用户名: 密码: 验证码:
高灵敏度GPS定位及组合导航技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,全球定位系统(GPS)已经在全世界得到了最广泛的应用,但现有的GPS接收机大多只能工作在信号条件较理想的户外等环境中。随着人们活动范围的扩大以及周边环境的日益复杂,现有的GPS导航技术已经难以满足人们的现实需要。与户外等普通环境相比,在室内等低信噪比环境下,GPS信号能量会受到更多的削弱,其可靠性和定位精度都会大大降低。而室内等低信噪比环境正好是人类活动的最主要环境之一,在室内环境下GPS有着越来越多的应用需求,高灵敏度GPS定位技术正是为满足这一需求孕育而生的。高灵敏度GPS定位技术是目前GPS技术的一个非常具有潜力的应用方向,有着广阔的市场前景。因此,开展高灵敏度GPS室内定位技术的研究对于实现室内环境下的高精度GPS导航定位,扩展GPS技术的应用范围具有重要意义,室内环境下的高灵敏度GPS导航技术已经成为当前的研究热点。
     针对室内等低信噪比环境下的导航需要,本文研究了室内环境下的高灵敏度GPS定位技术,对高灵敏度GPS定位技术难点之一的微弱GPS信号捕获技术进行了深入的研究和分析,提出了一种基于Duffing混沌振子阵列的弱GPS信号捕获算法,完成了对GPS信号载波多普勒频率的检测。最后,在载波多普勒频率确定的基础之上,利用差分相关检测方法完成了GPS信号C/A码相位的捕获。
     另外,文章研究了一种提高载体垂直方向定位精度的气压表/GPS组合导航系统,重点提出了基于自适应联合Kalman滤波以及粒子滤波的气压表/GPS组合导航算法。该组合导航系统能够改善载体在垂直方向上的定位精度,在实时性、适应性等方面都有很好的效果,确保飞机精确飞越预定点上空并具备精密进场着陆引导能力。
     本文的主要工作和创新点如下:
     (1)对高灵敏度GPS定位技术以及GPS组合导航技术进行了介绍,分析了室内和机场等环境下GPS信号特点,对高灵敏度GPS定位的关键技术进行了介绍,重点研究了低信噪比环境下的GPS信号捕获技术。
     (2)对现有的一些弱GPS信号捕获算法进行了研究,如相关累加、非相关累加、多重数据位循环相关(CCMDB)以及圆周相关等。指出了现有GPS信号捕获算法各自存在的问题以及改进的方向,并通过仿真讨论了现有检测算法的检测性能。
     (3)对混沌振子检测弱信号技术进了研究,介绍了当前常用的几种混沌振子,重点研究了Duffing振子的模型、动力学行为以及混沌判据等。对Duffing振子的两种常用模型进行了计算机仿真,给出了Duffing振子处在不同状态时的相图,通过相图可以详细了解振子的动力学行为。
     (4)在结合混沌振子检测弱信号的基础之上,提出了基于Duffing混沌振子阵列的微弱GPS信号捕获算法。采用Lyapunov指数(LE)判定相轨迹所处的临界状态,辅助测量GPS信号的存在,将数值迭代方法应用于算法的实现。首先,利用LE算法判断被输入的信号中是否有微弱GPS信号,如果GPS信号存在,被检测GPS信号的载波多普勒频率被确定。最后,利用差分相关检测方法完成GPS信号C/A码相位的检测,从而完成对弱GPS信号的捕获。该方法突破了以往GPS信号捕获所采用的二维搜索过程,将GPS信号载波多普勒频率和C/A码相位的二维搜索过程变成了两个一维搜索过程,该方法能够检测极低信噪比环境下的GPS信号,大大提高了GPS接收机的检测灵敏度。
     (5)研究了基于差分相关的微弱GPS信号C/A码捕获技术,提出了一种在GPS信号载波多普勒频率确定的情况下,基于差分相关的GPS信号C/A码捕获算法。对检测概率、虚警概率以及检测门限等变量进行了研究,重点分析了所提出捕获算法所引入的信噪比损失,定量分析了所提出捕获算法在检测灵敏度方面的改善情况。对所提出的捕获算法与传统的GPS信号捕获算法进行了对比分析,通过理论和仿真证明了所提出的捕获算法在检测弱GPS信号方面的优越性。
     (6)研究了GPS/气压表的组合导航系统,分析论证了一种能够改善载体垂直方向定位精度的气压表/GPS组合导航系统方案,重点提出了两种数据融合算法:基于自适应联合Kalman滤波的气压表/GPS数据融合算法、基于粒子滤波的气压表/GPS数据融合算法。对两种算法在高程方向上的定位精度进行了详细分析,并通过计算机仿真进行了证明。研究结果表明,该组合导航系统能够提高载体在垂直高度方向上的定位精度。
     (7)对全文进行了总结,对有待进一步研究的问题作了展望。
Nowadays, Global Positioning System (GPS) is applied broadly in the world, but in the situation, the present receivers are usually in the outdoor environment where there are good GPS signals. Since the environment around us has become more and more complicated, GPS positioning technology will no be able to satisfy people's need. Compared with the common circumstance, as outdoors, GPS signals power will be weaken much, and its reliability and position accuracy will be debased much in the low signal to noise ratio (SNR) environment. However, the the low SNR environment,such as indoor environment, is one of the main environment where humans live, there are a lot of applications needs of GPS,high sensitivity GPS (HS-GPS) positioning technology will be studied to solve the problem. In the application of GPS,HS-GPS positioning technology is a potential application domain of GPS. So researches on HS-GPS indoor position technology are necessary in the extreme to implement high accuracy position in indoor environment and extend application area of GPS, the researches on HS-GPS positioning technology have become hot points currently.
