用户名: 密码: 验证码:
矿物成分与水化学成分对粘性土抗剪强度的控制规律及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩土体抗剪强度是控制斜坡稳定性的关键指标,粘性土由于其较低的力学性质,在有利的地形、地下水等条件下,分布粘性土的天然斜坡或人工边坡通常多发滑坡,因而粘性土抗剪强度一直是工程地质领域研究的热点问题。矿物成分是组成粘性土骨架的物质基础,孔隙水(地下水)是导致粘性土抗剪强度衰减的最活跃介质,所以矿物成分和孔隙水化学成分是控制粘性土抗剪强度的基本要素。然而各类矿物成分对粘性土抗剪强度的控制规律以及孔隙水化学成分变化条件下粘性土抗剪强度的变化规律目前并不清楚。本文通过大量直剪、三轴剪试验,结合矿物成分分析、水化学分析、电子显微镜扫描等多种室内试验手段,系统研究了孔隙水化学成分不同时,人工配制粘性土和天然粘性土在不同排水条件下抗剪强度的变化规律,深入探讨了矿物成分和孔隙水化学成分对粘性土抗剪强度的控制规律,并从各类矿物对抗剪强度控制作用强弱和水-土物理化学作用角度分析了粘性土抗剪强度变化的内在机理,并将对天然粘性土的研究结果用于黄茨滑坡机理分析。研究发现:
     (1)蒙脱石由于其强烈的膨胀性和更为典型的片状形态,对粘性土抗剪强度具有较强的控制作用,且蒙脱石片状颗粒间摩擦强度低,对于粘粒组中不含碎屑矿物的粘性土,25%的蒙脱石干重比例即可显著降低粘性土的残余强度;
     (2)粘粒组中粘土矿物和碎屑矿物对粘性土抗剪强度控制作用的强弱比较取决于两类矿物的相对比例。粘粒组碎屑矿物高于某临界含量时,控制作用强于粘土矿物;试验发现该临界含量在含蒙脱石、伊利石和高岭石粘性土中分别为10~15%、8%和6%。
     (3)孔隙水矿化度对粘性土抗剪强度的控制规律受粘性土矿物组成和孔隙水离子浓度范围影响。蒙脱石是粘性土抗剪强度受孔隙水矿化度控制程度高低的关键组分,且孔隙水NaCl浓度仅在0~1mol/L范围内变化对粘性土抗剪强度产生影响。孔隙水酸碱性对粘性土抗剪强度的控制规律则取决于对粘性土抗剪强度起主要控制作用的矿物成分。
     (4)兰州及其周边地区红层风化泥岩富含亲水性粘土矿物和可溶盐,在黄河水灌溉后,其中起胶结作用的易溶盐被溶解并淋出,颗粒间联结力减弱,集合体分散,从而导致溶滤后红层风化泥岩的排水残余内摩擦角降低45.7~61.7%,不排水峰值抗剪强度降低28.9~33.9%,且通过数值模拟手段证实,灌溉溶滤引发的风化泥岩抗剪强度衰减是黄茨滑坡活动的重要因素,黑台台面的持续灌溉仍有可能导致黄茨滑坡再次滑动。
Shear strength of soil is one of the key parameters controlling slope stability, andcohesive soils were extensively found to be facility-sliding strata to many natural slopes orcuttings as its poor mechanical properties, so the shear strength of cohesive soil has been oneof the hot spots in engineering geology. As mineral compostion forms the skeleton of thecohesive soil and pore water (groundwater) is one of the key causes leading to reduction of itsshear strength, the mineralogical composition and the pore water chemistry were two crucialfactors controlling the shear strength of cohesive soils. However, the control law of mineralcomposition and pore water chemistry on cohesive soil’s shear strength is not clear. Thisdissertation experimentally studied the impact of mineralogical composition in clay fractionand pore water chemistry on the shear strength of artificial and natural cohesive soils, bymeans of direct shear test, triaxial shear test, mineral compositon analysis, water chemistryanalysis, electron scanning microscope etc. The mechanism was analyzed in terms ofwater-soil physic-chemical interactions and the strength control effect of each type of mineral.And the research result of natural cohesive soil was used in analyzing the mechanism ofHuangci Landslide. The following specific conclusions could be drawn:
     First of all, smectite has strong control effect on the shear strength of cohesive soil due toits strong expansibility and typical flake shape of particle. For cohesive soils whose clayfraction contains no detrital mineral,25%of smectite content would greatly reduce its shearstrength as the frictional strength between smectite particles was low.
