用户名: 密码: 验证码:
高温度梯度定向凝固Al-In和Cu-Pb合金组织演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择典型的Al-In和Cu-Pb偏晶合金作为研究对象,研究了在定向凝固工艺条件下微观组织的转变过程并对其进行了理论分析,同时采用相场法模拟了偏晶合金微观组织演化过程。
     在高温度梯度下对Al-In偏晶合金进行定向凝固,考察了不同凝固速度、化学成分以及第三组元对偏晶合金凝固组织的影响,获得了定向凝固条件下微观组织的演化规律,即在固定的温度梯度下,随着抽拉速度的增大,第二相形态演化的过程依次为:规则的纤维状,发生颈缩的纺锤状,粗化的球状,均匀弥散分布于基体中。纤维间距随着凝固速度的增大而减小,随着温度梯度的增大,纤维状向球状转变的临界速度相应增大。
     在Cu-Pb亚偏晶成分范围内进行定向凝固时,组织呈现枝晶的形貌,当铅含量增加时,组织由枝晶向不规则的棒状组织转变。随着铅含量的增大,组织由枝晶向不规则的棒状组织转变所需要的凝固速度减小。在Cu-Pb过偏晶成分范围内进行定向凝固时,抽拉速度和铅含量较低时,容易形成拉长的粒子状第二相,而后随着抽拉速度的进一步增加向不规则的棒状第二相转变。而抽拉速度较低和铅含量较高的时候形成带状组织,随着抽拉速度的进一步提高组织会由带状向拉长的粒子状组织转变。在偏晶点附近形成不规则的棒状复合组织的铅含量随着凝固速度的增加而增大。
     基于共晶理论模型考虑生成相密度的不同对凝固界面前沿溶质场进行求解,在此基础上对过冷度计算,进而进行偏晶合金定向凝固中第二相纤维球化以及规则第二相纤维与非规则第二相纤维之间转变的理论预测,综合考虑了界面能、第二相体积分数以及液相线斜率对偏晶合金定向凝固组织的影响因素的情况下,对偏晶合金定向凝固规则与非规则第二相纤维转变提出一个新的判据。并利用此判据对五种典型的偏晶合金系进行计算,所获得预测结果与实验观察的第二相纤维规则情况吻合较好。通过对沿着规则L2相纤维表面成正弦分布的扰动进行分析,以在纤维表面扰动幅度达到R0时所需要的时间tp小于试样在凝固界面以下TM到共晶反应温度TE之间运动时间t为临界条件,推导出纤维状的第二相可以发生颈缩,从而导致球化的判据
     采用计算效率和计算精度较高的Fourier变换谱分析方法求解Cahn-Hilliard相场方程,对Cu-Pb过偏晶合金液相分离过程中液滴生长和Ostwald熟化进行模拟,研究了第二相液滴扩散长大过程,同时耦合Navier-Stokes方程计算了流动对Cu-Pb过偏晶合金的液相分离过程中液滴生长过程的影响。研究表明在过饱和基体中,单个第二相液滴生长的扩散过程主要是系统自由能作用的结果,液滴半径的长大速率与经典的Zener理论吻合良好。计算区域中多个第二相液滴粗化后液滴半径的分布情况,与LSW解析理论吻合较好。第二相液滴在生长过程中,除了扩散生长、Ostwald熟化以外,还受到定向凝固温度场中温度梯度的作用,产生Marangoni运动,在Marangoni力的驱动下,液滴向温度高的区域发生移动,在随后的凝固过程中,由于不同半径的液滴之间受到Marangoni力的大小不同,移动速度也不同,导致各种半径大小的液滴之间发生碰撞,从而加速了液滴半径粗化的进程,使液滴半径尺寸沿着温度梯度方向逐渐的增加。
     干摩擦条件下定向凝固Cu-Pb金属基自润滑复合材料的摩擦系数随固体润滑剂体积分数的增加而下降,减摩自润滑效果逐渐提高。铜铅自润滑材料在含油的状态下,形成了一种复合润滑体制,具有很强的吸油能力,能形成高效能的胶体油铅混合液态薄膜。由于摩擦接触表面间油膜的存在,减轻了微凸凹体的接触及表面间元素传递过程,降低了摩擦系数。由于定向凝固工艺方法使得第二相更加的均匀,因此定向凝固制备的铜铅自润滑材料普遍比熔铸方法所制备的铜铅自润滑材料在油润滑状态下的摩擦系数要低。
In this paper, Al-In and Cu-Pb monotectic alloy, are chosen as the investigated subject. Experimental study of microstructure evolution and theoretical analysis are carried out during the directional solidification, and the droplets coarsening are simulated using a phase-field method.
     In the condition of high temperature gradient, the effect of the growth rate, chemical composition and the third element on the fibres are examined. The results show that the regular fibre of L2 phase of the directionally solidified Al-In alloy change from fibre, spindle fibre, periodical and regular array of In droplets to random dispersion of In droplets in the aluminum matrix with increasing growth rate. And the critical velocity from fibre to droplet becomes larger with increasing the temperature gradient.
     Microstructure of the directionally solidified Cu-Pb hypomonotectic alloy changes from columnar dendrite to the irregular rod composite structure with increasing lead content and growth rate, and the transition of the Cu-Pb hypermonotectic alloys from the band structure and elongated droplets to the irregular rod composite structure is observed with increasing growth rate. The range of compositions of forming the rod composite structure around the monotectic points increases with increasing the growth rate.
