用户名: 密码: 验证码:
Ti-Al合金定向凝固组织演化的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用数值模拟方法研究了Ti-Al合金定向凝固组织演变过程,论文工作有助于深入理解Ti-Al合金定向凝固组织形成规律,并为今后实验研究及控制组织形貌提供参考。
     对于受溶质扩散控制的单相凝固过程,提出了溶质扩散控制模型结合元胞自动机方法模拟合金组织演化的模型。在模型中,采用扩散流方法来处理固/液界面两侧不连续的物理性质。随后利用这种模型模拟了Al-30wt.%Cu合金组织演变过程,并与实验结果和理论分析结果对比,以验证模型的准确性。结果表明,模拟结果与经典凝固理论相符合,说明该模型的准确性。模拟结果同时与实验结果吻合良好,证明这种方法的有效性。此外,模拟还再现了定向凝固实验经常观察到的尖端分裂现象,模拟获得的枝晶形态与实验结果一致。
     借助上述模型,对Ti-Al合金在发生液固相变L→β或者L→α单相定向凝固过程中组织的动态演化过程进行了模拟。通过模拟,取得了与实验相吻合的一些重要结果,如枝晶臂的粗化和根部颈缩,以及枝晶臂间的碰撞、融合和竞争生长等。在此基础上,模拟了定向凝固参数影响下组织演化过程,结果表明,随着抽拉速度增大,凝固形态经历了平面→胞晶→胞状树枝晶→树枝晶转变过程。在平界面生长阶段,整个固液界面是以近平界面方式生长,而在胞晶/枝晶混合生长阶段,胞/枝晶间距不均匀,形核数量的增加有助于改善间距的不均匀度。在一定的抽拉速度下,随着温度梯度增大,枝晶间距减小;而温度梯度较低时,在胞晶/枝晶混合生长阶段,胞/枝晶间距出现最大值。
     对凝固相为β和α作为单相生长时组织演化过程进行了对比模拟,发现由于溶质分配系数、液相线斜率存在很大差别,在凝固条件相同的情况下,β相凝固界面形态更多表现为胞晶或枝晶,而α相多为平面或胞晶,模拟结果与理论推导相一致。
     在溶质扩散控制模型基础上,建立了柱状晶/等轴晶转变(CET)的溶质影响模型,利用该模型模拟了定向凝固参数(温度梯度、抽拉速度、晶核间距、形核过冷度)对CET的影响。结果表明,温度梯度、抽拉速度对CET影响定性地符合Hunt解析解。横向晶核间距影响比纵向大;形核过冷度增加,CET推迟;柱状晶间距不仅与温度梯度、抽拉速度有关,而且可通过激活预置晶核使其生长为柱状晶而得以调整,特别是温度梯度在30K/mm~50K/mm之间,形核有较强的调节柱状晶间距的作用。
     根据成分过冷准则以及相稳定生长的最高界面温度判据,对Ti-Al合金初生β相作为单相领先生长时,包晶相直接凝固过程进行了模拟,获得了凝固组织的动态演化过程,以及与实验观察相吻合的现象。研究表明α相依附于β相生长,在β相胞/枝晶生长间距较小或者溶质成分为49at.%Al时,α相仅沿β相侧面生长较快,侧向增厚是α相的主要推进方式,而在β相胞/枝晶生长间距较大、合金成分接近47at.%Al时,两相倾向于以胞/枝晶形态生长。
In this paper, the evolutions of interface morphology and structure are simulated for Ti-Al alloy during its liquid-solid phase transition in directional solidification, which helps us to further understand the directional solidification mechanism of Ti-Al alloy, and it also provides a theorical reference for controlling the microstructures in experiment.
     During directional solidification of single phase, the model which combines solute diffusion controlled model with Cellular Automation( CA) is presented to simulate microstructure evolution by using, and a diffusion flow method is employed to deal with the discontinuous thermophysical properties in both sides of the solid/liquid interface. And then a microstructure evolution of Al-30wt.%Cu alloy is simulated so as to verify the model, and at the same time, simulated results are compared with experimental and theoretical analysis results. The quantitative analysis of solute distributions along dendritic tips at different growth conditions shows that the simulation results are identified with the classical theory of solute diffusion controlled solidification, which testifies the accuracy of the model. The simulation also reproduces the phenomenon of tip splitting observed often in directionally solidified experiments, and the simulated dendritic morphologies agree well with experimental observation.
