用户名: 密码: 验证码:
聚合反应过程的分布式模型预测控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合反应过程往往表现为强耦合性、不确定性、强非线性和动力学机理复杂等特征,且从生产工艺上一般由若干个子系统构成,子系统之问存在着复杂的关联。模型预测控制由于其对生产中各种约束的有效处理能力,已被广泛地应用在聚合反应过程中。随着计算机网络的迅速发展,预测控制作为一种信息处理手段已不限于集中式的控制,而更多地为分布式控制所取代,这就给传统的控制问题带来了新的挑战和要求。本文以大型聚合反应过程的动态优化控制系统为背景,研究了聚合反应动态特性以及分布式模型预测控制器设计等问题,主要研究成果如下:
     以聚苯乙烯反应过程为例分析了聚合过程的反应动力学机理,讨论了聚合反应过程中的重要被控变量,研究了聚苯乙烯本体热聚合过程模型,分析讨论了苯乙烯在连续搅拌釜式反应器中进行热引发本体聚合行为。通过仿真实验分析了聚合反应的多稳态性、可行温度操作区域及聚合反应器温度与聚合产物的数均分子量(NAMW)之间的关系。结果表明,聚合化工反应是一种复杂的化学反应过程,参数的改变可能会导致聚合反应产生多稳态现象及达到不可执行区域。聚合反应器温度决定了代表产物质量的数均分子量及其分布,它是聚合反应过程中的至关重要的操作条件。
     研究了大规模系统的典型预测控制方法,针对聚合反应过程的牌号切换问题,给出了一种分布式模型预测控制算法,该算法建立了基于目标跟踪的子系统性能指标具体形式,该子系统性能优化指标充分考虑了其它子系统目标函数产生的关联影响,并采用组合状态空间模型描述子系统特性,详细推导了控制律求解过程,给出了带约束关联优化性能指标二次规划的解析形式。最后将该算法应用到苯乙烯聚合反应过程中,并与多种预测控制策略作比较,充分验证了算法的有效性,为分布式预测控制策略在聚合反应过程牌号切换问题上的应用做出了重要贡献。
     针对一类仅使用大批历史数据结构未知的非线性工业过程,基于数据驱动及局部建模的基本思想,提出一种基于局部模型算法的在线多模型辨识策略。给出了一种对初始值的选取不敏感的K-Harmonic Means(KHM)聚类数据库搜索策略,该策略简单可行,可缩短搜索时间,提高搜索效率。从向量相似的角度提出了一种新的选择数据信息(即建模邻域Qk(x)的确定)的方法,有效提高了获得当前时刻系统最佳局部模型的数据精确度。给出了权值选定的适合度标准及带宽h选择的快速方法。最后对算法进行了特性分析及仿真研究,并与其它局部建模算法的计算结果作了比较,验证了本文辨识算法的有效性。
     针对一类系统结构未知的聚合反应过程,将本文的局部模型在线辨识算法与过程控制相结合,提出了一种多模型分布式模型预测控制算法。在每一时刻,首先得到当前工况下的参数模型形式,提出一种模型结构变换及结构重组的方法,分离出各子系统的内部信息及与其它子系统间的关联信息,并将子系统状态向量进行扩维处理,得到包含全局信息的子系统状态空间组合模型,建立了多模型分布式模型预测控制器设计的全过程。该算法可在线实时更新过程模型参数,简单可行,不仅解决了一类结构未知的聚合反应过程中的分布式预测控制问题,还弥补了现有分布式模型预测控制中采用单一全局线性模型,不能充分表述非线性系统特性的不足。最后通过在聚合反应过程中的应用,说明本文算法可以使系统动态特性得到明显改善。
     对于存在过程干扰和量测噪声的非线性有约束系统,研究了能有效处理约束的滚动时域估计(Moving Horizon Estimation, MHE)方法。根据分离性原则,将滚动时域估计方法与分布式模型预测控制相结合,设计了基于MHE的分布式模型预测控制器,给出了控制器设计的主要部分,预测控制器性能优劣直接依赖于对系统关键状态估计的准确性。最后将基于MHE的分布式模型预测控制应用到聚合反应过程中,充分说明了该算法的有效性。
Polymerization reactions are nonlinear systems which have the characteristics of strong coupling, uncertainty and complicated dynamic mechanism. They are always consisted of many subsystems which have complicated association. Model predictive control strategies can deal with various kinds of constraints effectively, they are used in polymerization reactions widely. With the rapid development of computer network, model predictive control strategies are not limited to the centralized control, they are substituted by distributed control more and more, all this bring new challenge to conventional control problems. Based on large scale polymerization reactions, this thesis has studied dynamic characteristics of polymerization and the design of distributed model predictive control, the main achievements as following:
     ●The dynamic mechanism of polymerization reaction is analyzed taking styrene polymerization for example. The important controlled variables are discussed. The model of thermal bulk polymerization of styrene is given and reactions in CSTR are analyzed. The analysis of the steady-state multiplicity behavior is presented by simulation. The region of feasible temperature operation, the relationship between reactor temperature and number average molecular weight (NAMW) are discussed. The results show the complexity of polymerization reaction, multiple steady-state and infeasible region may occur with the change of parameters. The temperature of reactor determines NAMW and its distribution of polymer, it is the important operating factor in polymerization.