     HS-GPS positioning technologies in the indoor environment are studied, weak GPS signals acquisition technologies, which is one of the difficulties on HS-GPS positioning technology are studied and analyzed in detail, a weak GPS signals acquisition algorithm based on Duffing oscillators array is proposed, Doppler frequency of GPS signals is acquired. Finally, C/A code phase of GPS signals is acquired using differentially coherent acquisition algorithm.
     In addition, an integrated navigation technology of improving vertical positioning accuracy based on GPS/barometric altimeter is studied. Two integrated navigation algorithms based on adaptive federated Kalman filtering and particle filtering are proposed. The integrated navigation system is efficient in improving vertical positioning accuracy, reliability, adaptivity and real-time processing rate, ensures an airplane fly precisely over an assigned, and endow it with the ability of precision approach and landing in complicated weather condition.
     The main work and innovations accomplished in this dissertation are as follows:
     (1)GPS positioning technology, integrated navigation technology and key points of HS-GPS positioning are discussed. In addition, characteristic of GPS signals is analysed in indoor and airdrome environment, GPS signals acquisition technologies are studied in low SNR environment.
     (2) A lot of weak GPS signals acquisition algorithms are studied, such as coherent integration、non-coherent integration、circular correlation with multiple databits and circle correlation. Discuss disadvantage of current GPS signals acquisition algorithm and propose improvement methods, finally detection performance of current detection algorithm is discussed using simulation results.
     (3)Weak signals detection technologies based on chaotic oscillator are studied, several chaotic oscillators are discussed. Model, dynamics characteristic and estimation method of Duffing oscillator are studied. Two models of Duffing oscillator are simulated. Phase charts of Duffing oscillator with different state are studied. Dynamics characteristic of Duffing oscillator are known by means of phase chart.
     (4) A weak GPS signals acquisition algorithm is proposed based on Duffing oscillator array by means of weak signals detection theoretics based on chaotic oscillator. Lyapunov exponent is adopted to aid the judgment on the state of chaos oscillator system, and numeric iteration procedure is used to calculate the exponent. Firstlly, decide whether weak GPS signals exist or not by means of Lyapunov Exponents algorithm. Carrier's Doppler frequency of GPS signals is obtained if GPS signals exist by means of Lyapunov Exponents calculation. At last, C/A code phase is obtained in virtue of above carrier's Doppler frequency by differentially coherent integration technique. This detection method breakes through traditional two dimension search process.In the process of weak GPS signals acquisition, carrier's Doppler frequency and C/A code phase of GPS signals are acquired solely.This acquisition algorithm can acquire GPS signals at extreme low power, and improve detection sensitivity level of GPS receiver.
     (5) Weak GPS signals acquisition technologies based on differentially coherent integration are studied, GPS signals acquisition algorithm based on differentially coherent integration is proposed when carrier's Doppler frequency of GPS signals is known. Detection probability, false probability and detection threshold are studied.SNR loss introduced by differentially coherent integration detection algorithm is analysed.Improvement effects on detection sensitivity are analyzed quantitatively. Traditional acquisition algorithm is compared with differentially coherent integration detection algorithm, by implementing rigorous mathematical analysis and simulating, the results prove the advantage of detecting weak GPS signal.
     (6) Integrated navigation system based on GPS/barometer is studied.A scheme of integrated navigation system of improving vertical positioning accuracy based on GPS/barometric altimeter is analyzed.Two data fusion algorithms based on adaptive federated Kalman filtering and particle filtering are proposed. Vertical positioning accuracy of the fusion algorithm is analyzed.Simulation results prove that the integrated navigation can improve vertical navigation accuracy of airplane.
     (7) Finally, several conclusions of the dissertation are drawn and the research subjects in the future are proposed.