     Using above the solute diffusion controlled model and choosing Ti-(40-50) Al (at.%) alloy , the microstructure evolution of single phase alloy is simulated during its liquid-solid transition of L→βor L→α. The dynamic evolutions of microstructures in directional solidification are derived, and they also match well with experimental observations, such as the coarsening and necking of dendritic arms, the impingments, coalescences and competitional growths etc. Furthermore, a parametric study is performed to investigate the effects of the applied temperature gradient and pulling velocity, the results show that, with increasing pulling velocity, the morphology of the interface varies from plane to cell to dendrite. While in planar growth, whole interface is near planar, and in cell/dendrite transition, the uniform degree of dendrite spacing tends to decrease, and with increasing the numbers of the seed, the uniform degree of dendrite spacing tends to increase.At a fixed pulling velocity, increasing thermal gradient decreses the dendrite arm spacing, and at low thermal gradient, and at cell/dendrite transition zone, the cellular spacing increases to a maximum.
     Comparision of mcrostructure evolution for directional solidificatedβphase withαphase is done by numerical simulation, the results show that due to different liquidus slope and solute partition coefficient, even at same solidification conditions, cell/dendrite structure is often formed forβphase, and plane/cell structure is often formed forαphase, which is identical with the theory of solidification.
     Solute diffusion controlled model is presented to simulate the columnar-to-equiaxed transition (CET) by using pre-setted seeds. A parametric study is performed to investigate the effects of the applied temperature gradient and pulling speed, the seed spacing and nucleation undercooling for the equiaxed grains on the CET.The results illustvelocity that the CET depends quantatively on the temperature gradient and pulling velocity, And the present simulations agree with the analytical model of Hunt. And the seed spacings of a cross section has a stronger effect on CET than that of a longitudinal section; for large nucleation undercooling, columnar grain growth is favored; the columnar branch spacing depends not only on the temperature gradient and the pulling velocity, but also on the pre-setted seeds, this hints us that a spacing adjustment can occur through initiation of seeds that develop into new columnar grains.
     According to criterions of compositional undercooling and the highest interface temperature of steady growth of one phase,the direct growth ofαphase from liquid phase is simulated. The dynamic evolutions of solidification microstructures are derived, and also some phenomena are identical with experimental observations, such as, the peritecticαphase surrounding the primaryβcells. The present simulations also reveal a number of other interesting phenomena related to the growth ofαphase, for example, for large cell/dendrite spacings of a leading primaryβphase or Ti-49at.%Al alloy,αphase tends to grow atβphase interface, and for samll cell/dendrite spacings of a leading primaryβphase or near Ti-47at.%Al alloy, and two phases tend to grow independently.
引文
1 Joaquim Barbosa, C. Silva Ribeiro, A. Caetano Monteiro. Influence of Superheating on Casting of γ-Ti-Al. Intermetallics. 2007, 15(7) : 945-955
    2 R. M. Imayev, V. M. Imayev, M. Oehring, F. Appel. Alloy Design Concepts for Refined Gamma Titanium Aluminide Based Alloys. Intermetallics. 2007, 15(4) : 451-460