     ●The typical model predictive control methods of large scale system are studied. A distributed model predictive control strategy is proposed for grade transition in polymerization reaction. Setting up the specific performance index based on target following, the index including effect of other subsystems, the characteristic of subsystems are described by combined model and the detailed derivations of control law are given. The analytical form of constraint quadratic programming is given. Finally, the performance comparison with many other predictive control strategies is given to illustrate the effectiveness of the proposed approach by the application on styrene polymerization reaction. The approach makes important contribution to the application of distributed model predictive control on polymer grade transition.
     ●The on-line multiple models identification strategy is presented based on data-driven and local-modeling for a class of unknown-structure nonlinear systems just on the basis of numerous historical database. A database searching strategy based on KHM clustering is presented which insensitive to initial value. The approach is easy and feasible, it can shorten searching time and improve searching efficiency. A new approach to determine data information (determine the neighborhoodΩk (x)) is proposed, it can improve precision of the data which used to get optimal local model. The goodness of fit criterion and rapid selection method to determine bandwidth (h) are given. Finally, characteristic analysis and simulation studies were done, the simulation test illustrates the validity of this approach.
     ●Combining the multiple models thus developed with predictive control, the multi-model distributed cooperative predictive control strategy is proposed, thus solving the control problem of a class of unknown-structure polymerization reaction. At every moment, after getting the parameter model, using a model structure transition and structure recombination method, to get the internal information of subsystems and the interacted information with other subsystems. Then expand the dimension of state vector to get combined model which includes information of other subsystems. The all design process of multi-model cooperative model predictive control strategy is given. This approach can update model parameter on line easily and feasibly, it not only solve the distributed predictive control problem of a class of unknown-structure polymerization reaction, but also make up for the defective of sole overall linear model which can't express nonlinear characteristic well in existing distributed model predictive control. By the application on polymerization, this approach has illustrated obvious improved dynamic performance.
     ●When process disturbance and measurement noise exist for constraint nonlinear system, moving horizon estimation method is studied, which can deal with constraint effectively. Based on the principle of separation, combining moving horizon estimation with distributed model predictive control, the MHE distributed model predictive controller is designed. The main parts of controller are given. The precision of estimated state is important to controller performance. With the application on polymerization reaction, the simulation test illustrates the validity of this approach.
引文
1. Mayne D Q, Rawlings J B, Rao C V. Constrained model predictive control:stability and optimality [J], Automatica,2000,36(6):789-814.
    2. Van Antwerp J G, Braatz R D. Model predictive control of large scale process [J], Journal of Process Control,2000,10 (1):1-8.
    3. Aswin N V, Rawlings J B, Wright S J. Distributed model predictive control of large-scale systems [J], Lecture Notes in Control and Information Sciences,2007,358:591-605.
    4. Van Katwijk R, Van Koningsbruggen R. Coordination of traffic management instruments using agent technology [J], Transportation Research Part C:Emerging Technologies, 2002,10(5-6):455-471.
    5. Liu X M, Gong X Y. Study of intersection traffic flow control on the basis of agents [C], Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems, Shanghai, China,2003:1755-1758.