引文
[1]Singh S, Cannon M E, et al.Field test assessment of assisted GPS and high sensitivity GPS receivers under weak/degraded signal conditions. ION GNSS 2005, Long Beach, CA,2005: 2930-2943
    [2]梁坤,施浒立.高灵敏度GPS捕获技术的分析与仿真.全球定位系统,2007,6:26-30
    [3]Bickerstaff J, Frayling R, Haddrell T. Capture analysis and mitigation of multi-path in a high sensitivity GPS receiver. ION GNSS 2006, Fort Worth, TX,2006:1696-1705
    [4]Kuusniemi H, Lachapelle G GNSS signal reliability testing in urban and indoor environments. Proceedings of NTM 2004, San Diego,2004:210-224
    [5]Schon S, Bielenberg O. On the capability of high sensitivity GPS for precise indoor positioning. Hannover,2008:121-127
    [6]蔡昌听,皮亦鸣.高灵敏度GPS技术的研究进展.全球定位系统,2006,2:14
    [7]Diggelen V, Frank. Indoor GPS theory & implementation. IEEE Position Location and Navigation Symposium, Palm Springs, CA,2002:240-247
    [8]Chansarkar M, Garin L J.Acquisition of GPS signals at very low signal to noise ratio. In Proceedings of the Institute of Navigation ION National Technical Meeting-2000, Anaheim, California,2000:731-737
    [9]Maisano D, Jamshidi J, Franceshini F, et al. Indoor GPS:system functionality and initial performance evaluation. International Journal of Manufacturing Research,2008, (3)3:335-349
    [10]田世君,皮亦鸣.基于气压表/GPS的数据融合算法研究.电子学报,2008,36(4):800-803
    [11]Parviainen J, Kantola J, Collin J. Differential barometry in personal navigation. Position Location and Navigation Symposium, Monterey, CA, United states,2008:148-152
    [12]Jardak N, Samama N. Indoor positioning based on GPS-repeaters:Performance enhancement using an open code loop architecture. IEEE Transactions on Aerospace and Electronic Systems, 2009,45(1):347-359
    [13]Jauhsiung Wang, Gao Yang. High-sensitivity GPS data classification based on signal degradation conditions. IEEE Transactions on Vehicular Technology,2007,56(2):566-574
    [14]李斐,陈武,岳建利.GPS在物理大地测量中的应用及GPS边值问题.测绘学报,2003,32(3):198-203
    [15]苏惠敏,周鹏,陈哲.GPS/INU/MM车辆定位导航系统研究.航空学报,2001,22(2): 171-174
    [16]谢彩香,林宗坚,刘峰.GPS/DR/MM组合导航中的车辆定位精度研究.测绘科学,2006,31(1):75-76
    [17]Kubrak D, Macabiau C, Monnerat M. Analysis of a software-based A-GPS acquisition performance using statistical processes. IONNTM 2005, San Diego, CA,2005,136-141
    [18]马永奎,张一,张中兆.改进的高动态高灵敏度GPS信号捕获算法研究.系统工程与电子技术,2009,31(2):265-269
    [19]李明江,张一,张中兆.多径干扰下一种新的有效的弱GPS信号处理算法.南京理工大学学报(自然科学版),2009,33(1):64-68
    [20]孟维晓,王文静,叶准.基于频域搜索的GPS信号P码直接捕获改进算法.哈尔滨工业大学学报,2007,39(5):733-736
    [21]焦瑞祥,茅旭初.基于DBZP方法的微弱GPS信号快速捕获.电子学报,2008,36(12):2285-2289
    [22]焦瑞祥,茅旭初.基于批处理的微弱GPS信号捕获.上海交通大学学报,2008,42(2):285-289
    [23]黄磊,张其善,寇艳红.基于差分码和块处理方法的GPS信号快速捕获算法.通信学报,2006,27(8):93-97
    [24]李春宇,张晓林,张超等.遗传算法在微弱GPS信号捕获方法中的应用.航空学报,2007,28(6):4340-4344
    [25]黄鹏达,皮亦鸣.基于混沌振子的微弱GPS信号检测算法.电子测量与仪器学报,2008,22(4):49-52
    [26]皮亦鸣.,张婧,蔡昌听.GPS信号的差分相关捕获算法研究.全球定位系统,2006,4:1-4
    [27]Shijun Tian, Yiming Pi. Research of weak GPS signals acquisition. ICCCAS 2008,2008: 793-796
    [28]Yu Liu, Shijun Tian. Research of indoor GPS signals acquisition. WICOM 2008,2008:1-4
    [29]Shijin Tian, Yiming Pi. Research of weak GPS signals acquisition algorithm based on duffing oscillators array. IEEJ Transactions on Electronics, Information and Systems,2009,129(8): 1609-1610
    [30]巴晓晖,李金海,陈杰.不需辅助信息的室内GPS信号捕获算法.电子技术应用,2006,9:130-132
    [31]李金海,巴晓晖,Sheraz A.一种用于GPS信号快速捕获的自适应算法.电子器件,2007,30(3):1024-1027
    [32]Lin J B.Sensitivity limit of a stand-alone GPS receiver and an acquisition method. Proceedings of ION GPS 2002, Portland, OR, The Institute of Navigation,2002:1663-1667
    [33]Park S H, Kim Y B. A novel weak signal acquisition scheme for assisted GPS. Proceedings of ION GPS 2002, Portland, OR, The Institute of Navigation,2002:1457-1467