     The modified Jackson-Hunt model of eutectic solidification is employed to analyze the coupled growth of monotectic directional solidification due to the similarity between the eutectic alloys and monotectic alloys. The effect of interfacial energy, volume fraction and liquidus slope on the morphologies are included in the criterion. The criterion can determine that whether regular or irregular morphology occurs. The results show that the prediction calculated by the modified model agrees well with the morphologies observed in experiments. Sinusoidal perturbation is imposed on the regular fibre of L2 phase. The fibre stays liquid state in the temperature domain lying between the monotectic and eutectic temperature. If the time required for the specimen to cross the domain is larger than the time needed for the fibres to pinch-off, the spheroidization of fibre can take place. A criterion for the spheroidization of fibre is developed.
     Cahn-Hilliard equation coupling with thermodynamic data is solved by Fourier transformation spectrum method due to the high efficiency and accuracy to simulate droplet growth and Ostwald ripening for Cu-Pb hypermonotectic alloy. The effect of flow on the microstructure evolution during the liquid separation process is included by computing the Navier-Stokes equation. The simulation results show that growth rate of droplet radius is in good agreement with the well accepted Zener’s law. Size distribution of reduced droplet radius matches well with classical LSW theory. In addition, the marangoni motion drived by interfacial force gradient can take place besides the diffusion, Ostwald ripening during the droplet growth. In the subsequent solidification, the liquid droplets can collide due to the different velocity drived by the various marangoni forces. Therefore, the coagulation is dramatically accelerated by flow. The size of droplets increases along the temperature gradient.
     Under the dry sliding condition, the wear coefficient of directionally solidified Cu-Pb alloy becomes small and the anti-attrition is improved with increasing the lead content. Under the oil lubrication, the mixed film is formed between the bearing and journal surface. Mass transfer becomes weak between the sample and grinding disc. The wear coefficient becomes small due to the existence of the film. In the mean time, the wear coefficient of the sample prepared by the directional solidification is smaller than the one of sample prepared by the conventional casting, because the distribution of second liquid droplets in the sample prepared by the directional solidification is more homogenous than that of sample prepared by the conventional casting.
引文
1 贾均, 赵九洲, 郭景杰, 刘源. 难混溶合金及其制备技术. 哈尔滨工业大学出版社,2002:2~3
    2 Ran Guang, Zhou Jingen, Xi Shengqi, Li Pengliang. Formation of Nanocrystalline and Amorphous Phase of Al-Pb-Si-Sn-Cu Powder during Mechanical Alloying. Materials Science and Engineering A. 2006, 416(1-2):45~50
    3 郝维新, 杨根仓, 谢辉, 樊建锋. 过冷 Cu-37.4%Pb 偏晶合金凝固组织对磨损行为的影响.铸造技术. 2004, 25(7):541~545
    4 Ran Guang, Zhou Jingen. Microstructure and Morphology of Al-Pb Bearing Alloy Synthesized by Mechanical alloying and Hot Extrusion. Journal of Alloys and Compounds. 2006, 419(1-2):66~70
    5 An Jian, Li Rongguang, Chen Chunmei, Lu You, Liu Yongbing. Friction and Wear Characteristics of Al-Pb Alloy Modified By High-Current Pulsed Electron Beam Processing. Tribology. 2007, 27(2):97~101
    6 Lu Xiaoxia, Lu you, Xu Dewei, An Jian. Properties and Composition of the Wear Surface Film of Hot Extruded Al-Si-Pb Bearing Alloy. Material Science and Technology. 2004, 12(2):209~211
    7 G.B.Rudrakshi, S.N.Ojha. Spray Forming and Wear Characteristics of Liquid Immiscible Alloys. Journal of Materials Processing Technology. 2007, 189(1-3):224~230
    8 Zhan Yongzhong, Zeng Jianmin. Fabrication and Electrical Sliding Wear of Graphitic Cu-Cr-Zr Matrix. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques. 2006, 97(2):150~155
    9 Liu Ping, Liu Yong, Tian Baohong, Li Wei. Electrical Sliding Wear Behavior of Cu-Cr-Zr Alloy. Journal of Functional Materials. 2006, 37(2):213~215
    10 A.Inoue, N.Yano. Microstructure and Superconducting Properties of Melt Quenched Insoluble Al-Pb and Al-Pb-Bi Alloys. Journal of Material Science. 1987, 22:123~128
    11 P.Terizieff, R.Luck. Magnetic Investigations in Liquid Al–In. Journal of Alloys and Compounds. 2003, 360(1-2): 205~209