     Secondly, the control effect of clay mineral and detrial mineral in clay fraction on theshear strength of cohesive soils depends on the relative compostion of these two types ofmineral. The control effect of detrial mineral is stronger than clay minerals only when itscontent is higher than a critical content which was found to be10~15%,8%and6%incohesive soils containing smectite, illite and kaolinite repectively.
     Thirdly, the control effect of of pore water salinity on the shear strength of cohesive soilwas affected by the mineral compostion and ion concentration. Smectite content decided thecontrol degree of pore water salinity, and the control effect was observed only when the NaClconcentration in0~1mol/L. The impact of pore water alkalinity/acidity on shear strength of cohesive soils was controlled by dominant mineral composition which had the key role in theshear strength of soils.
     Finally, the weathered red mudstone in Lanzhou and around was rich in clay mineralsand soluble salts. The soluble salts were dramatically dissolved and leached by irrigationwater (Yellow River water), and the drained residual friction angle was reduced by45.7~61.7%, and the undrained peak shear strength reduced by28.9~33.9%. It was also foundthrough numerical simulation that the shear strength reduction inducd by irrigation lixiviationplayed a major role in Huangci Landslide activity, and continous irrigation on Heitai wouldprobably cause anther sliding of Huangci Landslide.
引文
Anandarajah, A,&Zhao, D. Triaxial behavior of kaolinite in different pore fluids. Journal of geotechnicaland geoenvironmental engineering,2000.126(2),148-156.
    Anson, RWW,&Hawkins, AB.(1998). The effect of calcium ions in pore water on the residual shearstrength of kaolinite and sodium montmorillonite. Geotechnique,1998.48(6),787-800.
    Anson, R,&Hawkins, A. Movement of the Soper's Wood landslide on the Jurassic Fuller's Earth, Bath,England. Bulletin of Engineering Geology and the Environment,2002.61(4),325-345.
    American Society for Testing Materials (ASTM). Standard Test Method for Torsional Ring Shear Test toDetermine Drained Drained Residual Shear Strength of Cohesive Soils: D6467-99. Standard TestMethod for Direct Shear Test of Soils under Consolidated Drained Conditions: D3080-98. AnnualBook of ASTM standards, v04.08, West Conshohocken, Pa.1999a.
    Benna, M, Kbir-Ariguib, N, Clinard, C, et al. Card-house microstructure of purified sodiummontmorillonite gels evidenced by filtration properties at different pH. Adsorption and Nanostructure.Springer Berlin Heidelberg,2002.204-210.
    Bjerrum, L., and Simons, N. E. Comparison of shear strength characteristics of normally consolidated clays.Proc., Conf. on Shear Strength of Cohesive Clays, ASCE, New York,1960,711–726.
    Blondeau, F,&Josseaume, H. Mesure de la résistance au cisaillement résiduelle en laboratoire. Bulletin deLiaison des Laboratoires des Pont et Chaussées,1976,65,90-106.
    Brown, KW,&Thomas, JC. A mechanism by which organic liquids increase the hydraulic conductivity ofcompacted clay materials. Soil Science Society of America Journal,1987.51(6),1451-1459.
    Brady, Patrick V, Cygan, Randall T,&Nagy, Kathryn L. Molecular controls on kaolinite surface charge.Journal of Colloid and Interface Science,1996.183(2),356-364.
    British Standard Institution (BSI),1990. Methods of Test for Soils for Civil Engineering Purposes-Part7(BS1377-7): Shear Strength Test (Total Stress).
