用户名: 密码: 验证码:
纳米磁性添加剂润滑油的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
润滑油性能取决于润滑油中添加剂的含量及性能,性能优良的添加剂能够大大提高润滑油的极压、耐磨性能。纳米润滑油添加剂和磁流体润滑是近年来国内外研究热点。国内外研究表明,多种类型的纳米粒子添加到润滑油中可以大大改善润滑油性能,达到抗磨减磨的目的。磁流体润滑与常规润滑相比较,在外加磁场作用下,能准确地充满润滑表面,实现连续润滑。但是,很多国内外关于纳米添加剂和磁流体润滑的研究往往侧重于某一方面,缺乏系统性。
     本文中制备的纳米MnZnFe_2O_4为磁性颗粒,平均粒径为5.2nm。纳米MnZnFe_2O_4磁性颗粒既可以无外加磁场下,作为普通纳米润滑油添加剂直接加入到润滑油中,也可以在外加磁场下实现磁流体润滑。
     本文是从影响润滑和摩擦的几个重要因素来综合讨论纳米添加剂、磁场对于润滑油润滑与摩擦性能的改变,从而探讨其作用机理:
     1)黏度特性。无论在流体动压润滑、弹流润滑、薄膜润滑以及边界润滑中,润滑油的黏度都会影响油膜的形成、油膜的厚度、油膜的形态以及油膜的承载能力。
     2)成膜能力。若润滑油具有高的成膜能力,就能使润滑油在摩擦过程中能够快速形成稳定的、高强度的、厚的油膜,隔开摩擦界面,从而改善润滑油的极压、耐磨性能,达到抗磨减磨的目的。
     3)承载能力。承载能力是润滑油膜强度大小的标志。
     4)摩擦学特性。摩擦系数、磨斑直径、摩擦温升是润滑性能的综合表现。
     研究表明,添加纳米磁性颗粒润滑油,无外加磁场下:①质量分数小于5%时,黏度降低;质量分数小于50%时,黏度增加缓慢;质量分数大于50%时,黏度大幅增加。②质量分数小于5%时,黏度降低,但润滑油油膜强度大幅提高,较基础油承载能力增加2倍以上。③相同工作条件下,较基础油油膜中心厚度增加,特别是形成薄膜润滑的转化膜厚增加3倍。④高载和启动阶段,较基础油摩擦系数降低,磨斑直径减小。外加磁场下,添加纳米磁性颗粒润滑油较基础油:黏度、承载能力进一步提高,而同等条件下的摩擦系数、磨斑直径进一步减小。
     因此,笔者提出:无外加磁场作用下,若磁性颗粒之间的间距减小到一定值,磁性颗粒之间、磁性颗粒与金属表面之间也会形成较弱的磁力矩,使得部分相邻磁性颗粒形成动态聚集,部分磁性颗粒吸附于金属表面,有助于快速形成强度高且厚的物理吸附膜。
     而外加磁场可以进一步提高润滑油黏度,增大摩擦副表面吸附势能,还可能使得磁性颗粒之间形成较短的、不稳定的颗粒链,有助于快速形成强度更高、更厚的物理吸附膜。试验证明外加磁场可以进一步提高添加纳米磁性颗粒润滑油的摩擦学性能,并快速形成高强度的物理吸附膜,改善高载和启动阶段的润滑性能。
     在试验及理论分析的基础上,本文建立了无外加磁场下和外加磁场下,含纳米磁性颗粒润滑油薄膜润滑物理模型,为研究添加纳米磁性颗粒润滑油润滑机理提供了理论基础。
Performance of lubricant oil depends on additive contents and its properties. High performance additives can largely improve the load-carrying and antiwear capacity of lubricant oil. Nanoparticles as lubricant additives and magnetic fluid lubrication are research hotspots at home and abroad. Researches show that lubricant performance can be largely improved with different types of nanoparticles. Magnetic fluid lubrication can brim lubricant surfaces and realize continuous lubrication. However, studies on the nano additives and magnetic fluid lubrication tend to focus on one aspect, are not systematic.