    6. Katebi M R, Johnson M A. Predictive control design for large-scale systems [J], Automatica,1997,33(3):421-425.
    7. Liu H B, Li S Y, Chai T Y. Intelligent decoupling control of power plant main steam pressure and power output [J], International Journal of Electraial Power&Energy System, 25(10):809-819.
    8. Maciejowski J M. Predictive control with constraints [M], Prentice-Hall:London,2002.
    9. Keviczky T, Borelli F, Balas G J. A study on decentralized receding horizon control for decoupled systems [J], Proceedings of the American Control Conference, Boston, USA, 2004:4921-4926.
    10. Motee N, Sayyar R B. Optimal partitioning in distributed model predictive control [C], Proceedings of the American Control Conference, Denver, Colorado,2003:5300-5305.
    11. Pomerleau D, Pomerleau A, Hodouin D, et al. A procedure for the design and evaluation of decentralised and model-based predictive multivariable controllers for a pellet cooling process [J], Computers and Chemical Engineering,2003,27(1):217-233.
    12. Irizarry R, Seider W D. Model-predictive control of the czochralski crystallization process [J], Journal of Crystal Growth,1997,178(1):593-611.
    13. Ochs S, Engell S, Draeger A. Decentralized vs. model predictive control of an industrial glass tube manufacturing process [C], Proceedings of the 1998 IEEE Conference on Control Applications, Trieste, Italy,1998:16-20.
    14. Silva R N, Rato L M, Lemos J M, et al. Cascade control of a distributed collector solar field [J], International Journal of Process Control,1997,7(2):111-117.
    15. Vargas V, Rivera D E. Multilayer optimization and scheduling using model predictive control:application to reentrant semiconductor manufacturing lines [J], Computers and Chemical Engineering,2000,24(1):2009-2021.
    16. Baglietto M, Parisini T, Zoppoli R. Neural approximators and team theory for dynamic routing:a receding-horizon approach [C], Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona,1999:3238-3288.
    17. Braun M W, Rivera D E, Flores M E. A model predictive control framework for robust management of multi-product, multi-echelon demand networks [J], Annual Reviews in Control,2003,27(1):229-245.
    18. Camponogara E, Jia D, Krogh B H, et al. Distributed model predictive control [J], IEEE Control Systems Magazine,2002,22 (1):44-52.
    19. Dunbar W B, Murray R M. Model predictive control of coordinated multi-vehicle formations [C], Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, USA,2002:4631-4636.
    20. Georges D. Decentralized adaptive control for a water distribution system [C], Proceedings of the 3rd IEEE Conference on Control Applications, Glasgow, UK,1994: 1411-1416.
    21. El Fawal H, Georges D, Bornard G. Optimal control of complex irrigation systems via decomposition-coordination and the use of augmented lagrangian [C], Proceedings of the 1998 IEEE International on Systems, San Diego, USA,1998:3874-3879.
    22. Gomez M, Rodellar J, Vea F, et al. Decentralized predictive control of multi-reach canals [C], Proceedings of IEEE International on Systems, San Diego, USA,1998:3885-3890.
    23. Jia D, Krogh B. Min-max feedback model predictive control for distributed control with communication [C], Proceedings of the 2002 American Control Conference, Danvers, USA,2002:4507-4512.
    24. Jia D, Krogh B. Distributed Model Predictive Control [C], Proceedings of American Control Conference, Arlington, USA,2001:2267-2772.
    25. Sawadogo S, Faye R M, Malaterre P, et al. Decentralized predictive controller for delivery canals [C], Proceedings of the 1998 IEEE International on Systems, San Diego, USA,1998:3880-3884.
    26. Acar L. Some examples for the decentralized receding horizon control [C], Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, USA,1992:1356-1359.
    27. Aicardi M, Casalino G, Minciardi R, et al. On the existence of stationary optimal receding-horizon strategies for dynamic teams with common past information structures [J], IEEE Transactions on Automatic Control,1992,37(11):1767-1771.
    28. Dunbar W B, Murray R M. Distributed receding horizon control with application to multi-vehicle formation stabilization [C], Division of Engineering and Applied Science Conference, California, USA,2004:1448-1453.
    29. Keviczky T, Borelli F, Balas J. Stability analysis of decentralized RHC for decoupled systems [C], Proceedings of the Joint 44th IEEE Conference on Decision and Control and European Control Conference, Seville, Spain,2005:1689-1694.