    Chandler, RJ,&Apted, JP. The effect of weathering on the strength of London Clay. Quarterly Journal ofEngineering Geology and Hydrogeology,1988.21(1),59-68.
    Collotta, T, Cantoni, R, Pavesi, U, et al. A correlation between residual friction angle, gradation and theindex properties of cohesive soils. Geotechnique,1989.39(2),343-346.
    Cuisinier, O., Deneele, D., Masrouri, F., et al. Impact of high-pH fluid circulation on long termhydromechanical behaviour and microstructure of compacted clay from the laboratory ofMeuse-Haute Marne (France). Applied Clay Science,2014.88-89,1-9.
    D’Appolonia, David J. Soil-bentonite slurry trench cutoffs. Journal of the Geotechnical EngineeringDivision,1980.106(4),399-417.
    Delville, A. The influence of electrostatic forces on the stability and the mechanical properties of claysuspensions. In: C. Di Maio, T. Hueckel, and B. Loret (Eds.), Chemo-Mechaniccal Coupling in Clays;From Nano-Sale to Engineering Applications, Swets&Zeitlinger, Lisse,2002, pp.73–92.
    Department of the Navy, Naval Facilities Engineering Command NAVFAC.1982. Soil mechanics: Designmanual, NAVFAC, DM-7, Alexandria, Va.
    Di Maio, C, and Fenelli, G.B. Residual strength of kaolin and bentonite: the influence of their constituentpore fluid. Geotechnique,1994.44(2),217-226.
    Di Maio, C. Exposure of bentonite to salt solution: osmotic and mechanical effects. Geotechnique,1996.46(4),695-707.
    Di Maio, C., Santoli, L., and Schiavone, P. Volume change behaviour of clays: the influence of mineralcomposition, pore fluid composition and stress state. Mechanics of materials,2004.36(5),435-451.
    Ferris, A.P., and Jepson, W.B. The exchange capacities of kaolinite and the preparation of homoionic clays.Journal of Colloid and Interface Science,1975.51(2),245-259.
    Frydman, S., Talesnick, M., Geffen, S., et al. Landslides and residual strength in marl profiles in Israel.Engineering geology,2007.89(1),36-46.
    Gajo, A., and Maines, M. Mechanical effects of aqueous solutions of inorganic acids and bases on a naturalactive clay. Geotechnique,2007.57(8),687-700.
    Godwin, M., Bryant, R., Williams, D. Electrochemical properties of illite. J. Colloid Interface Sci.,1991.147(2),358-369.
    Gratchev, I.B., and Sassa, K. Cyclic behavior of fine-grained soils at different pH values. Journal ofGeotechnical and Geoenvironmental Engineering,2009.135(2),271-279.
    Gratchev, I. and Towhata, I. Compressibility of natural soils subjected to long-term acidic contamination.Environmental Earth Sciences,2011.64(1),193-200.
    Gratchev, I. and Towhata, I. Stress–strain characteristics of two natural soils subjected to long-term acidiccontamination. Soils and Foundations,2013.53(3),469-476.
    Güven, N. Molecular aspects of clay-water interactions, In: N.Güven and R. M. Pollastro (Eds.),Clay-Water Interface and Its Rheological Implications, CMS workshop lectures, Vol.4, Clay MineralsSociety, Boulder, CO,1992. pp.2–79
    Herrington, T.M., Clarke, A.Q., Watts, J.C. The surface charge of kaolin. Colloids and Surfaces,1992.68(3),161-169.
    Hawkins, A.B., McDonald, C. Decalcification and residual shear strength reduction in Fuller's Earth Clay.Géotechnique,1992.42(3),453-464.
    Hawkins, A.B. and McDonald, C. The influence of granular calcareous particles on the residual shearstrength of Fuller's Earth Clay. Quarterly Journal of Engineering Geology and Hydrogeology,1993.26(4),321-325.