     MnZnFe_2O_4 magnetic nanoparticles with a mean particle size of 5.2nm can be prepared. MnZnFe_2O_4 magnetic nanoparticles can be directly added into lubricant oil and also be used as magnetic additives under external magnetic field.
     This article had a comprehensive discussion on the effect of nano-additives, magnetic field on the lubrication and friction properties from some important impact factors and studied lubricant mechanism:
     1) Viscosity . In terms of hydrodynamic lubrication, elastohydrodynamic lubrication, thin film lubrication and boundary lubrication, the lubricant viscosity will affect the film formation, film thickness, film morphology, as well as the load-carrying capability.
     2) The film-forming ability. With a high film-forming ability, lubricant oil can quickly form a stable, high strength, thick film which separate friction interface in the friction process,and get better anti-wear ,friction-reducing capability.
     3) Load carrying capability. Load-carrying capacity indicates lubricant film strength.
     4) Tribological properties. Friction coefficient, wear scar diameter, oil temperature assess the comprehensive lubricant performance .
     The results showed that: For the lubricant oil with magnetic nanoparticals as additive, under no magnetic field,①When mass fraction was less than 5.00%, the viscosity was reduced; when the mass fraction was less than 50%, more than 5.00%, the viscosity increases slowly; when the mass fraction was greater than 50%, the viscosity increased significantly.②when the mass fraction was less than 5%, viscosity decreases, while oil film strength increased greatly and load-carrying capability increased to 2 times that of the base oil.③In the same working conditions, film center thickness increased, especially critical film thickness of the thin film lubrication increased to 3 times that of the base oil.④Compared with the base oil, friction coefficient and wear scar diameter decreased at high-load and start-up phase. Under external magnetic field, lubricant oil with magnetic nanoparticals as additive exhibited a better performance than base oil: viscosity, load-carrying capacity further increased, while the friction coefficient, the wear scar diameter further decreased in the same conditions.
     Therefore, it was pointed out: When distance is smaller to some value, weak magnetic-moment will be formed among magnetic particles, magnetic particles and the metal surface. It makes part of the adjacent magnetic particles form a dynamic aggregation, some magnetic particles be adsorbed on the metal surface, which contribute to form a high strength and thick physical adsorbed film.
     The external magnetic field can further enhance the viscosity and the surface adsorption potential of the friction pair. It can also help to form shorter, unstable particle chains among the magnetic nanoparticles. So a higher strength, thicker adsorbed film is formed rapidly. Experiment showed that magnetic field can further improve tribological properties of lubricating oil with magnetical nanoparticles as additive, and help to form a high-intensity physical adsorbed film quickly, improve the lubrication performance in high-load and start-up state.
     Based on the test and theoretical analysis, physical models of thin film lubrication which contained magnetic nanoparticles under no external magnetic field and external magnetic field was established. It provides a theoretical basis to study the lubricant mechanism of lubricant oil with magnetic nanoparticles as Additive.
引文
[1]温诗铸.纳米摩擦学研究进展[J].机械工程学报,2007,43(10):1-7.
    [2]雒建斌,温诗铸.薄膜润滑特性和机理研究[J].中国科学,1996,26(9):811-818.
    [3]雒建斌,温诗铸,黄平.弹流润滑与薄膜润滑转化关系的研究[J].摩擦学学报,1999,19(1):71-77.
    [4]温诗铸,雒建斌.纳米薄膜润滑研究[J].清华大学学报:自然科学版, 2001,41(4/5):63-68.
    [5]雒建斌,温诗铸,黄平,路新春.纳米及薄膜润滑的特性研究[J].仪器仪表学报,1995, 16(1):240-244.
    [6]沈明武,雒建斌,温诗铸.金刚石纳米颗粒对薄膜润滑性能的影响[J].机械工程学报,2001,37(1):14-18.
    [7]沈明武,雒建斌,温诗铸,姚俊斌.液晶添加剂的纳米级润滑性能与机理[J].科学通报,2001,46(7):603-608.