    12 X.Fang, Z.Fan. Microstructure of Zn-Pb Immiscible Alloys Obtained by a Rheomixing Process. Materials Science and Technology. 2005,21(3):366~372
    13 Y. Hideyuki, O.Itsuo, F.Shinji, S.Akira, H. Yoshinori, Y.Masayuki, T.Akira. Fabrication of Porous Aluminum with Deep Pores by Using Al-In Monotectic Solidification And Electrochemical Etching. Materials Letters. 2004, 58(6):911~915
    14 赵九洲. Zn-Pb 偏晶合金液相分离机制及凝固行为. 哈尔滨工业大学博士论文. 1994: 45~50
    15 B.E.Sundquist, R.A.Oriani. Homogeneous Nucleation in a Miscibility Gap System: A Critical Test of Nucleation Theory. Journal of Chemistry Physics. 1962, 36(10):2604~2615
    16 W.B. Hillig, B.Mccarroll. Physical-Cluster Distributions during Heterophase Fluctuation. Journal of Chemistry Physics. 1966, 45(10):3887~3888
    17 R.B. Heaby, J.W.Cahn. Experimental Test of Classical Nucleation Theory in a Liquid-Liquid Miscibility Gap System. J.Chem.Phys.. 1973, 58(3):896~910
    18 J.H.Perpezko, C.Gaoup. Materials Processing in the Reduced Gravity Environment of Space. Ed. G. E. Rindone. Elsevier Amsterdam, 1982:491~540
    19 N.Uebber, L.Ratke. Undercooling and Nucleation within the Liquid Miscibility Gap of Zn-Pb Alloys. Scripta Materialia. 1991, 25:1133~1137
    20 L.Granasy, L.Ratke. Homogeneous Nucleation within the Liquid Miscibility Gap of Zn-Pb Alloys. Scripta Materialia. 1993, 28:1329~1334
    21 L.Ratke, W.K.Thieringer. The Influence of Particle Motion on Ostwald Ripening In Liquids. Acta Materialia.1985, 33:1793~1802
    22 刘源. Al-In 难混溶合金液相分离机制及其快速凝固. 哈尔滨工业大学博士论文. 2001:2~3
    23 L.L.Lacy, G.Otto. The Behavior of Immiscible Liquids in Space. AIAA/ASME Paper. Boston, Mass, 1974:74~668
    24 S.H.Gelles, J.Markworth. Microgravity Studies in the Liquid Phase Immiscible System Al-In. 15th AJAA Conf. Los Angeles, 1977:77~112
    25 H.Ahlborn. Aluminium-Indium Experiment Solouf-A Sounding Rocket Experiment on Immiscible Alloys. 17th AJAA Conf. New Orleans, 1979:79~172
    26 H.U.Walter. Preparation of Dispersion Alloys-Component Separation during Cooling and Solidification of Dispersions of Immiscible Alloys. Workshop on Effect of Gravity on Solidification of Immiscible Alloys. Stockholm ESA SP-219, Sweden, 1984:47~67
    27 H.Fujii, T.Kimura, H.Kitaguchi, H.Kumakura, K.Togano. Fabrication of Uniform Al-Pb-Bi Monotectic Alloys under Microgravity Utilizing the Space Shuttle: Microstructure and Superconducting Properties. Journal of Material Science. 1995, 30:3429~3434
    28 王翠萍. 液相不溶型合金复合组织自形成驱动力的解析.自然科学进展. 2004, 14(12):1459~1462
    29 C.P.Wang. Formation of Immiscible Alloy Powers with the Egg Type Microstructure. Science. 2002, 9:9904~9911
    30 C.P.Wang. Formation of Core Type Macroscopic Morphologies in Cu-Fe Base Alloys with Liquid Miscibility. Metallurgical Transactions A (Physical Metallurgy and Materials Science). 2004, 35A:1243~1255
    31 刘向荣. 空间模拟条件下共晶和偏晶合金的快速凝固. 西北工业大学博士论文. 2004:75~78
    32 李海丽, 赵九洲, 何杰. Al-Pb 合金粉末壳型组织形成过程. 金属学报2007, 43(6):659~662
    33 P.Duwez, R.H.Willens, W.Klement. Continuous Series of Metastable Solid Solutions in Silver-Copper. Journal of Apply Physics. 1960, 31:1136~1137
    34 R.J.Feder, W.E.Smith. U.S. Patent 3797084,1974
    35 Liu Xiangrong, Wei Bingbo. Rapid Growth of Cu-Pb Monotectics under Containerless Condition. Acta Physica Sinica. 2005, 54(4):671~678
    36 Xu Jinfeng, Wei Bingbo. Phase Separation of Cu-Pb Monotectic Alloy During Rapid Solidification. Acta Physica Sinica. 2007, 56(7):3996~4003
    37 S.N.Ojha, K.Chattopadhyay. Rapid Solidification and Decomposition of A Hypomonotectic Al-In Alloy. Transactions of Indian Instititute of Metals. 1978, 31:208~212
    38 李永伟, 朱学新, 徐柱天. 快速凝固偏晶合金的显微结构. 稀有金属. 1998, 22(4):308~312
    39 W.T.Kim, D.L.Zhang, B.Cantor. Microstructure of Rapidly Solidified Aluminium-Based Immiscible Alloy. Materials Science and Engineering A.1991, 134A:1133~1138
    40 B.Wei, D.M.Herlach, F.Sommer. Rapid Solidification of Undercooled Eutectic and Monotectic Alloys. Materials Science and Engineering A. 1993, 173A:357~361
    41 熊柏青, 张永安, 王连伟. Al-Pb 轴瓦合金的雾化沉积制备技术研究. 稀有金属. 1999, 23(3): 233~235
    42 R.Goswami, K.Chattopadhyay. Microstructural Developments in Rapidly Solidified Monotectic Alloys. Materials Science and Engineering A. 1994, 179A/180A:163~167
    43 S.N.Tewari. Microstructure and Nucleation Behavior of Lead Particles in Rapidly Quenched Immiscible Alloys. Journal of Material Science Letter. 1989(8):1098~1100
