用户名: 密码: 验证码:
Nd_(8.5)Fe_(84.5-x)Nb_(0.5)Zr_(0.5)B_6Cu_x(X=0,0.5,1)稀土永磁材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有交换耦合作用的NdFeB双相复合永磁材料,以其较高的磁性能引起重视,如何制备低稀土含量且性能优异的NdFeB双相复合永磁材料是目前永磁材料研究方向之一。本文采用熔体快淬法制备出Nd8.5Fe84.5.xNb0.5Zr0.5B6Cux (x=0,0.5,1)三种不同Cu含量的双相复合永磁材料,随后使用DSC、XRD和VSM等方法研究了制备工艺参数和Cu元素的添加对NdFeB双相复合永磁材料显微结构和磁性能的影响。
     三种的合金快淬速度较大时,快淬条带主要由非晶相组成,晶化过程中形核质点减少,需要克服很大的形核激活能才能形核,致使形核率较低,部分晶粒异常长大,不利于磁性能的提高。当快淬速度较慢时,条带中含有部分先结晶相α-Fe和Fe3B等,在晶化过程中易于长大、粗化,减少软、硬磁相之间的交换比例,影响合金的磁性能。当合金的快淬速度较合适时,合金条带中有适当的结晶相,在晶化退火时可以作为形核的质点,增大形核率同时阻碍晶粒的长大,获得细小均匀的晶粒结构,提高合金的综合磁性能。对于不同Cu含量的合金都有不同的最佳淬速与之对应,Nd8.5Fe84.5Nb0.5Zr0.5B6合金与Nd8.5Fe84Nb0.5Zr0.5B6Cu0.5合金20m/s快淬时磁性能最佳,而Dd8.5Fe83.5Nb0.5Zr0.5B6Cu1合金则25m/s时磁性能较好。
     本文重点研究了晶化工艺对条带结构和磁性能的影响。晶化温度过高或者晶化时间过长,在晶粒能充分析出但同时也造成晶粒尺寸过大,其比表面积减小,同时易于一些反磁畴的形核,则软、硬磁相之间的交换耦合作用减弱,使合金的磁性能降低。但晶化温度过低或者晶化时间过短,合金非晶相晶化不完全,同时软、硬磁相析出数量较少。非晶相的存在,阻碍软、硬磁相之间的交换耦合作用,影响合金的磁性能的提高。不过对于不同Cu含量的合金,获得最佳磁性能的晶化工艺参数有所不同。Nd8.5Fe84.5Nb0.5Zr0.5B6合金在750℃晶化退火8min后磁性能较佳,其最大磁能积(BH)m=137.21kJ/m3;Nd8.5Fe84Nb0.5B6Cu0.5合金在730℃晶化退火20min磁性能较优,其最大磁能积(BH)m=103.72kJ/m3;而Nd8.5Fe83.5Nb0.5Zr0.5B6Cu1合金在73℃晶化退火15min磁性能较好,其最大磁能积(BH)m=93.71kJ/m3。
     同时也研究了Cu元素的添加对合金磁性能的影响。通过研究发现,添加cu元素不利于合金综合磁性能的提高。尽管Cu元素的添加,能促发α-Fe相的形核,但在晶化过程中先析出相易于长大、粗大,同时不利于硬磁相的析出,且Cu易于偏聚在软、硬磁相之间,阻碍交换耦合作用,降低合金的磁性能。
NdFeB two-phase composite permanent magnetic materials with exchange coupling are brought to the forefront because of their superior magnetic properties. How to prepare NdFeB two-phase composite permanent magnetic materials which have low rare-earth content and excellent properties is one of the research directions of permanent materials. In this study, by using the rapid quenching of melt method, two-phase composite permanent magnetic materials with three different contents of Cu Nd8.5Fe84.5_xNbo.5Zr0.5B6Cux (x=0,0.5,1) are prepared. Then research on the effects of preparation technological parameter and the addition of element Cu on the microstructures and magnetic properties of NdFeB two-phase composite permanent magnetic materials is conducted by DSC、 XRD and VSM.
     When with a faster quenching speed of the three kinds of alloy, melt-spun ribbons are mainly composed of amorphous phase and the nucleating particles are reduced in the crystallization process, so much nucleation activation energy need to be overcome for nucleation. Then the nucleation rate is very low and some grains grow abnormally, which go against the promotion of magnetic properties. When with a lower quenching speed, some first crystalline phase contended in melt-spun ribbons like a-Fe and Fe3B, etc. is easy to grow and be coarsened in the crystallization process, which reduces the exchange proportion between soft and hard magnetic phase and influence the magnetic properties of the alloy. When with an appropriate quenching speed of the alloy, some proper crystalline phase in the alloy melt-spun ribbons can be seen as nucleating particle in crystallization annealing, increasing the nucleation rate and blocking the grain growth. Then wee and homogeneous grain structure can be obtained, which improves the comprehensive magnetic properties of the alloy. Alloys with different Cu content have different optimum quenching speed. Nd8.5Fe84.5Nb0.5Zr0.5B6and Nd8.5Fe84Nb0.5Zr0.5B6Cu0.5have optimum magnetic properties at the rapid quenching speed of20m/s, while Nd8.5Fe83.5Nb0.5Zr0.5B6Cu1at 25m/s.