    30. Richards A, How J. A decentralized algorithm for robust constrained model predictive control [C], Proceedings of the American Control Conference, Boston, USA,2004: 4261-4266.
    31. Lee Y S. Decentralized suboptimal control of power systems with superconducting magnetic energy storage units [J], International Journal of Power and Energy System, 2001,21(2):87-96.
    32. Dunbar W B, Murray R M. Distributed receding horizon control for multi-vehicle formation stabilization [J], Automatica,2006,42 (4):549-558.
    33. Camponogara E. Controlling networks with collaborative nets [D], USA, ECE Department, Carnegie Mellon University, Pittsburgh, Pennsylvania,2000.
    34. Dunbar W B. Distributed receding horizon control of coupled nonlinear oscillators: theory and application [C], Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, USA,2006:4854-4860.
    35. Magni L, Scattolini R. Stabilizing decentralized model predictive control of nonlinear systems [J], Automatica,2006,42(7):1231-1236.
    36.史子瑾.聚合反应工程基础[M],北京:化学工业出版社,2001.
    37. Tyner D, Soroush M, Grady M C. Adaptive temperature control of multi product jacketed reactors [J], Industrial and Engineering Chemistry Research,1999,38(11),4337-4342
    38. Qin S J, Badgwell T A. A survey of industrial model predictive control technology [J], Control Engineering Practice,2003:11(7):733-764.
    39. Meziou A M, Deshpande D, Cozewith C. Dynamic matrix control of an ethylene-propylene-diene polymerization reactor [J], Industrial and Engineering Chemistry Research,1996,35(8),164-168.
    40. Paisan K, Mohamed A H, Model predictive control for the reactant concentration control of a reactor [J], Korean Journal of Chemical Engineering,2000,17(3):368-372.
    41. Ozkan L, Kothare M V, Georgakis C. Control of a solution copolymerization reactor using multi-model predictive control. Chemical Engineering Science [J],2003:58(7), 1207-1221.
    42. Seki H, Ogawa M, Ooyama S. Industrial application of nonlinear model predictive control to polymerization reactors [J], Control Engineering Practice,2001:9(8),819-828.
    43. Shafieea S, Arefi M M, Jahed M. Nonlinear model predictive control using a wiener model of a continuous methyl methacrylate polymerization reactor [J],2008,143(15): 282-292
    44. Eills M F, Taylor T W. On-line molecular weight distribution estimation and control in batch polymerization [J], AIChE Journal,1994,40(3):445-462.
    45. Mcauley K B, Macgregor J F. On-line inference of polymer properties in an industrial polyethylene reactor [J], AIChE Journal,1991,37(6):825-835.
    46. Othman N S, Fevotte G, Peycelon, D, et al. Control of polymer molecular weight using near infrared spectroscopy [J], AIChE Journal,2004,50(3):654-664.
    47. Park M J, Hur S M, Rhee H K. Online estimation and control of polymer quality in a copolymerization reactor [J], AIChE Journal,2002,48(5):1013-1021.
    48. Benamor S, Doyle F J, McFarlane R. Polymer grade transition control using advanced real-time optimization software [J], Journal of Process Control,2004,14(4):349-364.
    49. Bindlish R, Rawlings J B. Target linearization and model predictive control of polymerization processes [J], AIChE Journal,2005,49(11):2885-2899.
    50. Mutha R K, Gluett W R, Penlidis A. On-line nonlinear model-based estimation and control of a polymer reactor [J], AIChE Journal,1997,43(11):3042-3058.
    51. Soroush M, Kravaris C. Nonlinear control of a batch polymerization reactor:an experimental study [J], AIChE Journal,1992,38 (9):1429-1448.
    52. Soroush M, Kravaris C. Nonlinear control of polymerization CSTR with singular characteristic matrix [J], AIChE Journal,1994,40(6):980-990.
    53. Tatiraju S, Soroush M. Nonlinear state estimation in a polymerization reactor [J], Industrial & Engineering Chemistry Research,1997,36(7):2679-2690.
    54. Na S S, Rhee H K. Polynomial ARMA model identification for a continuous styrene polymerization reactor using on-line measurements of polymer properties [J], Journal of Applied Polymer Science,2000,76(13):1889-1901.