    44 Cao Chongde, Wei Bingbo. Microstructure Evolution of Cu-Pb Monotectic Alloys Processed In Drop Tube. Journal of Materials Science and Technology, 2002, 18(1):73-76
    45 Liu Shenquan, Hao Weixin, Yang Gencang. Rapid Solidification of Cu-Pb Hypomonotectic Alloy at High Undercooling. Acta Physica Sinica 2006, 55(5):444~447
    46 D.L.Zhang, B.Cantor. Heterogeneous Nucleation of In Particles Embedded in an Al Matrix. Philosophical Magazine. 1990, 62A(5):557~572
    47 D.L.Zhang, B.Cantor. Melting Behavior of In and Pb Particles Embedded in an Al Matrix. Acta Materialia. 1991, 39(4):1595~1602
    48 K.I.Moore, D.L.Zhang, B.Cantor. Solidification of Pb Particles Embedded in Al. Acta Materialia. 1990, 38(7):1327~1342
    49 R.Goswami, K.Chattopadhyay, W.T.Kim. Heterogeneous Nucleation of Pb Particles Embedded in a Zn Matrix. Metallurgical Transactions A (Physical Metallurgy and Materials Science). 1992, 23A:3207~3218
    50 W.T.Kim, B.Cantor. Solidification Behavior of Pb Droplets Embedded in a Cu Matrix. Acta Materialia. 1992, 40(12):3339~3347
    51 D.L.Zhang, B.Cantor. Melting Behavior of In and Pb Particles Embedded in an Al Matrix. Acta Materialia. 1991, 39(7):1595~1602
    52 Liu Yuan, Guo Jingjie, Jia Jun, Su Yanqing, Ding Hongsheng. Liquid Phase Separating Mechanism and Preparation Techniques of Immiscible Alloys.Transactions of Nonferrous Metal Society of China. 2002, 12(2):357~365
    53 Liu Yuan, Guo Jingjie, JiaJun, LI Yanxiang, Zhao Jiuzhou. Microstructure Evolution of Immiscible Alloys during Rapid Cooling Through Miscibility Gap. Transactions of Nonferrous Metal Society of China. 2002, 12(2):193~198
    54 朱定一, 杨晓华, 韩秀君, 魏炳波. Fe-Sn 偏晶合金的深过冷快速凝固组织.中国有色金属学报. 2003, 13(2):328~332
    55 郝维新,杨根仓,谢辉,樊建峰. 深过冷 Cu-Pb 偏晶合金的快速凝固行为和凝固组织. 材料研究学报. 2004, 18(4):358~362
    56 何杰, 赵九洲. 快速凝固 Cu-Fe 难混溶的显微组织. 金属学报. 2005, 41(4):407~410
    57 刘源, 郭景杰, 贾均, 苏彦庆, 丁宏升. 快速凝固 Al-In 偏晶合金的显微结构. 金属学报. 2000, 36(12): 1233~1236
    58 刘申全,郝维新,杨根仓. 亚偏晶 Cu-Pb 合金的快速凝固.铸造. 2006, 55(5):444~447
    59 J.Z.Zhao, M. Kolbe, L.Ratke. Formation of the Microstructure in A Rapidly Solidified Cu-Co Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 2007, 38(6):1162~1168
    60 J.Z.Zhao. The kinetics of the liquid-liquid decomposition under the rapid solidification conditions of gas atomization. Materials Science and Engineering A. 2007, 454-455:637~640
    61 Y.C.Zhang, Y.Y.Hao, Z.F.Liu, G.Y.Chen. Production of Rapidly Solidified Al-Pb-Cu Alloy by Liquid Stirring Ultrasonic Gas Atomization and Liquid Dynamic Compaction. Materials Science and Engineering A.1988, 98A:119~121
    62 J.Z.Zhao. Formation of the Minor Phase Shell on The Surface of Hypermonotectic Alloy Powders. Scripta Materialia. 2006, 54(2):247~250
    63 黄赞军, 陈桂云, 徐映坤. 用双液喷射共沉积法制备均质 Pb-Al 合金. 98全国喷射成形技术学术研讨会论文集. 哈尔滨, 1998:81~84
    64 Chen Guiyun. Microstructure and Properties Of Steel/Al-Pb Composite Bearing Plate Prepared By Spray Forming And Rolling. Journal of Materials Research. 2004, 18(1):102~107
    65 Tetsuyuki, N.Seiki. On the Structure of Al-Pb Alloys Solidified by RapidCooling. Journal of Japan Institute Metals. 1982, 46(6):645~651
    66 B.Prinz, A.Romero. Immiscible Alloys and Organics. Ed. L.Ratke. DGM- Informationsgesellschaft Oberursel, Germany, 1993:281~290
    67 B.Prinz, A.Romero, L.Ratke. Casting Process for Hypermonotectic Alloys under Terrestrial Conditions. Material Science Forum. 1995, (30):4715~4719
    68 J.P.Pathak, S.N.Tiwari, S.L.Malhotra. Production of High-Lead Aluminium by Impeller Mixing. Metals Technology. 1979, 11:442~448
    69 K.Ichikawa, S.Ishizuka. Production of Al-Pb Alloys by Rheocasting. Transaction of Japan Institute Metal. 1987, 28:145~151
    70 S.Mohan. Fabrication of Cast Al-Base Lead Bearing Alloys and their Wear Characteristics. Ph.D. Dissertation. University of Roorkee. 1989:1~78
    71 S.Mohan, V.Agarwala, S.Ray. Dispersion of Liquid Lead in Molten Aluminium by Stirring. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques. 1989, 80:439~443
    72 S.Mohan, V.Agarwala, S.Ray. Liquid-Liquid Dispersion for Fabrication of Al-Pb Metal-Metal Composites. Materials Science and Engineering A. 1991, 144A:215~219
    73 孙大仁, 刘勇兵等. 冷却速度和铅含量对新型 Al-Pb 铸造轴承合金显微组织的影响. 中国有色金属学报. 1998, 8(Suppl.1):141~144
    74 孙大仁, 杨晓红,张明喆. 铸造铝铅滑动轴承合金的制备及其显微组织. 特种铸造及有色合金. 1998, (5):24~26