    [34]Watson R, Lachapelle G, Klukas R. Investigating GPS signals indoors with extreme high-sensitivity detection techniques. Navigation, Journal of the Institute of Navigation,2005, 52(4):199-213
    [35]Karunanayake M D, Cannon M E, Lachapelle G. Analysis of assistance data on AGPS performance. Measurement Science and Technology,2007,18(7):1908-1916
    [36]Van D J R, Coenen A J. New fast code-acquisition technique using FFT. IEEE Electronics Letters,1991,27(2):167-169
    [37]Starzyk D A, Zhu Z. Averaging correlation for C/A code acquisition and tracking in frequency domain. IEEE 2001 Midwest Symposium on Circuits and Systems, Dayton OH,2001: 905-908
    [38]Corvaja R, Pupolin S. Performance of CDMA with differential detection in the presence of phase noise and multiuser interference. IEEE Transactions on Communications,2004,52(3): 498-506
    [39]Shin O, Kwang B.Differentially coherent combing for double-well code acquisition in DS-CDMA system. IEEE Transaction on Communications,2003,51(7):1046-1050
    [40]Xiangguo Tang, Zhi Ding. A differential correlation approach to blind DPSK symbol estimation. Wireless Communications and Networking Conference,2000,3:1166-1171
    [41]Andreas S, Andre N. Differential correlation for Galileo/GPS receivers.IEEE International Conference on Acoustics, Speech and Signal Processing.2005,3:953-956
    [42]Lin D M, Tsui J. Comparison of acquisition methods for software GPS receiver. Proceedings of ION GPS 2000. Salt Lake City, UT,2000:2385-2390
    [43]Shin O S, Lee K B. Differential coherent combing for double-dwell code acquisition in DS-CDMA Systems, IEEE Transactions on Communications,2003,51(7):179-188
    [44]Quan Wei.Hybrid simulation system study of SINS/CNS integrated navigation. IEEE Aerospace and Electronic Systems Magazine,2008,23(2):17-24
    [45]耿延睿,张伟伟,崔中兴.基于SINS辅助的GPS完善性监测方法.北京航空航天大学学报,2001,27(4):164-166
    [46]Zhaonian Zhang. Integration of GPS with a rubidium clock and a barometer for land vehicle navigation. ION GPS 1997, Kansas, MO,1997:801-806
    [47]McLellan J F, Schleppe J. GPS/barometry height-aided positioning system. Proceedings of the 1994 IEEE Position Location and Navigation Symposium, Las Vegas, NV,1994:369-375
    [48]Grejner B, Dorota A. Adaptive knowledge-based system for personal navigation in GPS-denied environments. Institute of Navigation National Technical Meeting, NTM 2007, San Diego, CA,2007:517-521
    [49]Whang I, Wonsang R. Barometer error identification filter design using sigma point hypotheses. International Conference on Control, Automation and Systems, Seoul, Korea, 2007:1410-1415
    [50]梁坤,施浒立,宁春林.室内环境中的GPS信号特性分析.天文研究与技术,2008,5(1):30-36
    [51]Hammoudeh A, Scammell D. Measurements and analysis of the indoor wideband millimeter wave wireless radio channel and frequency diversity characterization. IEEE Transactions on Antennas and Propagation,2003,51(10):2974-2986
    [52]Kakar A K, Sani K A.. Essential factors influencing building penetration loss. ICCT 2008, Hangzhou, China,2008,14
    [53]Ray J K, Cannon M E. GPS code and carrier multipath mitigation using a multiantenna system. IEEE Transactions on Aerospace and Electronic Systems,2001,37(1):183-195
    [54]Eggert J, Gutierrez R, Raquet F. Code and phase multipath characterization for beam-steering receivers. Proceedings of the Institute of Navigation, San Diego, CA, United states,2004, 551-560
    [55]Landron O, Feuerstein M. Rappaport. A comparison of theoretical and empirical reflection coefficients for typical exterior wall surfaces in a mobile radio environment. IEEE Transactions on Antennas and Propagation,1996,3:341-351