    3 H. Saari, J. Beddoes, D.Y. Seo, L. Zhao. Development of Directionally Solidified γ-Ti-Al Structures. Intermetallics. 2005, 13: 937–943
    4 H. Zhou, H. Harada, Y. Ro, I. Okada. Investigations on the Thermo-Mechanical Fatigue of Two Ni-Based Single-Crystal Superalloys. Materials Science and Engineering A,. 2005, 394(1-2): 162-167
    5 I. S. Jung, H. S. Jang, M. H. Oh, J. H. Lee, D. M. Wee. Microstructure Control of Ti-Al Alloys Containing β Stabilizers by Directional Solidification. Materials Science and Engineering A. 2002, 329–331: 13-18
    6 杜 强. 铸件凝固过程计算机模拟与实用化技术研究. 中国科学院金属研究所博士学位论文. 2001 年 8 月
    7 柳百成. 面向 21 世纪的铸造技术.科学中国人. 2003, (7): 38-40
    8 王万良, 田学雷, 宋成玉. 铸件凝固模拟进展和国内外应用现状. 山东机械. 1995, (6): 31-33
    9 顾秉林. 材料科学与工程国际前沿[M]. 济南:山东科学技术出版社. 2003
    10 K. Fursund. Das Eindringen von Stahl in Formsand Einflub der Oberflachenreaktion und der Temoeratur. Giesserei Techn. Wiss. Beih. 1962, 14(2): 51-61
    11 R. E. Marrone et al. Numerical Simulation of Solidification, Part I: Low Carbon Steel Casting-“T” Shape. AFS Cast Metals Research Journal. 1970, 6(4): 184-188
    12 R. E. Marrone, J. O. Wilkes, R.D.Pehlke. Low Carbon Steel L&T Shapes. AFS Cast Metals Research Journal. 1970: 184-191
    13 R. D. Pehlke, M. J. Kirt, R. E. Marrone, D. J. Cook. Numerical Simulation of Solidification. AFS Cast Metals Research Journal. 1973, 9: 49-55
    14 P. R. Sahm, W. Richter, F. Hediger. Mathematical Simulation and Modelingof Solidification Processes of Castings. Giessereiforschung. 1983, 35(2): 35-42
    15 R. C. Atwood, P. D. Lee, R. V. Curtis and D.M. Maijer. Modeling the Investment Casting of a Titanium Crown. Dental Materials. 2007, 23(1): 60-70
    16 S. Jana, S. Ray, F. Durst. A Numerical Method to Compute Solidification and Melting Processes. Applied Mathematical Modelling. 2007, 31(1): 93-119
    17 Haidong Zhao, Itsuo Ohnaka, Jindong Zhu. Modeling of Mold Filling of Al Gravity Casting and Validation with X-ray In-situ Observation. Applied Mathematical Modelling. 2007. In Press
    18 W. S. Huang. Fluid Flow Modeling for Computer-Aided Design of Castings. Journal of Metals. 1983, (8): 22-29
    19 P. V. Desai. Computer Simulation of Forced and Natural Convection during Filling of a Casting. AFS Transactions. 1984: 519-528
    20 Sudarshan Tiwari, J?rg Kuhnert. Modeling of Two-Phase Flows with Surface Tension by Finite Pointset Method (FPM). Journal of Computational and Applied Mathematics . 2007, 203(2): 376-386
    21 Rohallah Tavakoli, Reza Babaei, Naser Varahram, Parviz Davami. Numerical Simulation of Liquid/gas Phase Flow during Mold Filling. Computer Methods in Applied Mechanics and Engineering. 2006, 196(1-3): 697-713
    22 Pengtao Yue, Chunfeng Zhou, James J. Feng, Carl F. Ollivier-Gooch, Howard H. Hu. Phase-field Simulations of Interfacial Dynamics in Viscoelastic Fluids using Finite Elements with Adaptive Meshing. Journal of Computational Physics. 2006, 219(1): 47-67
    23 Nicholas Zabaras, Baskar Ganapathysubramanian, Lijian Tan. Modelling Dendritic Solidification with Melt Convection Using the Extended Finite Element method. Journal of Computational Physics. 2006, 218(1): 200-227
    24 Sirrell B, Campbell J. Mechanism of Filtration in Reduction of Casting Defects due to Surface Trubulence during Mold Filling. AFS Transactions. 1997: 645-649
    25 Cox M, Wickins M, Kuang J P. Effect of Top and Bottom Filling on Reliability of Investment Castings in Al, Fe, and Ni Based Alloys. Mater. Sci .and Tech.. 2000,16 :1445-1150
    26 S. Kashiwai, J.D. Zhu, I. Ohnaka. Effects of Viscosity and Solidification on Mold Filling Behavior, Modeling of Casting, Welding and Advanced Solidification Processes IX. Aachen, Germany. 2000: 326-329