    75 S.Mohan, V.Agarwala, S.Ray. The Effect of Lead Content on Wear Characteristics of a Stir-Cast Al-Pb Alloy. Wear. 1990, 140:83~92
    76 J.C.Lee. The Formation of Liquid-Liquid Dispersion-Chemical and Engineering Aspects. Chameleon Press Ltd., London, 1984:1~200
    77 雷文译. 空间材料科学. 北京:中国空间技术研究总院出版社, 1988:221-235
    78 S.T.Ashok, T.V.Rajan. Bearing Characteristics of Cast Leaded Aluminium- Silicon Alloys. Wear. 1996, 197:105~114
    79 冼爱平, 张修睦, 李忠玉等. 利用 Marangoni 对流制备均质偏晶合金. 金属学报. 1996, 32(2):113~119
    80 张修睦, 朱丽红, 庄艳歆. 在空间(微重力)凝固的金属材料. 材料研究学报. 1998, 12(4): 345~351
    81 L.Ratke, S.Diefenbach, S.Drees, J.Alkemper, B.Prinz, A.Romero, H.Ahlborn. Multi-droplet marangoni motion in immiscible Al-Si-Bi alloys. Results of a D-2 Experiment. Advances in Space Research.1995, 16(7):185~190
    82 邓运来, 刘瑛, 张新明, 娄燕雄, 刘贵材. 旋转造粒制备 Al-Pb 合金颗粒. 中南工业大学学报. 2002, 33(4):393~396
    83 H.Tang, L.C.Wrobel, Z.fen. Hydrodynamic Analysis of Binary Immiscible Metallurgical In a Novel Mixing Process: Rheomixing. Applied Physical. 2005, 81(3):549~559
    84 M.L.Mackay. Innovation in Powder Metallurgy: An Engine Bearing Material. Metal Process. 1977, 111:32~35
    85 Ran Guang, Zhou Jingen, Li Pengliang, Xi Shengi, Zhang Zhongwu. Synthesized By Ball Milling Al-Pb-Si-Sn-Cu Nanocrystalline Powder. Rare Metal Materials and Engineering. 2004, 33(12):1312~1316
    86 Ran Guang, Xi Shengqi, Li Pengliang. Study on The Nano-Crystalline And Amorphous Al-Pb Series Powders Synthesized By Mechanical Alloying. Rare Metal Materials and Engineering. 2005, 34(10):1617~1621
    87 A.Csanady, I.Sajo, J.L.Labar, A.Szalay, K.Papp, G.Balaton, E.Kalman. Al-Pb Nanocomposites Made By Mechanical Alloying and Consolidation. Current Applied Physics. 2006, 6(2):131~134
    88 Fang Wenbin, He Wenxiong, Wang Erde, Han Fei, Sun Zhijie. Preparing Al-Pb Alloy by Mechanical Milling and Canning Extrusion. Material Science and Technology. 2004, 12(2): 172~175
    89 Yang Lindong, Man Zhong, Wu Wei, Chen Guiyun, Zhao Jiuzhou. Microstructure and Wear Resistance of Steel/Al-Pb Alloy Composite Strip Made By Spray Forming. Foundry. 2005, 54(3):279~281
    90 Zhu M, Zeng M.Q, Gao Y. Microstructure And Wear Properties of Al-Pb-Cu Alloys Prepared By Mechanical Alloying. Wear. 2002, 253(7-8):832~838
    91 刘红琳, 解晓宁, 蔡筠林, 江留生, 王艮国. 采用粉末冶金技术制取ZQPb25-5 材料的研究. 粉末冶金技术. 1990, 8(1):39~42
    92 Q.Huang, Y.Y.Li. An Alloy Solidification Experiment Conducted on Shenzhou Spacecraft. Advances in Space Research. 2005, 36:86~91
    93 P.V.Obramov, S.I.Semin, M.Z.Sorkin, D.Yu.Chashechkina. The Possibility to Produce Materials from Immiscible Components under the Conditions ofQuasi-Weightlessness. Physical Chemistry of Material Process. 1980, (1):47~52
    94 P.V.Obramov, S.I.Semin, M.Z.Sorkin. Some Structural Features of Materials Based on Systems Zn-Pb and Al-Pb Produced under the Conditions of Quasi-Weightlessness. Physical Chemistry of Material Process. 1981, (1):66~72
    95 O.V.Abramov, N.A.Bushe, T.F.Markova, D.Yu.Chashechkina. Al-Pb Antifriction Alloys Produced under Conditions of Compensation of Gravitational Segregation by Electromagnetic Forces. Metal Science and Heat Treatment. 1982, 24(34):239~243
    96 赵九洲, 郭景杰, 贾均, 李庆春. 正交电磁场模拟微重力条件下 Zn-Pb 偏晶合金的凝固. 中国有色金属学报. 1994, 4(增):167~170
    97 Jia Jun, Li Chengshou, Chen Xichen. The Analysis of the Solidification Structure of Zn-Pb Alloy under Microgravity Condition. The First Sino-Soviet Symposium on Astronautical Science and Technology. Khabarovsk, Soviet, 1991:7~9
    98 Zhao Jiuzhou, Jia Jun, Li Qingchun, Zhao Zhongmin. Solidification of Al-Pb Alloy under Simulate Microgravity Conditions of Electric and Magnetic Fields. Microgravity Q. 1993, 3(2-4): 205~207
    99 Jia Jun, Zhou Jiuzhou, Zhang Jinghui, Chen Yuyong. The Solidification of Immiscible Alloy in Orthogonal Electromagnetic Field. Chinese Journal of Mechanical Engineering. 1991, 4(2): 90~94
    100 Y.Hideyuki, O.Itsuo; K.Osamu, U.Kazuyuki, K.Kohji. Effect of Magnetic Field on Solidification in Cu-Pb Monotectic Alloys. ISIJ International, 2003, 43(6):942~949
    101 Wang Engang, Zhang Lin. Morphology of the Cu-Rich Phase In Cu-Pb Hypermonotectic Alloys Under An Intense Magnetic Field. Steel Research International. 2007, 78(5):386~390
    102 O.Shumpei, M.Tetsuichi. Solidification of Hyper-monotectic Al-Pb Alloy under Microgravity Using a 1000m Drop Shaft. Materials Letters. 2004, 58(20):2548~2552