    [8] ZHANG Chao-hui,LUO Jian-bi.Lubrication and Surface Modificationin Nano Scale[J].纳米技术与精密工程,2004,2(4):247-256.
    [9]曲庆文,胡亚红,朱均.薄膜润滑分层模型[J].机械工程学报,1988,34(6):5-10.
    [10]曲庆文,朱均.流体吸附层厚度及位能界面的划分[J].机械科学与技术1998,17(6):895-897.
    [11]曲庆文,贾庆轩,郑波,马浩,柴山.薄膜润滑的分层理论与实验[J].中国机械工程,2000, 11(4):376-378.
    [12]曲庆文,朱均.粘度修正雷诺方程的全域解模拟计算[J].机械工程学报,1997,33(4):26-300.
    [13]曲庆文,贾庆轩,马浩,柴山.流体粘度的微观表达[J].机械科学与技术,2000,19(2):187-188.
    [14]曲庆文.薄膜润滑条件下考虑剪切稀化时温度分布的研究[J].润滑与密封,2006,173(1):26-28.
    [15]曾凡林,孙毅.纳米薄膜润滑的分子动力学模拟[J].哈尔滨工业大学学,2006,38(9):1426-1430.
    [16]曾凡,林孙毅.纳米薄膜润滑及其改性的分子动力学模拟[J].机械工程学报,2006,42(7):138-143.
    [17]蒋开,陈云飞,庄苹,杨决宽,唐明兵.纳米尺度边界滑移的分子动力学模拟研究[J].摩擦学学报,2005,25(3):238-241.
    [18]张朝辉,雒建斌,温诗铸.有序薄膜润滑的速度场[J].机械工程学报,2004,40(9):1-4.
    [19]赵猛,邹继斌,胡建辉.磁场作用下磁流体粘度特性的研究[J].机械工程材料,2006, 20(8):64-67.
    [20]刘同冈,刘书进,杨志伊,磁流体在磁场中的粘度测试研究[J].润滑与密封,2006,181(9):77-79.
    [21]王利军,郭楚文,杨志伊.磁流体粘度特性研究[J].润滑与密封,2006,8(8):46-48.
    [22]杨志伊,王坤东.磁场中磁流体粘度测试系统的实现[J].机械工程材料,2003,27(5):22-25.
    [23]王丽,郭楚文,汤云峰.锰锌铁氧体磁流体粘磁特性实验研究[J].金属功能材,2006,13(1):14-16.
    [24]李强,宣益民,王健.磁流体粘度的实验研究[J].工程热物理学报,2005,26(5):859-861.
    [25]冯雪梅,王耀华.磁流体粘度特性的测量研究[J].湖北工业大学学报,2006,21(3):143-145.
    [26]安琦,孙林.磁流体润滑滑动轴承的研制和性能研究[J].机械科学与技术,2004,23(4):461-463.
    [27]冯雪君,杨志伊.MnZnFe_2O_4磁性纳米添加剂抗磨减磨及自修复效应研究[J].中国矿业大学校报,2007,38(9):655-658.
    [28]冯雪君,杨志伊.添加纳米磁性微粒的润滑油摩擦学行为研究[J].润滑与密封,2007,32 (3):122-124.
    [29]王利军,郭楚文,杨志伊.磁场作用下锰锌铁氧磁流体承载能力试验研究[J].中国矿业大学校报,2007,36(6):833-836.
    [30]何世权,杨逢瑜,杨瑞.滑动轴承磁流体薄膜和润滑特性的研究[J].润滑与密封,2007,32(1):126-129.
    [31]李健,汤云峰.磁流体应用于滑动摩擦的润滑理论及实验研究[J].电工材料,2004, (3):29-34.
    [32]王利军,郭楚文,杨志伊,张东海.Fe_3O_4磁流体润滑摩擦因数试验研究[J].润滑与密封,2006,179(7):142-157.
    [33]曹东,刘桂雄,邱东勇,程韬波.磁流体传感器研究现状与发展趋势[J].传感器与微系统,2006,25(5):5-9.