    [56]Xiaoli Liu, Jingnan Liu, Zhigang Hong. Code and carrier phase multipath effects with GNSS receiver. Proceedings of SPIE-The International Society for Optical Engineering, Wuhan, China,2006,6418,1187-1191
    [57]Bonsen G. GPS achieves high navigation sensitivity and even finds a home inside buildings. Microwave Engineering Europe,2005,18-19
    [58]Morrison A, Krishnan S, Anpalagan A. Receiver autonomous mitigation of GPS non line-of-sight multipath errors. Proceedings of the Institute of Navigation, Monterey, CA, United states,2006,141-148
    [59]崔哲,阎鸿森,惠卫华.GPS信号信噪比对接收机捕获性能的影响.时间频率学报,2004,27(2):120-128
    [60]Ziedan N I.弱信号全球导航卫星系统接收机(张欣译).北京:国防工业出版社,2008
    [61]关止,赵凯,宋东生.GPS软件接收机中C/A码信号捕获的圆周相关算法.吉林大学学报(理学版),2006,44(2):229-232
    [62]Wang Wei, Li Qiang, Guojie Zhao. Novel approach based on chaotic oscillator for machinery fault diagnosis. Journal of the International Measurement Confederation,2008,41(8): 904-911
    [63]Chongsheng Li, Liangsheng Qu. Applications of chaotic oscillator in machinery fault diagnosis. Mechanical Systems and Signal Processing,2007,21(1):257-269
    [64]Le Bo, Liu Zhong, Tianxiang Gu. Chaotic oscillator and other techniques for detection of weak signals. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,2005, E88-A(10):2699-2701
    [65]Li Yue, Baojun Yang, Yuan Ye. Analysis of a kind of Duffing oscillator system used to detect weak signals. Chinese Physics,2007,16(4):1072-1076
    [66]Hu G J, Feng Z J, Meng R L. Chosen ciphertext attack on chaos communication based on chaotic synchronization. Circuits and Systems Ⅰ:Fundamental Theory and Applications, IEEE Transactions on,2003,50(2):275-279
    [67]Yanchun Xu, Chunling Yang. The study of weak signal detection based on chaotic oscillator. ICCAS 2007, Kokura, Japan,2008:693-696
    [68]Qiufeng Shang, Yincheng Qi. A novel phase estimation method of weak sine signal by using chaotic oscillator. Proceedings of SPIE-The International Society for Optical Engineering, Beijing, China,2006,63571:806-810
    [69]Yanjun Hu, Xiaoping Ma, Gao Li. A robust public-key image watermarking scheme based on weakness signal detection using chaos system. Proceedings of the 2008 International Conference on Cyberworlds, CW 2008, Hangzhou, China,2008:477-480
    [70]Chongsheng Li, Liangsheng Qu. A nonlinear diagnosis method of gear early fatigue crack. 2005 IEEE International Conference on Vehicular Electronics and Safety, xi'an, Shan'Xi, 2005:134-139
    [71]Guanyu Wang, Dajun Chen, Jiangya Lin. The application of chaotic oscillators to weak signal detection. IEEE Transaction on Industrial Electrons,1999,6(2):440-444
    [72]Guanyu Wang, Wei Zheng, Sailing He. Estimation of amplitude and phase of a weak signal by using the property of sensitive dependence on initial conditions of a nonlinear oscillator. Signal Processing,2002,82(1):103-115
    [73]Guanyu Wang, Sailing He. Aquantitative study on detection and estimation of weak signals by using chaotic Duffing oscillators. IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications,2003,50(7):945-953
    [74]汪芙平,郭静波,王赞基.强混沌干扰中的谐波信号提取.物理学报,2001,50(6):1019-1023.
    [75]李月,杨宝俊.检测强噪声背景下周期信号的混沌系统.科学通报,2003,48(1):19.20
    [76]李月,杨宝俊,赵雪平.检测地震勘探微弱同相轴的混沌振子算法.地球物理学报,2005,48(6):1428-1433
    [77]李月,杨宝俊,石要武等.混沌振子用于强噪声下微弱正弦信号的检测.吉林大学自然科学学报,2001,1:75-77.
    [78]李月,杨宝俊,石要武.色噪声背景下微弱正弦信号的混沌检测.物理学报,2003,52(3):526-530.
    [79]Li Yue, Baojun Yang, Yuan Ye. Analysis of a kind of Duffing oscillator system used to detect weak signals. Chinese Physics,2007,16(4):1072-1076
    [80]Anosov O, Hensel B, Berczynski S. Detection threshold of the control parameters modulation in a noisy chaotic map. International Journal of Bifurcation and Chaos,2007,17(5): 1661-1672
    [81]黄胜伟.Duffing振子强迫振动的混沌特性仿真分析.力学与实践,2002,24(1):43-46.