    103 李承新, 李承授, 贾均, 赵九洲, 陈熙琛. 落塔微重力试验合金凝固温度曲线测量. 全国微重力科学和应用研讨会. 苏州, 1991:85~88
    104 李定. 铜铅合金凝固组织及离心熔铸工艺的研究. 哈尔滨工业大学硕士学位论文. 1986:32~50
    105 陈先朝. 铜铅轴承合金使用性能的研究. 哈尔滨工业大学硕士学位论文. 1987:30~48
    106 J.W.Cahn. Monotectic Composite Growth. Metallurgical Transactions A (Physical Metallurgy and Materials Science). 1979, 10A:119~121
    107 N.G.Grugel, A.Hellawell. Alloy Solidification in Systems Containing Liquid Miscibility Gap. Metallurgical Transactions A (Physical Metallurgy and Materials Science). 1981, 12A:669~681
    108 N.G.Grugel, T.A.Lograsso. The Solidification of Monotectic Alloys ―Microstructures and Phase Spacings. Metallurgical Transactions A (Physical Metallurgy and Materials Science). 1984, 15A:1003~1012
    109 A.Kamio, S.Kumai, H.Tezuka. Solidification Structure of Monotectic Alloys. Material Science and Engineering A. 1991, 146A:105~121
    110 G.Majumdar, K.Chattopadhyay. Aligned Monotectic Growth in Unidirectionally Solidified Zn-Bi Alloys. Metallurgical Transactions A (Physical Metallurgy and Materials Science). 2000, 31:1833~1842
    111 B.K.Dhindaw, D.M.Stefanescu. Directional Solidification of Cu-Pb and Bi-Ga Monotectic Alloys under Normal Gravity and During Parabolic Flight. Metallurgical Transactions A (Physical Metallurgy and Materials Science). 1988,19: 2839~2844
    112 杨森. 偏晶系 Al-Bi 合金定向凝固组织的研究. 哈尔滨工业大学硕士学位论文. 1993:30~50
    113 B.Derby, J.J.Favier. A Criterion for the Determination of Monotectic Structure. Acta Materialia. 1983, 31(7):1123~1130
    114 B.Derby, D.Camel, J.J.Favier. Temperature Gradient and Growth Velocity Effects on the Irregular Monotectic Structure. Journal of Crystal Growth. 1983, 65:280~286
    115 R.Grugel, A.Hellawell. Monotectic Reaction in the Bismuthse-Lenium System. Metallurgical Transactions A (Physical Metallurgy and Materials Science). 1983, 31:1123~1127
    116 J.Andrews. Interaction between Particles and A Solid-Liquid Interface. Material Science Forum. 1991, 77:269~273
    117 J.Andrews, A.Sandlin, R.Merrick. Preparation and Metallurgical Propertiesof Low Gravity Processed Immiscible Materials. Advance in Space Research. 1991, 11:291~296
    118 G.A.Chadwick. Monotectic Solidification. British Jouranl of Apply Physics.1965, 16:1095~1099
    119 J.D.livingstone, H.E.Cline. Transactions of the Metallurgical Society of AIME.1963, 18:277~279
    120 A.Kamio, H.Tezuka, S.Kumai, T.Takahashi. Formation Manner of Monotectic Structure In Al-In Alloys Solidification Unidirectionally. Transaction of Japan Institute of Metals. 1984, 125(8):575~582
    121 L.J.Hayes, J.B.Andrews. Effect of Convective Instability In Directionally Solidified Hypermonotectic Al-In Alloys. Materials Science Forum. 2000, 329-330: 209~218
    122 Y.Arikawa, J.B.Andrews, S.R.Coriell, W.F.Mitchell. Modeling and Numerical Simulation of Directional Solidification of Hypermonotectic Alloys TMS Annual Meeting Feb 12-16 1995 1995 Sponsored by: TMS Minerals, Metals & Materials Soc (TMS):110~113
    123 S.R.Coriell, W.F. Mitchell, B.T.Murray, J.B.Andrews, Y.Arikawa. Analysis of Monotectic Growth: Infinite Diffusion in the L2 phase. Journal of Crystal Growth. 1997, 179 (11) : 647~657
    124 C.St?ker, L.Ratke. Monotectic Composite Growth with Fluid Flow. Journal of Crystal Growth. 2000, 212:324~333
    125 C.St?ker, L.Ratke. A New Jackson-Hunt Model for Monotectic Composite Growth. Journal of Crystal Growth. 1999, 203:582~593
    126 M.Smoluchowski. Drei Vortrage Uber Diffusion. Phys.Z.. 1986, 17:129~133
    127 L.Ratke, H.Frschmerister, A.Kierissl. Monotectic Solidification of Cu-Pb Alloys. In 6th European Symposium on Material Science under Microgravity Condition. ESA SP?256, 1987:161~165
    128 L.Ratke, H.Frschmerister, A.Kierissl. Measurements of Diffusion Coefficient of Copper in Liquid Lead in Microgrvity. In 7th European Symposium on Material Science under Microgravity Condition. ESA SP?295,1989:135~139
    129 L.Ratke, W.K.Thieringer. Influence of Particle Motion on Ostwald Ripening in Liquids. Acta Materialia. 1985, 33(11):1793~1800
    130 R.Alkemper, L.Ratke. Concurrent Nucleation, Growth and Sedimentation during Solidification of Al-Bi Alloys. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques.1994, 85(5):365~371
    131 L.Rogers, R.Davis. Modeling of Collision and Coalescence of Droplets during Microgravity Processing of Zn-Bi Immiscible Alloys. Metallurgical Transactions A (Physical Metallurgy and Materials Science). 1990,21:59~64
