable Phases of a Diblock Copolymer Melt[J]. Physical Review Letters 1994,72, (16),2660-2663.
    [6]Tyler, C. A.; Morse, D. C. Orthorhombic Fddd network in triblock and diblock copolymer melts[J]. Physical Review Letters 2005,94, (20).
    [7]Matsushita, Y.; Tamura, M.; Noda, I. Tricontinuous Double-Diamond Structure Formed by a Styrene-Isoprene-2-Vinylpyridine Triblock Copolymer[J]. Macromolecules 1994,27, (13),3680-3682.
    [8]Mogi, Y.; Nomura, M.; Kotsuji, H.; Ohnishi, K.; Matsushita, Y.; Noda, I. Superlattice Structures in Morphologies of the Abc Triblock Copolymers [J]. Macromolecules 1994,27, (23),6755-6760.
    [9]Mogi, Y.; Mori, K.; Kotsuji, H.; Matsushita, Y.; Noda, I.; Han, C. C. Molecular-Weight Dependence of the Lamellar Domain Spacing of Abc Triblock Copolymers and Their Chain Conformations in Lamellar Domains[J]. Macromolecules 1993,26,(19),5169-5173.
    [10]Bailey, T. S.; Hardy, C. M.; Epps, T. H.; Bates, F. S. A noncubic triply periodic network morphology in poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers[J]. Macromolecules 2002,35, (18),7007-7017.
    [11]Epps, T. H.; Bailey, T. S.; Waletzko, R.; Bates, F. S. Phase behavior and block sequence effects in lithium perchlorate-doped poly(isoprene-b-styrene-b-ethylene oxide) and poly(styrene-b-isoprene-b-ethylene oxide) triblock copolymers[J]. Macromolecules 2003,36, (8),2873-2881.
    [12]Epps, T. H.; Cochran, E. W.; Hardy, C. M.; Bailey, T. S.; Waletzko, R. S.; Bates, F. S. Network phases in ABC triblock copolymers[J]. Macromolecules 2004,37, (19), 7085-7088.
    [13]Epps, T. H.; Cochran, E. W.; Bailey, T. S.; Waletzko, R. S.; Hardy, C. M.; Bates, F. S. Ordered network phases in linear poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers[J]. Macromolecules 2004,37, (22),8325-8341.
    [14]Epps, T. H.; Chatterjee, J.; Bates, F. S. Phase transformations involving network phases in ISO triblock copolymer-homopolymer blends[J]. Macromolecules 2005,38, (21),8775-8784.
    [15]Epps, T. H.; Bates, F. S. Effect of molecular weight on network formation in linear ABC triblock copolymers[J]. Macromolecules 2006,39,(7),2676-2682.
    [16]Chatterjee, J.; Jain, S.; Bates, F. S. Comprehensive phase behavior of poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers[J]. Macromolecules 2007,40, (8),2882-2896.
    [17]Gido, S. P.; Schwark, D. W.; Thomas, E. L.; Goncalves, M. D. Observation of a Nonconstant Mean-Curvature Interface in an Abc Triblock Copolymer[J]. Macromolecules 1993,26, (10),2636-2640.
    [18]Shefelbine, T. A.; Vigild, M. E.; Matsen, M. W.; Hajduk, D. A.; Hillmyer, M. A.; Cussler, E. L.; Bates, F. S. Core-shell gyroid morphology in a poly(isoprene-block-styrene-block-dimethylsiloxane) triblock copolymer[J]. Journal of the American Chemical Society 1999,121, (37),8457-8465.
    [19]Huckstadt, H.; Goldacker, T.; Gopfert, A.; Abetz, V. Core-shell double gyroid morphologies in ABC triblock copolymers with different chain topologies [J]. Macromolecules 2000,33, (10),3757-3761.
    [20]Auschra, C.; Stadler, R. New Ordered Morphologies in Abc Triblock Copolymers [J]. Macromolecules 1993,26, (9),2171-2174.
    [21]Stadler, R.; Auschra, C.; Beckmann, J.; Krappe, U.; Voigtmartin, I.; Leibler, L. Morphology and Thermodynamics of Symmetrical Poly(a-Block-B-Bloch-C) Triblock Copolymers [J]. Macromolecules 1995,28, (9),3080-3097.
    [22]Krappe, U.; Stadler, R.; Voigtmartin, I. Chiral Assembly in Amorphous Abc Triblock Copolymers-Formation of a Helical Morphology in Polystyrene-Block-Polybutadiene-Block-Poly(Methyl Methacrylate) Block-Copolymers[J]. Macromolecules 1995,28, (13),4558-4561.