    Imai, G., Komatsu, Y., Fukue, M. Consolidation yield stress of Osaka-Bay pleistocene clay with referenceto calcium carbonate contents. ASTM Special technical publication,2006.1482,89.
    Janpanese Geotechnical Society (JGS),2010. Laboratory Testing Standards of Geomaterials, JGS0561-2009“Method for Consolidated Constant Volume Direct Box Shear Test on Soils”, JGS0560-2009“Method for Consolidated Constant Pressure Direct Box Shear Test on Soils”.
    Kashir, M. and Yanful, E.K. Hydraulic conductivity of bentonite permeated with acid mine drainage.Canadian Geotechnical Journal,2001.38(5),1034-1048.
    Kaya, A. and Kwong, J.K.P. Evaluation of common practice empirical procedures for residual friction angleof soils: Hawaiian amorphous material rich colluvial soil case study. Engineering geology,2007.92(1),49-58.
    Kenney, T.C. The influence of mineral composition on the residual strength of natural soils. Proceedings ofthe Geotechnical Conference, Oslo,1967. vol.1, pp.123-129.
    Kenney, T.C. Residual strengths of mineral mixtures. Proceedings of9thInternational Conference on SoilMechanics,1977. vol.1, pp.155-160.
    Laudelout, H. Cation exchange equilibrium in clays. In: A.C.D. Newman (Ed.), Chemistry of Clays andClay Minerals, Mineralogical Society Monograph No.6, London,1987. pp.225–236.
    Li, L.Y. and Li, R.S. The role of clay minerals and the effect of H+ions on removal of heavy metal (Pb2+)from contaminated soils. Canadian Geotechnical Journal,2000.37(2),296-307.
    Long, J., Xu, Z., Masliyah, J.H. Role of illite–illite interactions in oil sands processing. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2006.281(1),202-214.
    Lupini, J.F., Skinner, A.E., Vaughan, P.R. The drained residual strength of cohesive soils. Geotechnique,1981.31(2),181-213.
    Mesri, G. and Olson, R.E. Shear strength of montmorillonite. Geotechnique,1970.20(3),261-270.
    Mesri, G. and Olson, R.E. Consolidation characteristics of montmorillonite. Geotechnique,1971.21(4),341-352.
    Mesri, G. Mechanisms controlling the permeability of clays. Clays and Clay Minerals,1971.19,151-158.
    Mersi, G. Residual shear strength of clays and shales. Geotechnique,1986.36(2),269-273.
    Mesri, G, and Abdel-Ghaffar, MEM. Cohesion intercept in effective stress-stability analysis. Journal ofgeotechnical engineering,1993.119(8),1229-1249.
    Mesri, G. and Shahien, M. Residual shear strength mobilized in first-time slope failures. Journal ofGeotechnical and Geoenvironmental Engineering,2003.129(1),12-31.
    Mitchell, JK. Fundamentals of Soil Behavior, John Wiley and Sons, Inc., New York.1993.
    Moore, R. The chemical and mineralogical controls upon the residual strength of pure and natural clays.Geotechnique,1991.41(1),35-47.
    Moore, R. and Brunsden, D. Physico-chemical effects on the behaviour of a coastal mudslide.Geotechnique,1996.46(2),259-278.
    Musso, G., Chighini, S., Romero, E. Mechanical sensitivity to hydrochemical processes of MonasteroBormida clay. Water Resources Research,2008.44(5).
    Nakamura, S., Gibo, S., Egashira, K., et al. Platy layer silicate minerals for controlling residual strength inlandslide soils of different origins and geology. Geology,2010.38(8),743-746.
    Olson, R.E. and Mitronovas, F. Shear strength and consolidation characteristics of calcium and magnesiumillite. Clays Clay Miner,1962.11,185-209.ren, A.H. and Kaya, A. Some engineering aspects of homoionized mixed clay minerals. Environmentalmonitoring and assessment,2003.84(1-2),85-98.
    Palomino, A.M,&Santamarina, J.C. Fabric map for kaolinite: Effects of pH and ionic concentration onbehavior. Clays and Clay minerals,2005.53(3),211-223.