    132 T.Carberg, H.Fredriksson. The Influence of Microgravity on the Structure of Zn-Bi Immiscible Alloys. Metallurgical Transactions A (Physical Metallurgy and Materials Science). 1982, 11A:1665~1676
    133 A.Bergmon, H. Fredriksson. A Study of the Coalescence Process inside the Miscibility Gap in Zn-Bi Alloys. Materials Proceeding in the Reduced Gravity Environment of Space. Ed. Guy. E.Rindones. Elsevier Science Publishing Company, 1982:563~577
    134 H.Ahlborn, H.Neumann, H.J. Schott. Segregation Behavior of Rapidly Cooled Monotectic Al-In and Al-Pb Alloys. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques. 1993, 84(11):748~754
    135 G.Korekt, L.Ratke. Proc.2nd Int.Conf. on Solidification and Gravity (Miskolc, Hungary 1995) (Materials Science Forum 215-216). Ed A.Roosz and M.Rettenmayr (Switzerland: Trans Tech). 1996:81~88
    136 G.Korekt, L.Ratke. Proc.4th Decennial Conf. on Solidification Processing Ed J.Beech and H.Jones. Sheffield: Department of Engineering Materials. 1997:376~379
    137 L.Ratke. Coarsening of Liquid Al-Pb Dispersions under Reduced Gravity Conditions. Materials Science and Engineering A. 1995, 203A:399~407
    138 J.Z.Zhao, J.He. Microstructure Evolution In Immiscible Alloys During Rapid Directional Solidification. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques. 2004, 95(5):362~368
    139 J.Z.Zhao, L.Ratke. A Model Describing the Microstructure Evolution during A Cooling of Immiscible Alloys In The Miscibility Gap Scripta Materialia. 2004, 50(4):543~546
    140 J.Z.Zhao, L.Ratke. Modeling of the Microstructure Evolution in Continuously Cast Al-Pb Alloys. Journal of Materials Science andTechnology. 2002, 18(4):306-310
    141 J.Z.Zhao, L.L.Gao, J.He. Effect of Brownian Coagulation on the Microstructure Evolution in Rapidly Solidified Immiscible Alloys. Applied Physics Letters. 2005, 87(13):131905
    142 J.Z.Zhao, L.Ratke. Modeling of the liquid-liquid decomposition in rapidly unidirectionally solidified Al-Pb alloys. Modeling of Casting, Welding and Advanced Solidification Processes. 2003:133~140
    143 L.Ratke, S.Diefeabach, B.Prinz, H.Ahlborn. Marangoni Motion of a Hypermonotectic Alloys?Numerical Simulation for the Experiment IHF04. In 18th Euqopean Symposium on Materials Science under Microgravity Condition. ESA SP?333, 1992:495~501
    144 M.Sekerka, F.Robert. Morphology: From Sharp Interface to Phase Field Models. Journal of Crystal Growth. 2004, 264(3): 530~540
    145 D. M. Anderson, G. B. McFadden, A. A. Wheeler. A Phase-Field Model with Convection: Sharp-Interface Asymptotics. Physica D: Nonlinear Phenomena. 2001, 151(2-4):305~333
    146 I. Loginova, G. Amberg. Phase-Field Simulations of Non-Isothermal Binary Alloy Solidification. Acta Materialia. 2001, 49(4):573~581
    147 S.G..Kim. A Phase-Field Model with Antitrapping Current for Multicomponent Alloys with Arbitrary Thermodynamic Properties. Acta Materialia. 2007, 55 (13): 4391~4399
    148 C.Charach, P.C.Fife. Phase Field Models of Solidification in Binary Alloys: Capillarity and Solute Trapping Effects. Journal of Crystal Growth. 1999, 198-199(2): 1267~1274
    149 Z.J.Tan, K.M. Lim, B.C. Khoo. An Adaptive Mesh Redistribution Method For The Incompressible Mixture Flows Using Phase-Field Model. Journal of Computational Physics. 2007, 225(1):1137~1158
    150 Z.G. Zhang, H.Z. Tang. An Adaptive Phase Field Method for the Mixture of Two Incompressible Fluids. Computers & Fluids. 2007, 36(8):1307~1318
    151 K.Kassner, C.Q.Misbah, J.Müller, J.Kappey, P. Kohlert. Phase-Field Approach to Crystal Growth in the Presence of Strain. Journal of Crystal Growth. 2001, 225(2-4): 289~293
    152 D.Danilov, B.Nestler. Phase-Field Modelling of Solute Trapping DuringRapid Solidification. Acta Materialia. 2006, 54(18):4659~4664
    153 A.M. Mullis. The Effect of the Ratio of Solid to Liquid Conductivity on The Side-Branching Characteristics of Dendrites Within A Phase-Field Model of Solidification. Computational Materials Science. 2006, 38(2): 426~431
    154 H. J. Diepers, I. Steinbach. Simulation of Convection and Ripening in A Binary Alloy Mush Using the Phase-Field Method. Acta Materialia. 1999, l47(13):3663~3676
    155 D.Fan, S. P. Chen, L.Q. Chen, P. W. Voorhees. Phase-Field Simulation of 2-D Ostwald Ripening In the High Volume Fraction Regime. Acta Materialia.2003, 50(8):1895~1907