     This study focuses on the research of the effects of crystallization technology on melt-spun ribbons and magnetic properties. When crystallization temperature too high or crystallization time too long, the crystal particles can fully separate out but the crystal particles will be oversized and the specific surface area will be reduced, which benefits the nucleation of some anti-magnetic domain. Then the exchange coupling between soft and hard magnetic phase is weakened and the magnetic properties of the alloy is reduced. While, when crystallization temperature too low or crystallization time too short, amorphous phase crystallization of alloy is incomplete and the soft and hard magnetic phase separate out less. The existence of amorphous phase blocks the exchange coupling between soft and hard magnetic phase, which influences the improvement of alloy magnetic properties. For alloys with different Cu content, the crystallization technology parameters of optimum magnetic properties are different. For Nd8.5Fe84.5Nb0.5Zr0.5B6, the optimum magnetic property is realized8min after crystallization annealing at750℃and the maximum magnetic energy product is (BH)m=137.21kJ/m3. The optimum magnetic property of Nd8.5Fe84Nb0.5Zr0.5B6Cu0.5is realized20min after crystallization annealing at730℃and the maximum magnetic energy product is (BH)m=103.72kJ/m3. The optimum magnetic property of Nd8.5Fe83.5Nb0.5Zr0.5B6Cu1is realized15min after crystallization annealing at730℃and the maximum magnetic energy product is(BH)m=93.71kJ/m3.
     Besides, this study also discusses the effects of addition of element Cu on alloy magnetic properties. The research result shows that the addition of element Cu goes against the improvement of alloy's comprehensive magnetic property. The addition of Cu can accelerate the nucleation of a-Fe phase, but the first precipitated phase is easy to grow and be coarsened in the crystallization process, meanwhile, it goes against the precipitation of hard magnetic phase and Cu is easy to gather between the soft and hard magnetic phase, blocking the exchange coupling and reducing alloy's magnetic properties.
引文
[1]章熙康.非晶态材料及其应用[M].北京:北京科学技术出版社,1987
    [2]卢博斯基主编,柯成等译.非晶态金属合金[M].北京:冶金工业出版社,1989
    [3]黄劲松.ZrssAl10Ni5CU30大块非晶合金的研究进展[J].稀有金属与硬质合金,2004,32(1):27~31
    [4]W.Clement, R.H.Willens, P.Duwez. Non-crystalline Structure in Solidified Gold-Silicon Alloys[J]. Nature,1960,187:869
    [5]郭贻诚,王振西.非晶态物理学[M].北京:科学出版社,1984
    [6]熊玉华,李培杰,曾大本.大块非晶合金的研究进展[J].材料工程,2002,10:1~3
    [7]Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region [J]. Mater Trans JIM,1989,30:965
    [8]Inoue A, Shinohara Y, Seon J. Thermal and magnetic of Bulk Fe-based Glassy Alloys Prepared by Copper Mold Casting [J]. Mater Trans JIM,1995,36:1427
    [9]Zhang T, Inoue A, Masumoto T. Amorphous Zr-Al-T (T=Co, Ni, Cu) alloys with significant supercooled liquid region of over 100K [J]. Mater Trans JIM,.1991,32:1005
    [10]Inoue A, Zhang T, Takeuchi A. Bulk Amorphous Alloys with High Mechanical Strength and Good Soft Magnetic Properties in Fe-T-B (T=Ⅳ-Ⅶ Group Transition Metal) System [J]. Appl Phys Lett,1997,71(4):464
    [11]Amiya K, Nishiyama N, Inoue A, et al. Mechanical Strength and Thermal Stability of Ti-based Amorphous Alloys with Large-forming Ability [J]. Material Science and Engineering,1994,179A(7):692
    [12]Inoue A, Nishiyama N, Kimura H. Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72mm in diameter [J]. Mater Trans JLM,1997,38:179
    [13]Inoue A, Nakamura T, Nishiyama, et al. Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength by a High-pressure Die Casting Method [J]. Mater Trans JLM,1992,33(10):937
    [14]Inoue A, Zhang T. Stabilization of super-cooled liquid and bulk glassy alloys in ferrous and non-ferrous system [J].Non-cryst.Solids,1999,250-252:552-559
    [15]Sheng H W, Luo W K, Alamgir F M, et al. Acomic packing and short-to-medium-range order in metallic glasses [J]. Nature,2006,439(7075):419-425
    [16]王一禾,杨膺善.非晶态合金[M].北京:冶金工业出版社,1989
    [17]Bernal J. A geometrical approach to the structure of liquids [J]. Nature,1959, 183(4655):141-147
    [18]Miracle D B. A structural model for metallic glasses [J]. Nat Mater,2004,,3(10):697-702
    [19]Turnbull D, Cohen M.H. On the Free-Volume Model of the Liqid-Glass Transition [J]. J.Phys. Chem,1970, (52):3088-3091
    [20]邢大伟,沈军,孙剑飞等.块体Zr0.6Cu0.2Ni0.1Al0.1)100-xTix非晶合金熔体玻璃形成能力[J].哈尔滨工业大学学报,2004,36(9):1265-1268
    [21]Akihisa Inoue, Tao Zhang and Tsuyoshi Masumoto. Glass-forming ability of alloys [J].