    [23]Jung, K.; Abetz, V.; Stadler, R. Thermodynamically controlled morphological disorder in a microphase-separated cylindrical block copolymer[J]. Macromolecules 1996,29,(3),1076-1078.
    [24]Stocker, W.; Beckmann, J.; Stadler, R.; Rabe, J. P. Surface reconstruction of the lamellar morphology in a symmetric poly(styrene-block-butadiene-block-methyl methacrylate) triblock copolymer:A tapping mode scanning force microscope study[J]. Macromolecules 1996,29, (23),7502-7507.
    [25]Breiner, U.; Krappe, U.; Abetz, V.; Stadler, R. Cylindrical morphologies in asymmetric ABC triblock copolymers [J]. Macromolecular Chemistry and Physics 1997,198,(4),1051-1083.
    [26]Breiner, U.; Krappe, U.; Thomas, E. L.; Stadler, R. Structural characterization of the "knitting pattern" in polystyrene-block-poly(ethylene-co-butylene)-block-poly(methylmethacryla te) triblock copolymers [J]. Macromolecules 1998,31, (1),135-141.
    [27]Brinkmann, S.; Stadler, R.; Thomas, E. L. New structural motif in hexagonally ordered cylindrical ternary (ABC) block copolymer microdomains[J]. Macromolecules 1998,31, (19),6566-6572.
    [28]Balsamo, V.; von Gyldenfeldt, F.; Stadler, R. "Superductile" semicrystalline ABC triblock copolymers with the polystyrene block (A) as the matrix[J]. Macromolecules 1999,32,(4),1226-1232.
    [29]Ott, H.; Abetz, V.; Altstadt, V. Morphological studies of poly(styrene)-block-poly(ethylene-co-butylene)-block-poly(methyl methacrylate) in the composition region of the "knitting pattern" morphology [J]. Macromolecules 2001,34, (7),2121-2128.
    [30]Matsushita, Y. Creation of hierarchically ordered nanophase structures in block polymers having various competing interactions[J]. Macromolecules 2007,40, (4), 771-776.
    [31]Takano, A.; Wada, S.; Sato, S.; Araki, T.; Hirahara, K.; Kazama, T.; Kawahara, S.; Isono, Y.; Ohno, A.; Tanaka, N.; Matsushita, Y. Observation of cylinder-based microphase-separated structures from ABC star-shaped terpolymers investigated by electron computerized tomography [J]. Macromolecules 2004,37, (26),9941-9946.
    [32]Hayashida, K.; Kawashima, W.; Takano, A.; Shinohara, Y.; Amemiya, Y.; Nozue, Y.; Matsushita, Y. Archimedean tiling patterns of ABC star-shaped terpolymers studied by microbeam small-angle X-ray scattering [J]. Macromolecules 2006,39, (14),4869-4872.
    [33]Hayashida, K.; Takano, A.; Arai, S.; Shinohara, Y.; Amemiya, Y.; Matsushita, Y Systematic transitions of tiling patterns formed by ABC star-shaped terpolymers[J]. Macromolecules 2006,39, (26),9402-9408.
    [34]Takano, A.; Kawashima, W.; Noro, A.; Isono, Y.; Tanaka, N.; Dotera, T.; Matsushita, Y A mesoscopic Archimedean tiling having a new complexity in an ABC star polymer[J]. Journal of Polymer Science Part B-Polymer Physics 2005,43, (18), 2427-2432.
    [35]Gemma, T.; Hatano, A.; Dotera, T. Monte Carlo simulations of the morphology of ABC star polymers using the diagonal bond method [J]. Macromolecules 2002,35, (8), 3225-3237.
    [36]Tang, P.; Qiu, F.; Zhang, H. D.; Yang, Y L. Morphology and phase diagram of complex block copolymers:ABC star triblock copolymers[J]. Journal of Physical Chemistry B 2004,108, (24),8434-8438.
    [37]Huang, C. I.; Fang, H. K.; Lin, C. H. Morphological transition behavior of ABC star copolymers by varying the interaction parameters [J]. Physical Review E 2008,77, (3).
    [38]Hayashida, K.; Saito, N.; Arai, S.; Takano, A.; Tanaka, N.; Matsushita, Y. Hierarchical morphologies formed by ABC star-shaped terpolymers [J]. Macromolecules 2007,40, (10),3695-3699.