    [82]Benitez S, Acho L. Impulsive synchronization for a new chaotic oscillator:International Journal of Bifurcation and Chaos,2007,17(2):617-623
    [83]Wang L, Yang X. Generation of multi-scroll delayed chaotic oscillator. Electronics Letters, 2006,42(25):1439-1441
    [84]杨涛,邵惠鹤.一类混沌系统的同步方法.物理学报,2002,51(4):742~748
    [85]Tamasevicius A, Mykolaitis G, Bumeliene S. Delayed feedback chaotic oscillator with improved spectral characteristics. Electronics Letters,2006,42(13):736-737
    [86]Asai T, Kamiya T, Hirose T. Sub-threshold analog MOS circuit for Lotka-Volterra chaotic oscillator. International Journal of Bifurcation and Chaos,2006,16(1):207-212
    [87]Leung A Y, Zhongjin Guo. Homotopy perturbation for conservative Helmholtz-Duffing oscillators. Journal of Sound and Vibration,2009,325(1-2):287-296
    [88]Hramov A, Koronovskii A, Levin Y. Synchronization of chaotic oscillator time scales. Journal of Experimental and Theoretical Physics,2005,100(4):784-794
    [89]Ergun S, Ozoguz S. Truly random number generators based on a non-autonomous chaotic oscillator. AEU-International Journal of Electronics and Communications,2007,61(4): 235-242
    [90]Dmitriev A,Efremova E, Kuzmin L. Forming pulses in non-autonomous chaotic oscillator. International Journal of Bifurcation and Chaos,2007,17(10):3443-3448
    [91]Zhang Wei, Bingren Xiang. A Duffing oscillator algorithm to detect the weak chromatographic signal. Analytica Chimica Acta,2007,585(1):55-59
    [92]Sang Y K. Bifurcation structure of the double-well duffing oscillation. International Journal of Modern Physics B,2000,14(17):1801-1812
    [93]Kozic P, Pavlovic R, Rajkovic P. Moment Lyapunov exponents and stochastic stability of a parametrically excited oscillator. Meccanica,2007,42(4):323-330
    [94]Wojewoda J, Stefanski A, Wiercigroch M. Estimation of Lyapunov exponents for a system with sensitive friction model.Archive of Applied Mechanics,2009,79(6-7):667-677
    [95]胡鹏飞,康艳芳,李钢.塔里木盆地低信噪比地震资料处理方法研究.石油地球物理勘探,2003,38(2):203~207.
    [96]Ubeyli E D. Probabilistic neural networks employing Lyapunov exponents for analysis of Doppler ultrasound signals. Computers in Biology and Medicine,2008,38(1):82-89
    [97]Weichau Xie. Moment lyapunov exponents of a two-dimensional system under both harmonic and white noise parametric excitations. Journal of Sound and Vibration,2006,289(1-2): 171-191
    [98]Holliday T, Goldsmith A, Glynn P. Capacity of finite state channels based on lyapunov exponents of random matrices. IEEE Transactions on Information Theory,2006,52(8): 3509-3532
    [99]Yuguang Fang, Loparo K A. On the relationship between the sample path and moment Lyapunov exponents for jump linear systems. IEEE Transactions on Automatic Control,2002, 47(9):1556-1560
    [100]Swiercz E. A new method of detection of coded signals in additive chaos on the example of Barker code. Signal Process,2006,86(1):153-170
    [101]Holliday T, Goldsmith A. Capacity of finite state channels based on lyapunov exponents of random matrices. IEEE Transactions on Information Theory,2006,52(8):3509-3532
    [102]Zhang R C, Yang J H, Du J H. Study on in-process detection and diagnosis of faults arc based on early sounds signature and intermittent chaos. Key Engineering Materials,2008, 381-382,611-614
    [103]Ubeyli E D. Recurrent neural networks employing Lyapunov exponents for analysis of Doppler ultrasound signals. Expert Systems with Applications,2008,34(4):2538-2544
    [104]Mark L P. Block acquisition of weak GPS signals in a software receiver, Proceedings of the ION GPS 2001, Salt Lake City, UT,2001:243-255
    [105]Musielak D E, Musielak Z E, Benner J W. Chaos and route to chaos in coupled Duffing oscillators with multiple degre of freedom. Chaos, Solitions and Fractals,2005,24:907-922
    [106]Hu Jin, Keren Wang. Carrier detection method of binary-phase-shift keyed and direct-sequence-spread-spectrum signals based on doffing oscillator. International Conference on ITS Telecommunications Proceedings,2006, pp.1338-1341
    [107]Albert C J. Global tangency and transversality of periodic flows and chaos in a periodically forced, damped duffing oscillator. International Journal of Bifurcation and Chaos,2008,18(1): 1-49
    [108]Siewe M S, Hongjun Cao, Sanjuan M. Effect of nonlinear dissipation on the basin boundaries of a driven two-well Rayleigh-Duffing oscillator. Chaos, Solitons and Fractals,2009,39(3): 1092-1099
    [109]Luo A C. Chaotic motion in the generic separatrix band of a mathieu-duffing oscillator with a twin-well potential. Journal of Sound and Vibration,2001,248(3):521-532
    [110]Kurian A, Leung H. Weak signal estimation in chaotic clutter using model-based coupled synchronization. IEEE Transactions on Circuits and Systems,2009,56(4):820-828.