    [34] Li Xuehui,Zhang Ping,Yuan Xuede,Liu Zhongfan, An Hong. Research on Corresponding Variation between Apparent Density of Magnetic Fluid and Its Applied Magnetic Field[J].稀有金属材料与工程,2005,34(5):688-690.
    [35]高良凤,傅晓炜,王瑞金.磁流体润滑技术[J].新技术新工艺,2005,(7):29-31.
    [36]邹茜,沈瀛生,赵弋洋,孟永钢,温诗铸.铁磁流体表面张力的测试[J].清华大学学报:自然科学版,2000,40(5):73-75.
    [37]李强,宣益明,李锐.非均匀磁场中磁流体热磁对流的实验研究[J].工程热物理学报,2006,27(4):676-678.
    [38]王英杰,魏冬青,王璐,龚自正,郭永新.偶极流体的理论研究[J].原子与分子物理学报,2007,24(3):451-455.
    [39]池长青.铁磁流体润滑中的非牛顿流影响[J].北京航空航天大学学报,2001,27(1):88-92.
    [40]陈娴敏,李建,白浪.CuFe_2O_4纳米微粒及其自形成磁性液体的磁性研究[J].西南大学学报:自然科学版,2007,29(7):38-43.
    [41]郑勇林.铁磁纳米颗粒系统磁性质对尺寸和各向异性效应的依赖[J].云南大学学报:自然科学版,2008,30(3):276-280.
    [42]池长青.均匀磁场中铁磁流体润滑的平板滑块的性能[J].北京航空航天大学学报,2001,27(1):93-96.
    [43]贾华东,柳刚,范荣焕.纳米材料作为润滑添加剂的研究回顾及目前的发展动向与展望[J].润滑与密封,2006,175(3):181-184.
    [44]欧忠文,刘维民,刘朝辉,陈国需.超分散稳定纳米硫化锌油样的摩擦学综合评价及作用机制研究[J].润滑与密封,2008,33(8):1-5.
    [45]谢学兵,陈国需,孙霞,朱德振,吴建武.润滑油纳米TiO_2添加剂的摩擦自修复及其性能研究[J].中国表面工程,2008,21(2):36-39.
    [46]董凌,陈国需,李华峰.SiO_2/SnO_2复合纳米微粒添加剂的摩擦学性能及其对磨损表面的修复作用研究[J].摩擦学报,2004,24(6):517-521.
    [47]周立涛,刘伟.Al_2O_3六方BN纳米润滑油的摩擦学性能试验研究[J].润滑与密封,2007,32(2):159-161.
    [48]肖舟,侯根良,苏勋家,乔小平.载荷对硅酸盐/纳米铜复合添加剂摩擦学性能的影响[J].润滑与密封,2008,33(8):58-61.
    [49]夏会芳,徐建生,周红星.纳米铜作润滑油添加剂的研究[J].材料开发与应用,2008,23(2):40-42.
    [50]欧雪梅,葛长路,汪剑.润滑油添加剂分散纳米铜的摩擦学性能[J].中国矿业大学学报,2005,34(5):640-643.
    [51]曲建俊,宋宝玉,齐毓霖.含超细颗粒固液二相流对PSZ陶瓷与钢摩擦磨损特性的影响[J]. 2000,(6):44-46.
    [52]林冠宇,王淑荣,王立朋.MoS_2基复合薄膜润滑球轴承在真空环境下的摩擦性能研究[J].摩擦学学报,2008,28(4):377-38.
    [53]郭志光,顾卡丽,徐建生,于波,周峰,刘维民.有机钼及其复合纳米润滑添加剂的摩擦磨损性能研究[J].摩擦学学报,2005,25(4):317-320.
    [54]刘维民.纳米颗粒及其在润滑油脂中的应用[J].摩擦学学报,2003,23(4):265-267
    [55]彭道儒,戴钧陶.PDR-纳米抗磨剂在液压、气动和密封件上的应用与研究[J].液压气动与密封,2008,(3):17-19.