    27 T. C. Midea, D. Schmidt. Casting Simulation Software Surwey. Modern Cating. 1999, 89(5): 47-51
    28 M. R. Jolly et al. Investigation of Running Systems for Grey Cast Iron Camshafts, Modeling of Casting, Welding and Advanced Solidification Processes VIII. San Diego, USA. 1998: 67-75
    29 康秀红. 大型铸钢支承辊整体铸造工艺模拟与设计. 中国科学院金属研究所博士学位论文. 2005 年 4 月
    30 邱宗文, 孙国雄, 潘冶, 吴振平. 金属凝固数值模拟可视化中 OpenGL 的应用研究. 铸造. 2003, 52(12): 1173-1176
    31 严力, 王猛, 刘文锋, 黄卫东. AZ91D 镁合金反重力铸造充型及凝固过程计算机模拟. 铸造技术. 2006, 27(7): 723-728
    32 杨杰, 董怀宇, 熊守美. 灰铁凝固过程中缩孔缩松的预测. 金属学报. 2005, 41(9): 929-932
    33 张雷, 谭利坚, 沈厚发, 黄天佑, 柳百成, 边敦亭, 陈世文, 潘爱胜, 潘宁, 王晓光. 大型轧钢机架铸造工艺计算机辅助分析. 铸造. 2003, 52(8): 568-570
    34 程军. 大型铸件凝固过程数值模拟及其缩孔缩松预测. 清华大学博士学位论文. 1994
    35 刘瑞祥, 陈立亮, 周建新, 廖敦明, 魏华胜. 凝固模拟后处理中的技术进展. 特种铸造及有色合金. 2004, (3): 6-7
    36 陈立亮, 刘瑞祥. 低压铸造铝合金轮毂计算机三维凝固模拟的研究. 计算机应用研究. 1996, 13(5): 63-64
    37 周建新, 刘瑞祥, 陈立亮, 廖敦明, 魏华胜, 林汉同. 华铸 CAE 软件在金属型铸造中的应用. 铸造. 2003, 52(8): 616-619
    38 徐达明. 铸锭凝固过程宏观偏析计算机模拟的统一模型. 哈尔工业大学博士学位论文. 1989
    39 Daming Xu, Yunfeng Bai, Hengzhi Fu and Jingjie Guo. Heat, Mass and Momentum Transport Behaviors in Directionally Solidifying Blade-like Castings in Different Electromagnetic Fields Described Using a Continuum Model. International Journal of Heat and Mass Transfer. 2005, 48(11): 2219-2232
    40 Li Changyun, Wu Shiping, Guo Jingjie, Su Yanqing, Bi Weisheng, Fu Hengzhi. Model Experiment of Mold Filling Process in Vertical Centrifugal Casting. Journal of Materials Processing Technology. 2006, 176(1-3): 268-272
    41 张春晖. 压铸模温度场的数值模拟及实用软件研究. 哈尔滨工业大学硕士学位论文. 1997
    42 Daming Li, Ruo Li, Pingwen Zhang. A Cellular Automaton Technique for Modelling of a Binary Dendritic Growth with Convection. Applied Mathematical Modelling. 2007, 31(6): 971-982
    43 Tong-min Wang, Yan-qing Su, Jing-jie Guo. Structure Simulation in Unidirectionally Solidified Turbine Blade by Dendrite Envelope Tracking Model (II): Model Validation and Defects Prediction. Transactions of Nonferrous Metals Society of China. 2006, 16(4): 753-759
    44 J. Aldazabal, A. Martín-Meizoso, J.M. Martínez-esnaola, R. Farr. Deterministic Model for Ice Cream Solidification. Computational Materials Science. 2006, 38(1): 9-21
    45 W. Oldfield. A Quantitative Approach to Casting Solidification. Freezing of Casting Iron. ASM Trans. 1966, 59: 945-960
    46 Damir Juric, Gretar Tryggvason. A Front-Tracking Method for Dendritic Solidification. Journal of Computational Physics. 1996, 123: 127-148
    47 P. Zhao, J. C. Heinrich. Front-tracking Finite Element Method for Dendritic Solidification. Journal of Computational Physics. 2001, 175: 765-796
    48 P. Zhao, M.Venere, J. C. Heinrich, D. R. Poirier. Modeling Dendritic Growth of a Binary Alloy. Journal of Computational Physics. 2003, 188: 434-461
    49 A. Jocat, M. Rappaz. A Pseudo-Front Tracking Technique for the Modeling of Solidification Microstructures in Multi-Component Alloys. Acta Materialia. 2002, 50: 1909-1926
    50 Lijian Tan, Nicholas Zabaras. A Level Set Simulation of Dendritic Solidification of Multi-Component Alloys. Journal of Computational Physics . 2007, 221(1): 9-40
    51 F. Gibou, R. Fedkiw, R. Caflisch, S. Osher. A Level Set Approach for the Numerical Simulation of Dendritic Growth. Journal of Scientific Computing.2003,19: 183-199
    52 李强, 李殿中, 钱百年. 凝固过程中枝晶组织形貌演变模拟进展. 材料导报. 2004, 18(4): 5-8
    53 J. A. Spite, S. G.R. Brown. Computer Simulation of the Effects of Alloy Variables on the Grain Structure of Casting. Acta Metal. 1989, 37: 1803-1810