    55. Ray W H, Soared J B, Hutchinson R A. Polymerization reaction engineering:past, present, and future [J], Macromolecular Symposium,2004,204:1-14.
    56. Mayo F R. Chain transfer in polymerization of mechanism of thermal initiation styrene: chain transfer with bromobenzene and mechanism of thermal initiation [J], Journal of American Chemical Society,1968,78(3):3155-3172.
    57. Flory P J. The mechanism of vinyl polymerizations [J], Journal of American Chemical Society,1937,59(2):241-251.
    58. Dhib R, Gao J, Penlidis. Simulation of free radical polymer reaction engineering polymer [J], Reaction Engineering Journal,2000,8(4):299-308.
    59. Richards J R, Congalidis J P. Measurement and control polymerization reactors [J], Computers & Chemical Engineering,2006,30(10-12):1447-1463.
    60. Congalidis J P, Richards J R. Process control of polymerization reactors:an industrial perspective [J], Polymer Reaction Engineering,1998,6(2):71-111.
    61. Seborg D E, Edgar T F, Mellichamp D A. Process dynamics and control [M], New York: Wiley sons,2005.
    62. Liptak B G Instrument engineers'handbook,4th edition:Process measurement and analysis [M], New York:CRC Press,2003.
    63. Rodriguez F, Cohen C, Ober C. Principles of polymer systems [M], New York:Tayor and Francis,2003.
    64. Kammona O, Chatzi E G, Kiparissides C. Recent developments in hardware sensors for the on-line monitoring of polymerization reactions [J], Journal of Macromolecular Science-Reviews in Macromolecular Chemistry,1999, C39 (1):57-134.
    65. Hidalgo, P. M. and Brosilow, C. B. Nonlinear model predictive control of styrene polymerization at unstable operating points [J], Computers and Chemical Engeenring 1990,14(5):481-494.
    66. Schmidt A D, Clinch A B, Ray W H. The dynamic behavior of continuous polymerization reactors:An experimental study of multiple seady-states in solution polymerization [J], Chemcial Engeering and Science,1998,39(1),419-432.
    67. Billmeyer F W. Textbook of Polymer Science [M], New York:Wiley,1995.
    68. Li S Y, Zhang Y, Zhu Q M. Nash-optimization enhanced distributed model predictive control applied to the Shell Benchmark Problem [J], Information Sciences,2005,170(2-4): 329-349.
    69. Tosukhowong T, Lee J M, Lee J H. An introduction to a dynamic plant-wide optimization strategy for an integrated plant [J], Computers and Chemical Engineering,2004,29(1): 199-208.
    70. Bemporad A, Morari M, Dua V. The explict solution of model predictive control via multiprarmetric quadratic programming [J], Proceedings of the American Control Conference, Chicago, Illinois,2000:872-876.
    71. Michalska H, Mayne D Q. Robust receding horizon control of constrained nonlinear systems [J], IEEE Transactions on Automatic Control,1993,38(11):1623-1633.
    72. Mayne D Q, Michalska H. Adaptive receding horizon control for constrained nonlinear system [C], Proceedings of the 32nd Conference on Decision and Control,1993: 1286-1291.
    73. Scokaert P O, Mayne D Q, Rawlings J B. Suboptimal model predictive control (feasibility implies stability) [J], IEEE Transactions on Automatic Control,1999,44(3): 648-654
    74. Alex Z. Nonlinear model predictive control of the Tennessee Eastman process [C], Proceedings of the American Control Conference, Philadelphia, Pennsylvania,1998: 1700-1704
    75. Rangaiah G P, Saha P, Tade M O. Nonlinear model predictive control of an industrial four-stage evaporator system via simulation [J], Chemical Engineering Journal, 2002,87(3):285-299
    76. Adel E, Makoudi M, Radouane L. Decentralized adaptive control of linear interconnected systems based on Laguerre series representation [J], Automatica,1999,35(11): 1873-1881.
    77. Xi Y G, Zhang Z J. Decentralized Predictive Control (DPC) of Large Scale systems [J], Information and Decision Technologies,1988,26(1):2261-2274.