    [56]王伟,刘昆,焦明华,张斌.液固二相流润滑下活塞环缸套摩擦特性研究[J].合肥工业大学学报:自然科学版,2005,28(1):26-28.
    [57]张斌,刘火昆,焦明华,王伟.液固二相流体润滑状态下的热效应分析[J].合肥工业大学学报:自然科学版,2005,28(4):337-340.
    [58]邓嘉胤,杨健,王乐勤,杜红霞,王娜.光滑粒子动力学方法的固液二相流研究[J].浙江大学学报:工学版,2007,41,(5):853-858.
    [59]吴清松,胡茂彬.颗粒流的动力学模型和实验研究进展[J].力学进展,2002,32(2):250-255.
    [60]刘伟.考虑颗粒行为的液一固二相流体润滑研究[D].合肥工业大学,2008.
    [61]张毅.磁性铁氧体纳米结构的制备与物性研究[D].东南大学,2005.
    [62]朱路平.微纳米结构磁性材料的设计、制备及磁性能研究[D].中国科学院理化技术研究所,2008.
    [63]熊鹰.磁性纳米材料的合成及磁场诱导组装[D].中国科学技术大学,2007.
    [64]米文博.磁性纳米颗粒薄膜的微观结构、磁性质和输运特性[D].天津大学理学院,2005.
    [65]刘仁德.新型油溶性有机金属盐化合物与纳米金属粒子的制备及其摩擦学特性研究[D].上海大学机电工程与自动化学院,2004.11
    [66]纳米金属铝颗粒的结构调控及其对润滑油润滑性的影响[D].天津大学材料科学与工程学院,2006.
    [67]查五生.(Nd,Pr)FeB系纳米晶永磁的制备及其结构与磁性能[D].四川大学材料科学与工程学院,2004.
    [68]聂建华.高性能MnZn铁氧体材料的制备及机理研究[D].华中科技大学,2004.
    [69]封云.润滑材料及热作用对金属纳米铝颗粒摩擦学性能的影响[D].天津大学材料科学与工程学院,2005.
    [70]国秋菊.铁氧基磁流体的制备及作为润滑添加剂的性能研究[D].济南大学,2007.
    [71]蒋开.超滑现象及超薄膜润滑机理的分子动力学研究[D].东南大学机械工程系,2005.
    [72]罗彬宾.纳米尺度下润滑摩擦的分子动力学模拟[D].东南大学,2006.
    [73]叶荣昌.锰锌铁氧体磁流体的研制及在磁场中磁流体黏度测定的研究[D].中国矿业大学机电学院,2001.
    [74]曲庆文.薄膜润滑理论[G].北京:科学出版社,2006:
    [75]温诗铸.纳米摩擦学[G].北京:清华大学出版社,2006:
    [76] Dowson D., Transition to boundary lubrication from elastohydrodynamic lubrication,Boundary lubrication[C]. An Appraisal of World Literature, ASME, 1969.
    [77] Johnston G.J., Wayte R.,Spikes H.A., The measurement and study of very thin Lubricant film in concentrated contaet[J]. Trib.Trans., 1991(34):187-194.
    [78] Dowson D., Higginson-C.R.. Elastohydrodynamie Lubrication[G]. Pergamon Press. 1977.
    [79] Choo, Jian Wen, Olver, Andrew V.. The influence of transverse roughness in thin film, mixed elastohydrodynamic lubrication[J]. Tribology International, 2007(40):220-232.
    [80] Martins R., Cardoso N, Seabra J. Influence of lubricant type in gear scuffing[J]. Industrial Lubrication and Tribology, 2008(60):299-308.
    [81] Dobrica, Mihai B., Fillon, Michel, Maspeyrot, Patrick.. Influence of mixed-lubrication and rough elastic-plastic contact on the performance of small fluid film bearings[J]. Tribology Transactions, 2008(51):699-717.
    [82] Castro J., Seabra J. Coefficient of friction in mixed film lubrication:Gears versus twin-discs [J]. Journal of Engineering Tribology, 2007(221):399-411.