    [43]M. Dahlgren, R. Grossinger, E. De Morais, et al. Enhancement of the Curie temperature for exchange coupled Nd-Fe-B and Pr-Fe-B magnets [J]. Transanctions on Magnetics,1997, 33:3895-3897
    [44]Skomski R, Coey JMD. Giant energy product in nanostructured two-phase magnets [J]. physical Review B,1993,48(21):158812
    [45]Inouc A,Takeuchi A,Makino A.[J].Mater Trans J IM.1995,36:962.
    [46]Mingang Zhang,Gang Sun,Dongcheng Guo. [J] Journal of Materials Processing Technology 2002,120:265-269.
    [47]Liu F,Davis H A,Buckley R A. proc 13th Intl Workshop on Rare-Earth Magnet and Their Applications. Birming-ham,UK,1994,9:11.
    [48]M.Jurczyk,J.Jakubowicz.Improved temperature and corrosion behaviour of nanocomposite Nd2(Fe,Co,M)i4B/a-Fe magnets [J].Alloys & Compds,2000,311:292-298
    [49]G. Shi, L.X.Hu, E.D.Wang. Preparation, microstructure, and magnetic properties of anocrystalline Nd12Fe82B6 alloy by HDDR combined with mechanical milling [J]. Magn. Magn. Mater.2006,301:319-324
    [50]董照远,朱明原,金红明.NdFeB纳米晶双相复合永磁材料研究进展.材料科学与工程学报,2003,21(3):441-445
    [51]Bauer J,Seegcer M,Zerm A,Kronmuller.Nanocrystalline FeNdB permanent magnets with enhanced remanence,[J] Appl Phys,1996,80(3):1667
    [52]Jakubowicz J,Szlaferek A.Magnetic properties of nanostructured Nd2(Fe,Co,Cr)14B/a-Fe magnets,[J] Alloys Compounds,1999,283:307-310
    [53]D.H.Ping,K,Hono,S.Hirosawa.Partitioning of Ga and Co atoms in a Fe3B/Nd2Fe14B nanocomposite magnet,[J] Appl Phys,1998,83:7769-7775
    [54]W.C.Chang,S.H.Wu.The effects of La-substitution on the microstructure and magnetic properties of nanocomposite NdFeB melt spun ribbons,[J] Journal of Magnetism and Magnetic Materials,1997,167:65-70
    [55]倪建森,徐晖,朱明原等.合金元素对双相纳米晶Nd-Fe-B晶粒大小的研究,[J]磁性材料,2006,24:334-337
    [56]李忭,张敏刚周俊琪.熔淬法制备Nd2Fe14B/α-Fe纳米晶复合永磁体的磁性能,[J]磁性材料及器件,2006,8:25-27
    [57]Yang Sen,Song Xiaoping,Du Youwei.Exchange couple Nd2Fe14B/a-Fe nanocomposite magnets with fine α-Fe grains [J].Microelectronic Engineering,2003,66:121-127
    [58]Zhao Haofeng,Liu Hongmei,Su Junyi.Influence of Heat Treatment on Microstructures and Properties of Nd8Fe78B6Co4 Alloy[J],Journal of rare earths,2006,12(24):379-381
    [59]白岗,答元,刘涛.热处理条件对NdFeB纳米复合材料磁性能的影响[J],西安工业大学学报,2008,5(28):499-451
    [60]申鹏,孙占波,梁工英等.非晶Nd8Fe86B6合金快速晶化过程中的组织变化与磁性能.[J]2005,2(23):210-213
    [61]计齐根,都有为.磁场热处理对Nd2Fe14B/α-Fe纳米材料磁性和微磁结构的影响[J],材料科学与工艺,2000,12(4):22-25 Journal of Non-Crystalline Solids,1993:156-158,473
    [22]Turnbull D, Fisher J C.D. Rate of nucleation in condensed systems [J]. Chem. Phys,1949, 17(1):71-73
    [23]Lu Z P, Li Y, Ng S C.J. Reduced glass transition temperature and glass forming ability of bulk glass forming alloys [J]. Non-Cryst Solids,2010,270(1-3):103-114
    [24]Egami T. The atomic structure of aluminum based metallic glasses and universal criterion for glass formation [J]. Non-Cryst Solids,1996,205-207(2):575-582
    [25]Lu Z P, Liu C T. A new glass-forming ability criterion for bulk metallic glasses [J]. Acta Mater,2007,50(13):3501-3512