    78. Robinson D, Chen R, Mcaroy T. An optimal control based approach to designing plantwide control system architectures. Journal of Process Control,2001,11(2):223-236
    79. Boukhris A, Mourot G, Ragot J. Non-linear dynamic system identification:a multi-model International Journal of Control [J],1999,72 (7/8):591-604.
    80. Cybenko G. Continuous valued neural networks with two hidden layers are sufficient [J], Mathematics of Controls, Signals and Systems,1989,2:203-214.
    81. Stenman A. Model-on-Demand:algorithms, analysis and lication [D], Ph.D. Dissertation, Linkoping University, Linkoping, Sweden,1999.
    82. Nadaraya E. On estimating regression [J]. Theory of Problem and Application,1964,9: 141-142.
    83. Li N, Li S Y, Xi Y G. Multiple model predictive control for MIMO systems [J]. Acta automatica Sinica,2003,29(4):516-523.
    84.孙维,王伟.基于即时学习算法非线性系统多模型自适应控制[J],大连理工大学学报,2002,42(5):611-615.
    85. Roll J, Bemporad A, Ljung L. Identification of piecewise affine systems via mixed-integer programming [J], Automatica,2004,40(1):37-50.
    86. Roll J, Nazin A, Ljung L. Nonlinear system identification via direct weight optimization.Automatica [J],2005,41(3):475-490.
    87. Dougherty D, Cooper D. A practical multiple model adaptive strategy for multivariable model predictive control [J], Control Eagiaeeriag Practice,2003B,11(6):649-664.
    88. Gungor Z, Unler A. K-harmonic means data clustering with simulated annealing heuristic [J], Applied Mathematics and Computation,2007,184(2):199-209.
    89. Li Q, Mitianoudis N. Spatial kernel K-harmonic means clustering for multi-spectral image segmentation [J], IET Image Processing,2007,1(2):156-167.
    90. Tan M P, James R B, Christodouols A F. A novel clustering approach and prediction of optimal number of clusters:global optimum search with enhanced positioning [J], Journal of Global Optimation,2007,39(3):323-346.
    91. Zhang J P, Yim Y S, Yang J M. Intelligent selection of instances for prediction functions in Lazy learning algorithms [J], Artificial Intelligence Review,1997,11(1/2):175-191.
    92. Bontempi G., Bersini H, Birattari M, Bersini H. The local paradigm for modeling and control:from neuro-fuzzy to Lazy learning [J], Fuzzy Sets and Systems,2001,121(1): 59-72.
    93.卢荣德,陈宗海,王雷.复杂工业过程计算机建模,仿真与控制综述[J],系统工程与电子技术,2002,24(1):52-57.
    94.万百五.工业大系统优化与产品质量控制[M], 北京:科学出版社,2003.
    95.李少远,蔡文剑.工业过程辨识与控制[M],北京:化学工业出版社,2005.
    96. Dizhuijzen G V, Stalman D, Koom A. Indentification and model predictive control of a slab reheating furnace [C], Preceedings of athe 2002 IEEE International Conference on Control Applications, Glasgow, Scotland,2002:361-366.
    97. Braun M W, Rivera D E, Stenman A, et al. Model-on-Demand identification for control: An experimental study and feasibility analysis for MOD-based predictive control [C]. IFAC symposium on System Identification, Santa Barbara, CA,2000:2157-2163.
    98. Palma F D, Magni L. A multi-model structure for model predictive control [J], Annual Reviews in Control,2004,28(1):47-52.
    99. Hur S M, Myung J P, Rhee H K. Polymer property control in a continuous styrene polymerization reactor using model-on-demand predictive controller [J], Korean Journal Chemical Engineering,2003,20(1):14-21.
    100.Chen Q, Li S Y, Xi Y G Decentralized closed-loop identification and controller design for a kind of cascade system [J], ACTA Automatica Sinica,2005,31(3):335-342.
    101.Yoo C K, Choi S W. Adaptive Modeling and Classification of Secondary Setting Tank, Korean Joural Chemical Engineering,2002,19(1):377-341.
    102.Alamir M, Corriou J P. Nonlinear receding horizon state estimation for dispersive adsorption columns with nonlinear isotherm [C], Processing of the 41th IEEE Conference on decision and control, Las Vegas, USA,2002:2334-2330.