    54 A. Das, S. Ji, Z.Fan. Morphological Development of Solidification Structure under Forced Fluid Flow: a Monte Carlo Simulation. Acta Material. 2002, 50: 4571-4585
    55 Namin Xiao, Mingming Tong, Yongjun Lan, Dianzhong Li, Yiyi Li. Coupled Simulation of the Influence of Austenite Deformation on the Subsequent Isothermal Austenite–Ferrite Transformation. Acta Materialia. 2006, 54(5): 1265-1278
    56 焦玉宁. 微观组织模拟及面向“并行工程”的铸件 CAD/CAE. 清华大学博士后研究报告. 1997
    57 Ch.-A. Gandin, M.Rappaz. Probabilistic Modeling of Microstructure Formation in Solidification Processes. Acta. Metal. Mater. 1993. 41: 345-360
    58 Ch.-A. Gandin, M.Rappaz. A Coupled Finite Element-Cellular Automaton Model for Prediction of Dendirtic Grain Structures in Solidification Process. Acta Metal. Mater. 1994, 42: 2233-2246
    59 R. Sasikumar, R. Sreenivisan. Two Dimensional Simulation for Dendrite Morphology. Acta. Mater.. 1994, 42: 2381-2386
    60 U. Dilthey, V. Pavlik, T. Reichel. Numerical Simulation Dendritic Solidification with Modified Cellular Automata. Mathematical Modeling of Welding Phenomena, Conference. 1998: 85-105
    61 L. Nastac. Numerical Modeling of Solidification Morphologies and Segregation Patterns in Cast Dendritic Alloys. Acta Mater.. 1999, 47: 4253-4362
    62 M. F. Zhu, C. P. Hong. A Three-Dimensional Modified Cellular Automaton Model for Prediction of Solidification Microstructure. ISIJ Inter. 2002, 42(5): 520-526
    63 M. F. Zhu, J. M. Kim, C. P. Hong. Modeling of Globular and Dendritic Structure Evolution in Solidification of an Al-7mass%Si Alloy.. ISIJ Inter. 2001, 41: 992-998
    64 W. kurz, B. Giovanola, R. Trivedi. Theory of Microstructure Development during Rapid Solidification. Acta Mater.. 1986, 34: 823-830
    65 S. R. Chang, J. M. Kim, C. P. Hong. Numerical Simulation of Microstructure Evolution of Alloys in Centrifugal Casting. ISIJ International. 2001, 41(7): 738-747
    66 Lazaro Beltran-Sanchez, Doru M. Stefanescu. Growth of Solutal Dendrites: A Cellular Automaton Model and its Quantitative Capabilities. Metall. Mater Trans A. 2003, 34A: 367-382
    67 P. D. Lee, A. Chirazi, R. C. Atwood, W. Wang. Multiscale Modelling of Solidification Microstructures, Including Microsegregation and Microporosity, in an Al–Si–Cu Alloy. Materials Science and Engineering A. 2004, 365: 57-65
    68 李强, 马颖澈, 刘奎, 康秀红, 李殿中. U-6%Nb 二元合金凝固过程中显微组织与显微偏析的模拟. 金属学报. 2007, 43(2): 217-224
    69 Q. Li, Q. Y. Guo, D. Z. Li, B. N. Qian, D. M. Li, P. W. Zhang. Continuous Method to Describing Dendrite Evolution during Solidification. Chinese Physics Letter. 2004, 21(1): 143-145
    70 许庆彦,柳百成. 采用 Cellular Automaton 模拟铝合金微观组织. 中国机械工程. 2001, 12(3):328-331
    71 Ying Liu, Qingyan Xu, Baicheng Liu. A Modified Cellular Automaton Method for the Modeling of the Dendritic Morphology of Binary Alloys. Tsinghua Science & Technology. 2006, 11(5): 495-500
    72 李新中. 定向凝固包晶合金相选择理论及其微观组织模拟. 哈尔滨工业大学博士学位论文. 2006 年 3 月
    73 G.J. Fix. Phase Field Model for Free Boundary Problems. In: Free Boundary Problems: Theory and Applications. Edited by A.Fasono and M.Primicerio, Pitman, London. 1983: 580-589
    74 Nikolas Provatas, Nigel Goldenfeld and Jonathan Dantzig. Efficient Computation of Dendritic Microstructures Using Adaptive Mesh Refinement. Physical Review Letters. 1998, 80(15): 3308-3311
    75 Yung-Tae Kim, Nikolas Provatas, Nigel Goldenfeld and Jonathan Dantzig. Universal Dynamics of Phase Field Model for Dendritic Growth. Physical Review E. 1999, 59(3): 2546-2549
    76 William L George, James A.Warren. A Parallel 3D Dendritic Growth Simulator Using the Phase Field Method, Journal of Computational Physics. 2002, 177: 264-283.