    [39]Hayashida, K.; Takano, A.; Dotera, T.; Matsushita, Y Giant zincblende structures formed by an ABC star-shaped terpolymer/homopolymer blend system[J]. Macromolecules 2008,41, (17),6269-6271.
    [1]Guo, Z. J.; Zhang, G. J.; Qiu, F.; Zhang, H. D.; Yang, Y. L.; Shi, A. C. Discovering ordered phases of block copolymers:New results from a generic Fourier-space approach[J]. Physical Review Letters 2008,101,028301.
    [2]Zheng, W.; Wang, Z. G. Morphology of Abc Triblock Copolymers[J]. Macromolecules 1995,28, (21),7215-7223.
    [3]Bailey, T. S. Morphological behavior spanning the symmetric AB and ABC triblock copolymer states [D]. University of Minnesota,2001.
    [4]Mogi, Y.; Kotsuji, H.; Kaneko, Y.; Mori, K.; Matsushita, Y.; Noda, I. Preparation and Morphology of Triblock Copolymers of the Abc Type[J]. Macromolecules 1992, 25, (20),5408-5411.
    [5]Mogi, Y.; Mori, K.; Matsushita, Y.; Noda, I. Tricontinuous Morphology of Triblock Copolymers of the Abc Type[J]. Macromolecules 1992,25, (20),5412-5415.
    [6]Matsushita, Y.; Tamura, M.; Noda, I. Tricontinuous Double-Diamond Structure Formed by a Styrene-Isoprene-2-Vinylpyridine Triblock Copolymer[J]. Macromolecules 1994,27,(13),3680-3682.
    [7]Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L. Fetters, L. J. Ordered Bicontinuous Double-Diamond Structure of Star Block Copolymers-a New Equilibrium Microdomain Morphology [J]. Macromolecules 1986,19, (8),2197-2202.
    [8]Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Bicontinuous Microdomain Morphology of Block Copolymers.1. Tetrapod-Network Structure of Polystyrene Polyisoprene Diblock Polymers[J]. Macromolecules 1987,20, (7), 1651-1662.
    [9]Matsen, M. W.; Schick, M. Stable and Unstable Phases of a Linear Multiblock Copolymer Melt[J]. Macromolecules 1994,27, (24),7157-7163.
    [10]Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. The Gyroid-a New Equilibrium Morphology in Weakly Segregated Diblock Copolymers[J]. Macromolecules 1994,27, (15),4063-4075.
    [11]Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Complex Phase-Behavior of Polyisoprene-Polystyrene Diblock Copolymers near the Order-Disorder Transition [J]. Macromolecules 1994,27, (23),6922-6935.
    [12]Khandpur, A. K.; Forster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition [J]. Macromolecules 1995,28, (26), 8796-8806.
    [13]Bailey, T. S.; Hardy, C. M.; Epps, T. H.; Bates, F. S. A noncubic triply periodic network morphology in poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers[J]. Macromolecules 2002,35, (18),7007-7017.
    [14]Epps, T. H.; Bailey, T. S.; Waletzko, R.; Bates, F. S. Phase behavior and block sequence effects in lithium perchlorate-doped poly(isoprene-b-styrene-b-ethylene oxide) and poly(styrene-b-isoprene-b-ethylene oxide) triblock copolymers [J]. Macromolecules 2003,36, (8),2873-2881.
    [15]Epps, T. H.; Cochran, E. W.; Hardy, C. M.; Bailey, T. S.; Waletzko, R. S.; Bates, F. S. Network phases in ABC triblock copolymers [J]. Macromolecules 2004,37, (19), 7085-7088.
    [16]Epps, T. H.; Cochran, E. W.; Bailey, T. S.; Waletzko, R. S.; Hardy, C. M.; Bates, F. S. Ordered network phases in linear poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers [J]. Macromolecules 2004,37, (22),8325-8341.
    [17]Epps, T. H.; Chatterjee, J.; Bates, F. S. Phase transformations involving network phases in ISO triblock copolymer-homopolymer blends[J]. Macromolecules 2005,38, (21),8775-8784.
    [18]Epps, T. H.; Bates, F. S. Effect of molecular weight on network formation in linear ABC triblock copolymers [J]. Macromolecules 2006,39, (7),2676-2682.
    [19]Chatterjee, J.; Jain, S.; Bates, F. S. Comprehensive phase behavior of poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers [J]. Macromolecules 2007,40, (8),2882-2896.