    156 V. Barbu, G.D. Prato. A Phase Field System Perturbed By Noise. Nonlinear Analysis. 2002, 51(6):1087~1099.
    157 N. Ma, Q.Chen, Y. Wang. Implementation of High Interfacial Energy Anisotropy in Phase Field Simulations. Scripta Materialia. 2006, 54(11):1919~1924
    158 J. J. Eggleston, G. B. McFadden, P. W. Voorhees. A Phase-Field Model For Highly Anisotropic Interfacial Energy. Physica D: Nonlinear Phenomena. 2006, 150(1-2):91~103
    159 S.G.Kim, W.T. Kim. Phase Field Modeling of Dendritic Growth with High Anisotropy. Journal of Crystal Growth. 2005, 275(1-2):355~360
    160 A. Artemev, Y. Jin, A. G. Khachaturyan. Three-Dimensional Phase Field Model of Proper Martensitic Transformation. Acta Materialia. 2001, 49 (7):1165~1177
    161 H.Kobayashi, M.Ode, S.G.Kim, W.T.Kim, T.Suzuki. Phase-Field Model For Solidification of Ternary Alloys Coupled With Thermodynamic Database. Scripta Materialia. 2003, 48(6): 689~694
    162 J. Z. Zhu, Z. K. Liu, V. Vaithyanatha, L. Q. Chen. Linking Phase-Field Model To CALPHAD: Application To Precipitate Shape Evolution In Ni-Base Alloys. Scripta Materialia. 2002, 46(5): 401~406
    163 I. Steinbach, F. Pezzolla, B. Nestler, R. Prieler, G. J. Schmitz. A Phase Field Concept for Multiphase System. Physics Review E. 1996, 94: 135 ~ 147
    164 B.Nestler. A Multiphase-field Model: Sharp Interface Asymptotics and Numerical Simulations of Moving Phase Boundaries and Multijunctions.Journal of Crystal Growth. 1999, 204: 224 ~ 228
    165 B.Nestler, A.A.Wheeler, L.Ratke, C.St?ker. A Modified Phase-field model for Solidification of A Monotectic Alloy. PhysicaD. 2000, 141:133~154
    166 T.Miyazaki. Computational Investigations on the Microstructure Formation in Multi-Component Alloy Systems Based on the Phase Field Method. Calphad. 2001,25(2): 231~239
    167 K.Sakai. Phase Field Model for Phase Transformations of Multi-Phase And Multi-Component Alloys. Journal of Crystal Growth. 2002, 237-239:144~148
    168 B.Nestler, A.A.Wheeler. Phase-Field Modeling of Multi-Phase Solidification. Computer Physics Communications. 2002, 147(1-2): 230~233
    169 V. E. Badalassi, H. D. Ceniceros, S. Banerjee. Computation of Multiphase Systems with Phase Field Models. Journal of Computational Physics. 2003, 190(2):371~397
    170 K.Sakai. Phase Field Model for Phase Transformations of Multi-Phase and Multi-Component Alloys. Journal of Crystal Growth. 2002, 237-239:144~148
    171 M. Apel, B. Boettger, H. J. Diepers, I. Steinbach. 2D and 3D Phase-Field Simulations of Lamella and Fibrous Eutectic Growth. Journal of Crystal Growth. 2002, 237-239:154~158
    172 S.G. Kim, W. T. Kim, T.Suzuki, M.Ode. Phase-Field Modeling of Eutectic Solidification. Journal of Crystal Growth. 2004, 261(1):135~158
    173 P.R.Cha, D.H.Yeon, J.K.Yoon. A Phase Field Model for Isothermal Solidification of Multicomponent Alloys. Acta Materialia. 2001, 49(9): 3295~3307
    174 V.E.Badalassi, H.D.Ceniceros, S.Banerjee. Computation of Multiphase Systems with Phase Field Models. Journal of Computational Physics. 2003, 190(9): 371~397
    175 T.Kupper, N.Masbaum. Simulation of Particle Growth and Ostwald Ripening Via the Cahn-Hilliard Equation. Acta Materialia. 1994, 42(6):1847~1858
    176 S. M. Allen, J. W. Cahn. A Microscopic Theory for Antiphase BoundaryMotion and Its Application to Antiphase Domain Coarsening. Acta Materialia. 1979, 27(6): 1085~1096
    177 C. Zener. Theory of Growth of Spherical Precipitates from Solid Solution. Journal of Applied Physics. 1949, 20(10): 950~955
    178 I.M.Lifshitz, V.V. Slyozov. Kinetics of Precipitation from Supersaturated Solid Solutions. Journal of Physical Chemistry Solids. 1961, 19: 35~40
    179 V.C.Wagner. Zeitschrift für Elektrochemie. 1961, 65: 581~591
    180 I.Aoia, M.Ishinoa, M.Yoshida, H.Fukunagab, H.Nakaea. Influence of Growth Direction on the Microstructure of Unidirectionally Solidified Cu–Pb Monotectic Alloy Using Zone-Melt Technique. Journal of Crystal Growth. 2001, 222:806~815
    181 K.A.Jackson, J.D.Hunt. Eutectic growth. Transactions of the Metallurgical Society of AIME. 1966, 236: 1129~1139
    182 S.C.Sarson, J.A.Charles. Montectic Systems. Materials Science and Technology. 1993, 9(12):1049~1052
    183 H.E.Cline. Shape Instabilities of Eutectic Composites at Elevated Temperatures. Acta Materialia. 1971, 19(6):481~490
    184 孙万里, 张忠明, 徐春杰, 郭学峰. 过冷 Cu-Pb 偏晶合金的凝固热力学分析. 材料热处理学报. 2005, 26(6):53~56
    185 H.Okamoto. Cu-Pb Phase Diagram Updates. Journal of Phase Diagram. 1993, 14(5): 649~650
    186 H.Ramanarayan, T.A. Abinandanan. Phase Field Study of Grain Boundary Effects on Spinodal Decomposition. Acta Materialia. 2003, 51: 4761~4772
    187 A.J.Ardell. Late-stage Two-Dimensional Coarsening of Circular Clusters. Physical Review B.1990, 41(4):2554~2556
    188 T.M.Rogers, R.C.Desai. Late-stage Two-Dimensional Coarsening of Spinodal. Physical Review B.1989, 39:11956~11964
    189 J.P.Pathak. Seizure Resistance Characteristics of Cu-Pb Bearing Alloys. Material Science and Technology. 1993, 9:403~407
    190 L.L.Zheng, J.Larson, H.Zhang. Revised Form of Jackson–Hunt Theory: Application to Directional Solidification of Mnbi/Bi Eutectics. Journal of Crystal Growth. 2000, 209:110~114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700