    [83] Naduvinamani N. B., Kashinath B. Surface roughness effects on the static and dynamic behaviour of squeeze film lubrication of short journal bearings with micropolar fluids[J]. Journal of Engineering Tribology. 2008(222):121-131.
    [84] Krupka I., Hartl M., Liska M. Thin lubricating films behaviour at very high contact pressure [J] . Tribology International, 2006(39):1726-1731.
    [85] Castro J., Seabra J.. Global and local analysis of gear scuffing tests using a mixed film lubrication model[J]. Tribology International, 2008(41) :244-255.
    [86] Naduvinamani N. B., Siddangouda A. Combined effects of surface roughness and couple stresses on squeeze film lubrication between porous circular stepped plates[J]. Journal of Engineering Tribology, 2007(221):525-534.
    [87] Sahlin, Fredrik, Almqvist, Andreas, Larsson, Roland, Glavatskih, Sergei. Rough surface flow factors in full film lubrication based on a homogenization technique[J]. Tribology International, 2007(40):1025-1034.
    [88] Honig, Christopher D. F., Ducker, William A. Thin film lubrication for large colloidal particles: Experimental test of the no-slip boundary condition[J]. Journal of Physical Chemistry, 2007(111):16300-16312.
    [89] Sun J.,Gui C-L,Wang Z-H. Research on elastohydrodynamic lubrication of a crankshaft bearing with a rough surface considering crankshaft deformation[J]. Journal of AutomobileEngineering, 2008(222):2403-2414.
    [90] Gandhi B. K., Borsc S. V.. Nominal particle size of multi-sized particulate slurries for evaluation of erosion wear and effect of fine particles[J]. Wear, 2004(1 /2):73-79.
    [91] Ahmad N., Singh J.P. Proceedings of the Institution of Mechanical Engineers[J]. Journal of Engineering Tribology, 2007(221):609-13.
    [92] Deheri G.M., Patel, R.M. Squeeze film based magnetic fluid in between porous circular disks with sealed boundary[J]. International Journal of Applied Mechanics and Engineering, 2006(11): 810-811.
    [93] Nada G.S., Osman T.A.. Static performance of finite hydrodynamic journal bearings lubricated by magnetic fluids with couple stresses[J]. Tribology Letters, 2007(27):261-268.
    [94] Bolotov A.N., Novikov V.V., Pavlov V.G.. Magnetic fluid sliding bearings[J]. Journal of Friction and Wear, 2004(25):53-57.
    [95] Deheri G.M., Andharia, R.L., Patel R.M. Transversely rough slider bearings with squeeze film formed by a magnetic fluid[J]. International Journal of Applied Mechanics and Engineering, 2005(10):53-76.
    [96] Bali R., Sharma S.K. Effect of magnetic field in lubrication of synovial joints[J]. Tribology Letters, 2005(19):281-287.
    [97] Singh N.P., Ajay Kumar Singh, Usha Singh, Atul Kumar Singh. Effects of uniform magnetic field on squeeze film lubrication in human joints[J]. Indian Journal of Pure and Applied Mathematics, 2005(36):385-402.
    [98] Jai M., Buscaglia G., Ciuperca I.S.. On nano-scale hydrodynamic lubrication models[J]. Academie Sciences, 2005(333):453-458.
    [99] Montazeri H.. Numerical analysis of hydrodynamic journal bearings lubricated with ferrofluid[J]. Journal of Engineering Tribology, 2008(222):51-60.
    [100] Leung W.C., Bullogh W.A., Wong P.L., Feng C. The effect of particle concentration in a magneto rheological suspension on the performance of a boundary lubricated contact[J]. Journal of Engineering Tribology, 2004(218):251-253.
    [101] Shah R.C. Effect of rotation on ferrofluid based squeeze film of various shapes between two annular plates[J]. International Journal of Applied Mechanics and Engineering, 2007(12):515-25
    [102] Fremerey J.K.. A 500-Wh Power Flywheel on Permanent Magnet Bearings[J]. Fifth International Symposium on Magnetic Suspension Technology[J] , 2000:287-295.