    [20]Bates, F. S. Network phases in block copolymer melts[J]. Mrs Bulletin 2005,30, (7),525-532.
    [21]Shefelbine, T. A.; Vigild, M. E.; Matsen, M. W.; Hajduk, D. A.; Hillmyer, M. A.; Cussler, E. L.; Bates, F. S. Core-shell gyroid morphology in a poly(isoprene-block-styrene-block-dimethylsiloxane) triblock copolymer[J]. Journal of the American Chemical Society 1999,121, (37),8457-8465.
    [22]Huckstadt, H.; Goldacker, T.; Gopfert, A.; Abetz, V. Core-shell double gyroid morphologies in ABC triblock copolymers with different chain topologies[J]. Macromolecules 2000,33, (10),3757-3761.
    [23]Ott, H.; Abetz, V.; Altstadt, V. Morphological studies of poly(styrene)-block-poly(ethylene-co-butylene)-block-poly(methyl methacrylate) in the composition region of the "knitting pattern" morphology [J]. Macromolecules 2001,34, (7),2121-2128.
    [24]Auschra, C.; Stadler, R. New Ordered Morphologies in Abc Triblock Copolymers[J]. Macromolecules 1993,26, (9),2171-2174.
    [25]Krappe, U.; Stadler, R.; Voigtmartin, I. Chiral Assembly in Amorphous Abc Triblock Copolymers-Formation of a Helical Morphology in Polystyrene-Block-Polybutadiene-Block-Poly(Methyl Methacrylate) Block-Copolymers (Vol 28, Pg 4558,1995)[J]. Macromolecules 1995,28, (22), 7583-7583.
    [26]Abetz, V.; Stadler, R. In ABC and BAC triblock copolymers-Morphological engineering by variation of the block sequence,2nd International Symposium on Molecular Order and Mobility in Polymer Systems, St Petersburg, Russia, May 21-24, 1996; St Petersburg, Russia,1996; pp 19-26.
    [27]Breiner, U.; Krappe, U.; Stadler, R. Evolution of the "knitting pattern" morphology in ABC triblock copolymers [J]. Macromolecular Rapid Communications 1996,17,(8),567-575.
    [28]Stadler, R.; Auschra, C.; Beckmann, J.; Krappe, U.; Voigtmartin, I.; Leibler, L Morphology and Thermodynamics of Symmetrical Poly(a-Block-B-Bloch-C) Triblock Copolymers[J]. Macromolecules 1995,28, (9),3080-3097.
    [29]Breiner, U.; Krappe, U.; Abetz, V.; Stadler, R. Cylindrical morphologies in asymmetric ABC triblock copolymers[J]. Macromolecular Chemistry and Physics 1997,198,(4),1051-1083.
    [30]Breiner, U.; Krappe, U.; Jakob, T.; Abetz, V.; Stadler, R. Spheres on spheres-a novel spherical multiphase morphology in polystyrene-block-polybutadiene-block-poly(methyl methacrylate) triblock copolymers[J]. Polymer Bulletin 1998,40, (2-3),219-226.
    [31]Stocker, W.; Beckmann, J.; Stadler, R.; Rabe, J. P. Surface reconstruction of the lamellar morphology in a symmetric poly(styrene-block-butadiene-block-methyl methacrylate) triblock copolymer:A tapping mode scanning force microscope study [J]. Macromolecules 1996,29, (23),7502-7507.
    [32]Breiner, U.; Krappe, U.; Thomas, E. L.; Stadler, R. Structural characterization of the "knitting pattern" in polystyrene-block-poly(ethylene-co-butylene)-block-poly(methylmethacryla te) triblock copolymers[J]. Macromolecules 1998,31, (1),135-141.
    [33]Nakazawa, H.; Ohta, T. Microphase Separation of Abc-Type Triblock Copolymers[J]. Macromolecules 1993,26, (20),5503-5511.
    [34]Matsen, M. W. Gyroid versus double-diamond in ABC triblock copolymer melts[J]. Journal of Chemical Physics 1998,108, (2),785-796.
    [35]Tang, P.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Morphology and phase diagram of complex block copolymers:ABC linear triblock copolymers[J]. Physical Review E 2004,69, (3).
    [36]Tyler, C. A.; Qin, J.; Bates, F. S.; Morse, D. C. SCFT study of nonfrustrated ABC triblock copolymer melts[J]. Macromolecules 2007,40, (13),4654-4668.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700