    77 R. Tonhard, G. Amberg. Phase-Field Simulation of Dendritic Growth in a Shear Flow. J. Crys. Growth. 1998, 194: 406-425
    78 William J. Boettinger, James A.Warren. Simulation of the Cell to Plane Front Transition during Directional Solidification at High Velocity. Journal of Crystal Growth. 1999, 200: 583-591
    79 于艳梅, 杨根仓,赵达文, 吕衣礼, A.Karma, C.Beckermann. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报. 2001, 50(12): 2423-2428
    80 Xinzhong Li, Jingjie Guo, Yanqing Su, Shiping Wu, Hengzhi Fu. The Phase-Field Simulation of Dendritic Growth in Complex Binary Alloys. Transactions of Nonferrous Metals Society of China. 2005, 15 (4): 769- 776
    81 Li Xinzhong, Guo Jingjie, Su Yanqing, Wu Shiping, Liu Chang, Fu Hengzhi. Phase-Field Simulation of Interface and Microstructure Evolution at High Growth Velocities during Directional Solidification of Ti55Al45 Alloy. Rare Metal Materials and Engineering. 2004, 33: 195-198
    82 赵代平, 荆涛. 用捕获液态改进的相场方法模拟三维枝晶生长. 金属学报. 2002, 38(12): 1238-1240
    83 W. A.Tiller, K. A. Jackson, J. W. Rutter, B. Chalmers. The Redistribution of Solute Atoms during the Solidification of Metals. Acta Metall.. 1953, 1: 428-437
    84 Weinberg F, Chalmers B. Dendrtitic Growth in Lead. Can. J. Phys. 1951, 29: 382
    85 Weinberg F, Chalmers B. Further Observations on Dendritic Growth in Metals. Can. J. Phys. 1952, 30: 488
    86 Rutter J W, Chalmers B. A Prismatic Substructure Formed during Solidification of Metals. Can. J. Phys. 1953, 32: 15
    87 W. W. Mullins, R. F. Sekerka. Morphological Stability of a Particle Growing by Diffusing of Heat Flow. Journal of Applied Physics. 1963, 34(2): 323-329
    88 W. W. Mullins, R. F. Sekerka. Stability of a Planar Interface during Solidification of a Dilute Binary Alloy. Journal of Applied Physics. 1964, 35(2): 444-451
    89 D. J. Wollkind , L. A. Segel. A Nonlinear Stability Analysis of the Freezing of a Dilute Binary Alloy. Phil. Trans. Riy. Soc.. 1970, 268: 351
    90 Rober F. Sekerka. Optimum Stability Conjecture for the Role of Interface Kinetics in Selection of the Dendrite Operating State. Journal of Crystal Growth. 1995, 154: 377-385
    91 G.. B. McFadden, S. R. Coriell ,R. F. Sekerka. Analytic Solution for a Non-Axisymmetric Isothermal Dendrite. Journal of Crystal Growth. 2000, 208: 726-745
    92 Haifeng Wang, Feng Liu, Zheng Chen, Gencang Yang and Yaohe Zhou. Analysis of Non-equilibrium Dendrite Growth in a Bulk Undercooled Alloy Melt: Model and Application. Acta Materialia. 2007, 55(2): 497-506
    93 马东, 黄卫东. KF 稳定性判据的进一步分析. 材料研究学报. 1994, 8: 501
    94 William Oldfield. Computer Model Studies of Dendritic Growth. Materials Science and Engineering. 1973, 11: 211-218
    95 J. S. Langer, H. Muller - Krumbhaar. Theory of Dendritic Growth-Ι. Elements of a Stability Analysis. Acta Metall.. 1978, 26(11): 1681-1687
    96 J. S. Langer, H. Muller - Krumbhaar. Theory of Dendritic Growth-ΙΙ. Instabilities in the Limit of Vanishing Surface Tension, Acta Metall..1978, 26(11): 1689-1695
    97 J. S. Langer, H. Muller-Krumbhaar. Theory of Dendritic Growth-ΙΙΙ. Effects of Surface Tension. Acta Metall.. 1978, 26(11): 1697-1708
    98 W. Kurz, D. J. Fisher. Fundamentals of Solidification. Trans Tech Publications Ltd, Switzerland. 1998: 1
    99 W. Kurz, D. J. Fisher. Dendrite Growth at the Limit of Stability Tip Radius and Spacing. Acta Metall..1981, 29(1): 11-20.