    103.Flaus J M, Gonzales H V, Acuna G Moving horizon state estimation with global convergence using interval techniques:Application to biotechnological processes [J], Journal of process control,2003,13:325-336.
    104.Hedengren J D, Allsford K V, Ramlal J. Moving Horizon Estimation and Control for an Industrial Gas Phase Polymerization Reactor American Control Conference [C], American control conference, USA,2007:1353-1358.
    105.Diehla M, Kuhla P, Bocka H G. Combined Nonlinear Model Predictive Control and Moving Horizon Estimation for a Copolymerization Process [C],16th European Symposium on Computer Aided Process Engineering,2006:1527-1532.
    106.Haverbeke N, Herpe T V, Moritz D. Nonlinear model predictive control with moving horizon state and disturbance estimation Application to the normalization of blood glucose in the critically ill [C], Proceedings of the 17th IFAC, Seoul, Korea,2008: 9067-9074
    107.Rojas D, Felipe A M, Garcia M L. Simultaneous monitoring of nitric oxide, oxyhemoglobin and deoxyhemoglobin from small areas of the rat brain by in visible spectroscopy and least-square approach [J], Neuroscience Methodes,2004,14(1):75-80.
    108.Seiichi N. Desingn of recursive least-squares fixed-lag smoother covariance information in linear continuous stochastic systems [J], Applied Mathematical Modeling,2007, 31(8):1609-1620.
    109.Guilaue B, Arcanjo L. New analytical model for the fltered-x least mean squares algorithm verified through active noise control experiment [J], Mechanical Systems and Signal Processing,2007,21(4):1839-1852.
    110.Wiener N. Extrapolation interpolation and smoothing of stationary time series [M], The Technology Press of MIT and John Whey Sons:New York,1949.
    111.Kalman R E. A new approach to linear filtering and detection problems [J], Journal of Basic Engineering,1960:35-45.
    112.Shake U, Yaesh I. Min-Max Kalman filtering [J], System and Control letters,2004, 53:217-228.
    113.张左民等.卡尔曼滤波设计算法研究进展[J],控制理论与应用,1995,12(5):529-538.
    114.Mahmoud S, Magdi M S,Ismail A. Robust Kalman filtering for discrete-time Markovian jump systems with parameters uncertainty [J], Journal of computational and Applied Mathematics,2004,169(1):53-60.
    115.Simon D. Kalman fitering for fuzzy discrete time dynamic systems [J], Applied soft computing.2003,3(3):191-207.
    116.Lalot S, Gudmundur R J, Olafur P P. Use of extended Kalman filtering in detecting fouling in heat exchangers [J], International Journal of Heat and Mass Transfer,2007, 50(13):2643-2655.
    117.Deng S, Hwang Y. Solution of inverse heat conduction problems using Kalman filter-enhanced Bayesian back propagating neural network data fusion [J], International Journal of Heat and Mass Transfer,2007,50(11):2089-2100.
    118.Minyi H, Subhrakanti D. Stability of Kalman filtering with Markovian packet losses [J], Automatica,2007,43(4):598-607.
    119.Rawlings J B, Rao C V, Lee J H. Constrained linear state estimation a moving horizon approach [J], Automatica,2001,37:1610-1628.
    120.A.E.布赖森,何毓琦.应用最优控制—最优化、估计、控制[M],北京:国防工业出版社,1982.
    121.席裕庚.预测控制.北京:国防工业出版社,1993.
    122.Richalet J, Rault A. Model predictive heuristic control:applications to industrial process [J], Automatica,1978,14(5):413-428.
    123.Rouhani R, Mehra R K. Model Algorithmic Control (MAC):basic theoretical properties [J], Automatica,1982,18:401-414.
    124.Cutler C R, Ramaker B L. Dynamic Matrix Control—A Computer Control Algorithm [C], Proceedings of the 1980 Jiont Automatic Control Conference, San Francisco, Automatic Control Council,1980.
    125.Clarke D W, Mohtadi C, Tuffs P S. Generalized Preditive Control [J], Automatica,1987, 23(2):137-162.
    126.薛定宇.控制系统计算机辅助设计——MATLAB语言与应用(第2版)[M],北京:清华大学出版社,2006.
    127.薛定宇,陈阳泉.控制数学问题的MATLAB求解[M],北京:清华大学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700