    [103] Tomimoto M.. Experimental verification of a particle induced friction model in journal bearings[J]. Wear, 2003(7-8):749-762.
    [104] Gandhi B. K., Borsc S. V., Nominal particle size of multi-sized particulate slurries forevaluation of erosion wear and effect of fine particles[J]. Wear, 2004(1 /2):73-79.
    [105] Ahmad N., Singh J.P.. Magnetic fluid lubrication of porous-pivoted slider bearings with slip velocity[J]. Journal of Engineering Tribology, 2007(221):609-613.
    [106] Deheri G.M., Patel, R.M.. Squeeze film based magnetic fluid in between porous circular disks with sealed boundary[J]. International Journal of Applied Mechanics and Engineering, 2006(11): 810-811.
    [107] Nada G.S., Osman T.A.. Static performance of finite hydrodynamic journal bearings lubricated by magnetic fluids with couple stresses[J]. Tribology Letters, 2007(27):261-268.
    [108] Bolotov A.N., Novikov V.V., Pavlov V.G.. Magnetic fluid sliding bearings[J]. Journal of Friction and Wear, 2004(25):53-7.
    [109] Deheri G.M., Andharia R.L., Patel R.M.. Transversely rough slider bearings with squeeze film formed by a magnetic fluid[J]. International Journal of Applied Mechanics and Engineering, 2005(10):53-76.
    [110] Bali R., Sharma S.K.. Effect of magnetic field in lubrication of synovial joints[J]. Tribology Letters, 2005(19):281-7.
    [111] Wierzcholski K.C.H.. Numerical contribution to the viscoelastic magnetic lubrication of human joint in periodic motion[J]. Acta of Bioengineering and Biomechanics, 2004(6):61-82.
    [112] Singh N.P., Ajay Kumar Singh, Usha Singh, Atul Kumar Singh. Effects of uniform magnetic field on squeeze film lubrication in human joints[J]. Indian Journal of Pure and Applied Mathematics, 2005(36):385-402.
    [113] Montazeri H.. Numerical analysis of hydrodynamic journal bearings lubricated with ferrofluid[J]. Journal of Engineering Tribology, 2008(222):51-60.
    [114] Leung W.C., Bullogh W.A., Wong, P.L., Feng C.. The effect of particle concentration in a magneto rheological suspension on the performance of a boundary lubricated contact[J]. Journal of Engineering Tribology, 2004(218):251-253.
    [115] Shah R.C.. Effect of rotation on ferrofluid based squeeze film of various shapes between two annular plates[J]. International Journal of Applied Mechanics and Engineering, 2007(12): 515-525.
    [116] Fremerey J.K., A 500-Wh Power Flywheel on Permanent Magnet Bearings[C]. Fifth International Symposium on Magnetic Suspension Technology, 2000:287-290.
    [117] Bhushan B, Van C G, Van C G, Fullerene(C60) films for solid lubrication[J]. Tribology Transactions, 1993(36):573-578.
    [118] Kratschmer W, Fostiropoulos K, Fostiropoulos K.Solid C60:a new form of carbon[J]. Nature, 1990, 374:(354-361).
    [119] http://www.lubpower.net/news
    [120]杨鹤,王闽南,王锋,张伍福,金元生.金属磨损自修复技术(ART)在100台大功率内燃机车上的应用试验.材料保护,2004,37:(60-62)
    [121]朱润生,张建斌等.电场影响铁磁流体摩擦系数的试验研究.北京航空航天大学学报,1999,25(5):581-584.
    [121] Kumar D, etc. Ferrofluid squeeze film for spherical and conical bearings[J]. Int. J. Eng. Sci. 1992, 30(5):645-656.
    [122] Shukla, J.B, etc. A theory for ferromagnetic lubrication[J]. J.Magn. Magn. Mater. 1987,65(2-3):375-378.
    [123]赵修臣,余智勇等.磁流体润滑BP神经网络模型.润滑与密封,2003(2):60-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700