    100 K. Somboonsuk, J. Mason, R. Trivedi. Metall. Trans.A . 1984, 15: 967
    101 M. Burden, J. Hunt. Cellular and Dendritic Growth.II. J. Cryst.Growth. 1974,22: 109-116
    102 Tewari. S, Laxmanan.V. A Critical Examination of the Dendrite Growth Models: Comparison of Theory with Experimental Data. Metall. Trans. A. 1987, 18: 167
    103 Billia. B, Jamgotchian H, Trivedi. R. Cellular and Dendritic Regimes in Directional Solidification: Microstructural Stability Diagram. J Cryst.Growth. 1990, 106: 410-420
    104 J. D. Hunt, International Conference on Solidification and Casting of Metals. The Metals Society. 1979, London: 3-9
    105 J. D. Hunt, S. Z. Lu. Numerical Modelling of Cellular and Cendritic Array Growth: Spacing and Structure Predictions. Materials Science and Engineering A. 1993, 173 :79-83
    106 Ragnvald H, Mathiesen. Lars Arnberg. X-ray Radiography Observations of Columnar Dendritic Growth and Constitutional Undercooling in an Al–30wt%Cu Alloy. Acta Materialia. 2005, 53: 947-956
    107 J. D. Hunt. Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic. Mater. Sci. Eng.. 1984, 65:75-83
    108 Wang C Y, Beckermann C. A Unified Solute Diffusion Model for Columnar and Equiaxed Dendritic Alloy Solidification. Materials Science and Engineering A . 1993, 171: 199-211
    109 Gaumann M, Trivedi R, Kurz W. Nucleation ahead of the Advancing Interface in Directional Solidification. Materials Science and Engineering A. 1997, 226-228: 763-769
    110 W. kurz, B. Giovanola, R. Trivedi. Theory of Microstructure Development during Rapid Solidification. Acta Mater.. 1986, 34: 823-830
    111 W. Kurz, C. Bezen?on, M. G?umann . Columnar to Equiaxed Transition in Solidification Processing. Science and Technology of Advanced Materials. 2001, 11: 185-191
    112 M. A. Martorano, C. Beckermann, Ch-A. Gandin. A Solutal Interaction Mechanism for the Columnar to Equiaxed Transition in Alloy Solidification. Metall. Trans. A. 2003, 34A (8): 1657-1674
    113 G. Reinhart, N. Mangelinck-Noёl , H. Nguyen-Thi, T. Schenk, J. Gastaldi, B. Billia, P. Pino, J. H?rtwig, J. Baruchel. Investigation of Columnar–Equiaxed Transition and Equiaxed Growth of Aluminium based Alloys by X-ray Radiography. Materials Science and Engineering A. 2005, 413–414: 384–388
    114 Arnoldo Badillo, Christoph Beckermann. Phase-Field Simulation of the Columnar-to-Equiaxed Transition in Alloy Solidification. Acta Materialia. 2006, 54: 2015-2026
    115 H. B. Dong, P. D. Lee. Simulation of the Columnar-to-Equiaxed Transition inDirectionally Solidified Al–Cu Alloys. Acta Materialia. 2005, 53: 659-668
    116 M. Sujata, D. H. Sastry, C. Ramachandra. Microstructural Characterization and Creep Behaviour of As-Cast Titanium Aluminide Ti48Al2V. Intermetallics. 2004, 12 : 691-697
    117 S. E. Kim, Y.T. Lee, M. H. Oh, H. Inui, M. Yamaguchi. Directional Solidification of Ti-Al Based Alloys Using a Polycrystalline Seed. Materials Science and Engineering A. 2002, 329–331: 25-30
    118 M.C. Kim, M.H. Oh, J.H. Lee, H. Inui, M. Yamaguchi, D.M. Wee. Composition and Growth Velocity Effects in Directionally Solidified Ti-Al Alloys. Materials Science and Engineering A. 1997, 239–240 : 570-576