    [111]Ding Liu, Haipeng Ren, Li Song, et al. Weak signal detection based on chaotic oscillator. Fourtieth IAS Annual Meeting,2005,3:2054-2058.
    [112]Wei Yu, Bo Zheng, Watson R, et al. Differential combining for acquiring weak GPS signals. Signal Processing,2007,87:824-840
    [113]唐斌,董绪荣.基于简易差分相关积累的高灵敏度GPS软件接收机捕获算法.信号处理,2009,25(5):832-836
    [114]Davies R B. The distribution of a linear combination of chi squared random variables. AppliedStatistics,1980,29(3):323-333
    [115]郑利龙,曹志刚.GPS组合导航系统的数据融合.电子学报,2002,30(9):1384-1385.
    [116]周坤芳,吴唏,孔键.紧偶合GPS/INS组合特性及其关键技术.中国惯性技术学报,2009,(17)1:42-45
    [117]高为广,何海波,陈金平.自适应UKF算法及其在GPS/INS组合导航中的应用.北京理工大学学报,2008,28(6):505-509
    [118]Wang Wei, Zongyu Liu, Rongrong Xie. Quadratic extended Kalman filter approach for GPS/INS integration. Aerospace Science and Technology,2006,10(8):709-713
    [119]Kaygisiz H, Erkmen A M, Erkmen I. Enhancing positioning accuracy of GPS/INS system during GPS outages utilizing artificial neural network. Neural Process Letters,2007,25(3): 171-186
    [120]Wei wu, Caijian Liang, Xinmei Wang. Research on GPS/INS integrated navigation and date synchronization. Journal of Computational Information Systems,2008,4(5):2083-2088
    [121]Brown A, Mathews B, Nguyen D. GPS/INS/STAR tracker navigation using a software defined radio. Advances in the Astronautical Sciences,2007,128:111-122
    [122]Xiaodong Wu, Siliang Wu, Wang Ju. A fast integrity algorithm for the ultra-tight coupled GPS/INS system. International Conference on Signal Processing Proceedings, Piscataway, NJ, United States,2008:2583-2587
    [123]Simsir U, Ertugru S. Prediction of position and course of a vessel using artificial neural networks by utilizing GPS/radar data. Proceedings of the 3rd International Conference on Recent Advances in Space Technologies, Istanbul, Turkey,2007:579-584
    [124]Brown A, Mathews B. Test results from a novel passive bistatic GPS radar using a phased sensor array. Proceedings of the Institute of Navigation, National Technical Meeting, San Diego, CA, United states,2007,504-509
    [125]Martinez J. Monitoring sea level by radar altimeter and CGPS in the northwestern Mediterranean. International Geoscience and Remote Sensing Symposium,2008,3(1): 111577-111580
    [126]Dyckman H L, Sloat S, Pettus B. Robust GPS geolocation by method of particle filtering. Proceedings of the Institute of Navigation, National Technical Meeting, San Diego, CA, United states,2005:197-204
    [127]Djuric P M, Vemula M. Target tracking by particle filtering in binary sensor networks. IEEE Transactions on Signal Processing,2008,56(6):2229-2238
    [128]Wenyan Chang, Chusong Chen, Yongdian Jiang. Visual tracking in high-dimensional state space by appearance-guided particle filtering. IEEE Transactions on Image Processing,2008, 17(7):1154-1167
    [129]Miller I, Campbell M. Particle filtering for map-aided localization in sparse GPS environments. IEEE International Conference on Robotics and Automation, Pasadena, CA, United states, 2008:1834-1841
    [130]Ozdemir O, Ruixin Niu, Varshney K. Tracking in wireless sensor networks using particle filtering:Physical layer considerations. IEEE Transactions on Signal Processing,2009,57(5): 1987-1999
    [131]Jingjing Zhou, Jiahai Yang, Yang Yang. Traffic matrix estimation based on a square root Kalman filtering algorithm. International Journal of Network Management,2008,18(6): 539-551
    [132]Wenfang Si, Chen Zhe. Integrated INS/GPS/GLONASS navigation system based on three types of Kalman filtering algorithms. Proceedings of the Second International Symposium on Instrumentation Science and Technology, Jinan, China,2002,3:403-407