    Ruhl, J.L. and Daniel, D.E. Geosynthetic clay liners permeated with chemical solutions and leachates.Journal of Geotechnical and Geoenvironmental Engineering,1997.123(4),369-381.
    Shuzui, H. Process of slip-surface development and formation of slip-surface clay in landslides in Tertiaryvolcanic rocks, Japan. Engineering Geology,2001.61(4),199-220.
    Skemption, A.W. and Northey, R.D. The sensitivity of clays. Geotechnique,1952.3(1),30-53.
    Skempton, A.W. Long-term stability of clay slopes.1964: Fourth Rankine Lecture.
    Skempton, A.W. and Petley, D.J. The strength along structural discontinuities in stiff clays. Proceedings ofthe Geotechnical Conference at Oslo, Norway2,1967.153.
    Skempton, A. W. First-time slides in over-consolidated clays. Geotechnique,1970.20(3),320-324.
    Skempton, A. W. Slope stability of cuttings in brown London clay. Proc.,9th Int. Conf. on Soil Mech. andFound. Eng., Vol.3, Tokyo,1977.261-270.
    Skempton, A.W. Residual strength of clays in landslides, folded strata and the laboratory. Geotechnique,1985.35(1),3-18.
    Skipper, N.T. Influence of pore-liquid composition on clay behavior: Moleculardynamics simulations ofnano-structure. In: DiMaio, C., Hueckel, T., and Loret, B.(Eds.), Chemo-Mechanical Coupling inClays; From Nano-Sale to Engineering Applications, Swets&Zeitlinger, Lisse,2002. pp.65-73.
    Stark, T.D. and Eid, H.T. Drained residual strength of cohesive soils. Journal of Geotechnical Engineering,1994.120(5),856-871.
    Stark, T.D. and Eid, H.T. Slope stability analyses in stiff fissured clays. Journal of Geotechnical andGeoenvironmental Engineering,1997.123(4),335-343.
    Stark, T.D., Choi, H., McCone, S. Drained shear strength parameters for analysis of landslides. Journal ofGeotechnical and Geoenvironmental Engineering,2005.131(5),575-588.
    Spagnoli, G., Fernandez-Steeger, T., Feinendegen, M., et al. The influence of the dielectric constant andelectrolyte concentration of the pore fluids on the undrained shear strength of smectite. Soils andfoundations,2010.50(5),757-763.
    Sposito, G. The surface chemistry of soils: Oxford University Press.1984.
    Sposito, G. The diffuse ion swarm near smectite particles suspended in electrolyte solutions: ModifiedGouy-Chapman Theory and quasicrystal formation. In: N. Guven and R. M. Pollastro(Eds.),Clay-Water Interface and Its Rheological Implications, cmsworkshop lectures, Vol.4, Clay MineralsSociety, Boulder, CO,1992. pp.128–155.
    Terzaghi, K., Peck, R. B., Mesri, G. Soil mechanics in engineering practice,1996.3rd Ed., Wiley, NewYork,549–549.
    Tiwari, B., Brandon, T.L, Marui, H., et al. Comparison of residual shear strengths from back analysis andring shear tests on undisturbed and remolded specimens. Journal of geotechnical andgeoenvironmental engineering,2005.131(9),1071-1079.
    Tiwari, B., and Marui, H. A new method for the correlation of residual shear strength of the soil withmineralogical composition. Journal of Geotechnical and Geoenvironmental Engineering,2005.131(9),1139-1150.
    Tiwari, B., Tuladhar, G.R., Marui, H. Variation in residual shear strength of the soil with the salinity of porefluid. Journal of Geotechnical and Geoenvironmental Engineering,2005.131(12),1445-1456.
    Tiwari, B., and Ajmera, B. A new correlation relating the shear strength of reconstituted soil to theproportions of clay minerals and plasticity characteristics. Applied Clay Science,2011.53(1),48-57.