    119 J. Y. Jung, J. K. Park, C.H. Chun. Influence of Al Content on Cast Microstructures of Ti-Al Intermetallic Compounds. Intermetallics. 1999, 7: 1033-1041
    120 D. R. Johnson, K. Chihara, H. Inui, M. Yamaguchi. Microstructural Control of Ti-Al-Mo-B Alloys by Directional Solidification. Acta mater.. 1998, 46(18): 6529-6540
    121 刘畅, 苏彦庆, 李新中, 郭景杰, 贾均, 傅恒志. Ti-(44~50)Al 合金定向包晶凝固过程中的组织形态演化. 金属学报. 2005, 41(3): 260-266
    122 W. L. George, J. A. Warren. A parallel 3D Dendritic Growth Simulator Using the Phase-Field Method. J. Comp. Phys.. 2002, 177: 264-283
    123 B. Zhiqiang, R. F. Sekerka. Phase Field Modeling of Shallow Cells During Directional Solidification of a Binary Alloy. J. Crys. Growth. 2002, 237: 138- 143
    124 C. W. Lan, Y. C. Chang. Efficient Adaptive Phase Field Simulation of Directional Solidification of a Binary Alloy . J. Cryst. Growth. 2003, 250: 525-537
    125 G. J. Merchant, S. H. Davis. Morphological Instability in Rapid Directional Solidification. Acta Metall. Mater.. 1990, 38: 2683 – 2692
    126 Shan Liu, R. E. Napolitano and R. Trivedi. Measurement of Anisotropy of Crystal-Melt Interfacial Energy for a Binary Al–Cu Alloy. Acta Materialia. 2001, 49: 4271-4276
    127 W.Kurz, Trivedi. Overview No. 87 Solidification Microstructures: Recent Developments and Future Directions. Acta Metall. 1990, 38: 1-17
    128 O. Hunziker, M. Vandyoussefi, W. Kurz. Phase and Microstructure Selection in Peritectic Alloys Close to the Limit of Compositional Undercooling. Acta Mater.. 1998, 46(18): 6325 – 6336
    129 S. Witzke, J. P. Riquet, F. Durand. Diffusion Field ahead of a Growing Columnar Front: Discussion of the Columnar-Equiaxed Transition. Acta Metal.. 1981, 29: 365-374
    130 Kerr H W, Kurz W. Solidification of Peritectic Alloys.Internation Materials Reviews. 1996, 41(4): 129
    131 Umeda T, Okane T, Kurz W. Phase Selection during Solidification of Peritectic Alloys. Acta Materialia. 1996, l44 (10): 4 209
    132 R. Trivedi , J.H. Shin. Modelling of Microstructure Evolution in Peritectic Systems. Materials Science and Engineering A. 2005, 413–414:288–295
    133 T. Yamanaka, D. R. Johnson. H. Inui, M. Yamaguchi. Directional Solidification of Ti-Al-Re-Si Alloys with Aligned γ/α2 Lamellar Microstructures. Intermetallics. 1999, 7: 779-784
    134 A. Wagner, B.A. Shollock, M. McLean..Grain Structure Development in Directional Solidification of Nickel-Base Superalloys. Mater Sci Eng A. 2004; 374: 270-279
    135 Y. Q. Su, C. Liu, X. Z. Li, J. J. Guo, et al.. Microstructure Selection during the Directionally Peritectic Solidification of Ti-Al Binary System. Intermetallics. 2005, 13: 267 – 274
    136 In-Soo Jung, Min-Chul Kim, Je-Hyun Lee, Myung-Hoon Oh, Dang-Moon Wee. High Temperature Phase Equilibria near Ti-50at.%Al Composition in Ti-Al System Studied by Directional Solidification. Intermetallics. 1999, 7: 1247-1253
    137 陈光, 傅恒志. 非平衡凝固新型金属材料. 济南: 科学出版社, 2004
    138 J. Lapin. L. Ondrú?, M. Nazmy. Directional Solidification of Intermetallic Ti–46Al–2W–0.5Si Alloy in Aumina Moulds. Intermetallics. 2002, 10: 1019-1031
    139 T. F. Bower, H. D. Brody, M. C. Flemings. Solute Redistributuion in Dendritic Solidification. Trans. TMS-AIME. 1966, 236: 624 - 631

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700