    [133]Song E, Yunmin Zhu, Zhou Jie. Optimal Kalman filtering fusion with cross-correlated sensor noises. Automatica,2007,43(8):1450-1456
    [134]Nounou N, Nounou M N. Multi-scale fuzzy Kalman filtering. Engineering Applications of Artificial Intelligence,2006,19(5):439-450
    [135]Plett G L. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 1:Introduction and state estimation. Journal of Power Sources,2006, 161(2):1356-1368
    [136]Altunkaynak A. Adaptive estimation of wave parameters by Geno-Kalman filtering. Ocean Engineering,2008(11-12):1245-1251
    [137]Changhuai You, Koh S N, Rahardja S. Sub-band Kalman filtering incorporating masking properties for noisy speech signal. Speech Communication,2007,49(7-8):558-573
    [138]杨静,郑南宁.一种基于SR-UKF的GPS/DR组合定位算法.系统仿真学报,2009,21(3):721-724
    [139]何典,袁运斌,柴艳菊.GPS/INS组合中观测噪声方差阵的自适应估计方法研究.武汉大学学报(信息科学版),2008,33(8):838-840
    [140]Dumitrache A, Zamora M A, Toledo R. Hybridized GPS/DR positioning system with unknown initial heading for land vehicles. IEEE Conference on Intelligent Transportation Systems, Beijing, China,2008,974-979
    [141]Hirokawa R, Kajiwara N, Takiguchi J. Carrier-phase differential GPS/DR/LS hybrid navigation for an autonomous ground vehicle. Review of Automotive Engineering,2006, 27(1):117-120
    [142]田世君,陈俊,皮亦鸣.粒子滤波在高动态GPS定位中的应用.测绘学报,2007,36(3):274-278
    [143]田世君,田增山,张德民.基于卡尔曼滤波的GPS/CDMA数据融合算法分析.系统工程与电子技术,2006,28(8):1147-1148.
    [144]Robert A G,Peter S M. An integrated GPS/INS/BARO and radar altimeter system for aircraft precision approach landings. National Aerospace and Electronics Conference, Dayton, KY, USA,1995:161-168
    [145]房建成,申功勋,万德钧.车载GPS/DR地图匹配组合导航系统的自适应联合卡尔曼滤波模型.控制与决策,1999,14(5):448-451
    [146]谢建春,张艳宁.基于Sigma粒子Kalman滤波的地形辅助导航方法.西北工业大学学报,2007,25(5):703-706
    [147]曾洁,尤国红,贾士杰.基于卡尔曼滤波的车辆动态导航定位滤波算法.大连交通大学学报,2008,29(2):42-45
    [148]刘国海,李沁雪,施维.动态卡尔曼滤波在导航试验状态估计中的应用.仪器仪表学报,2009,30(2):396400
    [149]Jwo D J, Wang S h. Adaptive fuzzy strong tracking extended Kalman filtering for GPS navigation. IEEE Sensors Journal,2007,7(5):778-789
    [150]Lertpiriyasuwat V, Berg M C, Buffinton K W. Extended Kalman filtering applied to a two-axis robotic arm with flexible links. International Journal of Robotics Research,2000,19(3): 254-270
    [151]Liu X, Escamilla P J, Lieven N. Extended Kalman filtering for the detection of damage in linear mechanical structures. Journal of Sound and Vibration,2009,325(4-5):1023-1046
    [152]DahJing J, ChunNan Lai. Unscented Kalman filter with nonlinear dynamic process modeling for GPS navigation. GPS Solutions,2009,12(4):249-260
    [153]Honghui Qi, Moore J B. Direct Kalman filtering approach for GPS/INS integration. IEEE Transactions on Aerospace and Electronic Systems,2002,38(2):687-693
    [154]Giremus A, Tourneret J, Calmettes V. A particle filtering approach for joint detection/estimation of multi-path effects on GPS measurements. IEEE Transactions on Signal Processing,2007,55(4):1275-1285
    [155]Huang Rui, Zaruba V. Location tracking in mobile ad hoc networks using particle filters. Journal of Discrete Algorithms,2007,5(3):455-470
    [156]Yang Ning, Weifeng Tian, Zhihua Jin. Particle filter for sensor fusion in a land vehicle navigation system. Measurement Science and Technology,2005,16(3):677-681
    [157]Kim B H. Indoor mobile localization system and stabilization of localization performance using pre-filtering. International Journal of Control, Automation and Systems,2008,6(2): 204-213

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700