    Torrance, J.K. On the role of chemistry in the development and behavior of the sensitive marine clays ofCanada and Scandinavia. Canadian Geotechnical Journal,1975.12(3),326-335.
    Townsend, F.C., and Gilbert, P.A. Test to measure residual strength of some clay scales. Geotechnique,1973.23(2),267-271.
    Townsend, R.P. Thermodynamics of ion exchange in clays. Philosophical Transactions of the Royal Societyof London. Series A, Mathematical and Physical Sciences,1984.311(1517),301-314.
    United States Army Corps of Engineers (USACE). Laboratory soils testing-Engineer Manual1110-2-1906,2ndedition.2011. Volcanhammer. net, Washington.425pp.
    Van Olphen, H. An Introduction to clay colloid chemistry: Krieger Publishing Company.1991.
    Wahid, A.S., Gajo, A., Di Maggio, R. Chemo-mechanical effects in kaolinite. Part1: prepared samples.Géotechnique,2011.61(6),439-447.
    Wahid, A.S., Gajo, A., Di Maggio, R. Chemo-mechanical effects in kaolinite. Part2: exposed samples andchemical and phase analyses. Geotechnique,2011.61(6),449-457.
    Wan, Y. and Kwong, J. Shear strength of soils containing amorphous clay-size materials in a slow-movinglandslide. Engineering geology,2002.65(4),293-303.
    Wang, Y-H. and Siu, W-K. Structure characteristics and mechanical properties of kaolinite soils. I. Surfacecharges and structural characterizations. Canadian Geotechnical Journal,2006.43(6),587-600.
    Wang, Y-H. and Siu, W-K. Structure characteristics and mechanical properties of kaolinite soils. II. Effectsof structure on mechanical properties. Canadian Geotechnical Journal,2006.43(6),601-617.
    Warkentin, B.P. and Yong, R.N. Shear strength of montmorillonite and kaolinite related to interparticleforces. Clays Clay Miner,1962.9,210-218.
    Wen, B.P., Aydin, A., Duzgoren-Aydin, N.S., et al. Residual strength of slip zones of large landslides in theThree Gorges area, China. Engineering Geology,2007.93(3),82-98.
    Wen, B. P. and He, L. Influence of Lixiviation by Irrigation Water on Residual Shear Strength of WeatheredRed Mudstone in Northwest China: Implication for its role in landslides’ reactivation. EngineeringGeology,2012.151,56-63.
    Wesley, L.D. Shear strength properties of halloysite and allophane clays in Java, Indonesia. Geotechnique,1977.27(2),125-136.
    Zbik, M. and Smart, R.St.C. Nanomorphology of kaolinites: comparative SEM and AFM studies. Clays andClay Minerals,1998.46(2),153-160.
    Zhang, F.Y., Wang, G.H., Kamai, T., et al. Undrained shear behavior of loess saturated with differentconcentrations of sodium chloride solution. Engineering Geology,2013.155,69-79.
    柴波,殷坤龙,肖拥军.巴东新城区库岸斜坡软弱带特征.岩土力学,2010.31(8),2501-2506.
    陈宝,张会新,陈萍.高碱性溶液对高庙子膨润土溶蚀作用的研究.岩石力学与工程学报,2012.31(7),1478-1483.
    陈红星,李法虎,郝仕玲等.土壤含水率与土壤碱度对土壤抗剪强度的影响.农业工程学报,2007,23(2):21-25.
    程昌炳,徐昌伟.花岗岩残积土的胶结特性及其对力学性能的影响.岩土力学,1986.7(2),60-66.
    程强,寇小兵,黄绍槟等.中国红层的分布及地质环境特征.工程地质学报,2004.12(1),34-40.
    代志宏,吴恒,张信贵.水土作用中铁对土体结构强度的影响.甘肃工业大学学报,2002.28(4),104-107.
    戴肖南,王其鹏,赵超. pH对Mg-Al类水滑石/kaolinite分散体系流变性的影响.山东大学学报(理学版),2011.46(7),26-29.