    [26]菜安辉.合金玻璃形成能力表征与预测以及块体金属玻璃的制备[D].南京:东南大学材料科学与工程系,2005
    [27]Inoue A, Takeuchi A. Recent progress in bulk glassy, nanoquasicrystalline and nancrystalline alloy [J]. Materials Science and Engineering A.2004,375-377:16
    [28]Zhang J Z, Zhao Y S. Formation of zirconium metallic glass [J]. Nature,2004,430(7061): 2621-2624
    [29]Wang J G, Choi B W, Nieh T G, et al. Crystallization and nanoindentation behavior of a bulk Zr-Al-Ti-Cu-Ni amorphous alloy [J]. MaterRes,2000,15(3):798-807
    [30]Wang D, Li Y, Sun B B, et al. Bulk metallic glass formation in the binary Cu-Zr system [J]. Appl Phys Lett,2004,84(20):4029-4031
    [31]Yoshida S, Mizushima T, Makino A, et al. Structure and soft magnetic properties of bulk Fe-Al-Ga-P-C-B-Si glassy alloys prepared by consolidating amorphous powders [J]. Materials Science and Engineering,2001,304-306:1019-1022
    [32]孙玉魁,张长安等.金属软磁材料及其应用[M].北京:冶金工业出版社,1986
    [33]Wang W H, Dong G C, Shek C H. Bulk metallic glasses [J]. Mater Scieng. R,2004, 44(2-3):45-89
    [34]周寿增,董清飞,超强永磁体[M].北京:冶金工业出版社,1999
    [35]K.J. Stnart, Hoffer G.L, Olson J. and Ostertag H. W. J. Appl. Phys.1967,38:1001
    [36]Ojima T. et al. New Type Rare Earth Cobalt Magnets with an Energy Product of 30 MGOe [J]. Appl. Phys,1977,16(4):671-673
    [37]Sagawa M., Fujimura S., Yamamoto H., et al. Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds [J]. IEEE Trans Magn,1984,20(5):1584
    [38]Croat J.J., Herbst J.F., Lee R.W., et al. Pr-Fe and Nd-Fe-based materials:A new class of high-performance permanent magnets [J]. Appl Phys,1984,55(6):2078
    [39]张静贤,张同俊,崔崑NdFeB纳米晶双相复合永磁合金[J].材料导报,2001,15(4):48
    [40]B.Lu,M.Q.Huang,D.E.Laughlin. A study on the exchange coupling of NdFeB-type nanocomposites using Henkel plots.[J] Journal of Applied Physics,1999,85(8):5916-5919
    [41]J.Bauer, M.Seeger, A.Zern, et al. Nanocrystalline FeNdB permanent magnets with enhanced remanence [J]. Appl. Phys.1996,80(3):1667-1673
    [42]Jakubowicz J, Jurcz M, Hand A, et al. Temperature dependence of magnetic properties for manocomposite Nd2(Fe,Co,Cr)14B/α-Fe magnet [J]. J Magn Magn Mater,2000,208:163
    [62]连利仙,刘颖,涂铭旌等.非传统热处理对纳米复相Nd2Fe14B/a-Fe永磁体磁性能的影响[J].四川大学学报(工程科学版),2004,36(5):70-73
    [63]Banerjee S, Dey GK. Glass formation and crystiallzation in rapidly solidified zircomium alloys [J]. Materials Science and Engineering,2001,26:304-306
    [64]J. Bauer, M. Seeger, A. Zern, and H. Kronmüller. Nanocrystalline FeNdB permanent magnets with enhanced remanence [J]. Journal of Applied Physics,1996,80 (3):1667-1672
    [65]Yanli Sui, Zhanyong Wang and Maocai Zhang.Crystallization of single-phase nanocrystalline Ndl0.8Dyl.5Fe79.7(NbZrCu)2B6 ribbons[J]. Journal of Magnetism and magnetic Materials,2009,321:3974-3978.
    [66]胡庚祥,蔡殉,戎咏华等.材料科学基础[M].上海:上海交通大学出版社,2006
    [67]王占勇.Nd2Fel4B/a-Fe纳米复合永磁材料结构和磁性能的研究[D].[博士学位论文].上海:上海大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700