    董英,贾俊,张茂省等.甘肃永靖黑方台地区灌溉诱发作用与黄土滑坡响应.地质通报,2013.32(6),893-898.
    冯金良,赵泽三,高国瑞.红土中游离氧化铁的作用及其机理探讨.河北省科学院学报,1994.1,35-43.
    冯金良.粘性土(红土)中游离氧化铁含量对其工程地质性质的影响.工程地质学报,1996.4(1),27-31.
    郭永春.红层岩土中水的物理化学效应及其工程应用研究:[博士学位论文].成都:西南交通大学,2007.
    郭永春,谢强,文江泉.我国红层分布特征及主要工程地质问题.水文地质工程地质,2008.34(6),67-71.
    孔令伟,罗鸿禧.游离氧化铁形态转化对红粘土工程性质的影响.岩土力学,1993.14(4),25-39.
    李滨,殷跃平,吴树仁等,多级旋转黄土滑坡形成机理及失稳模式,吉林大学学报(地球科学版),2012.42(3),760-769
    李滨,殷跃平,吴树仁等.多级旋转黄土滑坡基本类型及特征分析.工程地质学报,2011.19(5),703-711
    李滨.多级旋转型黄土滑坡形成演化机理研究:[博士学位论文].西安:长安大学,2009
    梁健伟,房营光,陈松.含盐量对极细颗粒黏土强度影响的试验研究.岩石力学与工程学报,2009.28(增2),3821-3829.
    罗鸿禧.无定形物质对土的力学性质和结构的影响.岩土力学,1983.4(1),67-72.
    罗鸿禧.游离氧化铁对红色粘土工程性质的影响.岩土力学,1987.8(2),29-36.
    米海珍,王月礼,赵景华等.含盐量对水泥灰土强度特性的影响.建筑科学与工程学报,2013,30(3):91-95.
    王军,曹平,赵延林等.水土化学作用对土体抗剪强度的影响.中南大学学报:自然科学版,2010.41(1),245-250.
    王龚先.甘肃省永靖县黄茨滑坡的滑动机理与临滑预报.灾害学,1997.12(3),24-27
    魏玉峰,聂德新.第三系红层中石膏溶蚀特性及其对工程的影响.水文地质工程地质,2005,32(2),62-64.
    文宝萍.黄土地区典型滑坡预测预报与减灾对策研究.北京:地质出版社,1997
    吴恒,张信贵,易念平等.城市环境下的水土作用对土强度的影响.岩土力学,1999.20(4),25-30.
    吴恒,张信贵,易念平等.水土作用与土体细观结构研究.岩石力学与工程学报,2000.19(2),199-204.
    吴恒,代志宏,张信贵等.水土作用中铝对土体结构性的影响.岩土力学,2001.22(4),474-477.
    吴玮江.季节性冻结滞水促滑效应.冰川冻土,1997.19(4),359-364.
    武彩霞,戴福初,闵弘等,台塬塬顶裂缝对黄土斜坡水文响应的影响.吉林大学学报(地球科学版),2011.41(5),1512-1519
    徐峻龄,廖小平,李荷生.黄茨大型滑坡的预报及其理论和方法.铁道工程学报,1996.50(2),197-205
    张信贵,吴恒,方崇等.水土相互作用与土细观结构变异的X射线衍射分析.桂林工学院学报,2005.25(3),301-304.
    赵宇,崔鹏,胡良博.黏土抗剪强度演化与酸雨引发滑坡的关系——以三峡库区滑坡为例.岩石力学与工程学报,2009.28(3),576-582.
    中华人民共和国建设部,国家质量技术监督局.土工试验方法标准GB/T50123-1999.北京:中国计划出版社.
    朱春鹏,刘汉龙,沈扬.酸碱污染土强度特性的室内试验研究.岩土工程学报,2011,33(7):1146-1152.
    朱立峰,胡炜,贾俊等.甘肃永靖黑方台地区灌溉诱发型滑坡发育特征及力学机制.地质通报,2013.32(6),840-846.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700