用户名: 密码: 验证码:
新型机械式可回收端锚杆支护机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于锚杆支护显著的技术经济优越性,已成为矿井巷道等地下工程支护的主要形式。煤矿巷道锚杆的种类繁多,我国煤矿巷道锚杆以树脂粘结式锚杆居多。但是,近年来发展起来的新型机械式可回收端锚锚杆,具有锚固性能好、可回收、施工快速方便等优点,然而,其支护机理等尚缺乏全面的认识。本文运用理论分析、实验测试、数值模拟和现场工业试验等方法与手段,对新型机械式可回收端锚锚杆支护的力学机理等进行了系统的研究,取得了如下创新性成果:
     (1)在详细考察新型机械式可回收端锚锚杆结构特点的基础上,对该新型锚杆的受力特征进行了系统的分析,对其力学性能进行了全面测试,并分析得到了锚固力的估算公式。在与树脂锚杆锚固性能比较的基础上,给出了该新型锚杆的适用环境。
     (2)针对锚杆支护的受力特点,建立了锚固围岩应力与变形分析的简化力学模型,并借助于经典弹性理论的Boussinesq解和Mindlin解,首次得到了锚固围岩应力场的解析解;给出了锚固围岩轴向、径向和环向应力的分布规律及随锚固长度的变化规律,揭示了端锚锚杆的锚固性能优于树脂锚杆的力学机理。
     (3)采用数值模拟方法,系统研究了锚固围岩沿锚杆的轴向应力、垂直于锚杆的径向应力和等效应力的分布特征,应用应力强度理论分析给出了不同锚固长度情况下锚杆支护对围岩强度的影响规律;研究结果表明,机械式端锚锚杆对锚固围岩的强化作用程度相对较高、强化作用范围相对较大。
     (4)系统研究了锚杆支护对巷道围岩稳定性的作用效应,给出了巷道围岩应力、变形、塑性区范围等随锚固长度和时间的变化规律,得到:随锚杆锚固长度的减小,巷道围岩的类压拱作用效应明显增强;巷道的顶底板移近量、两帮移近量均有明显减少;控制巷道围岩流变形的能力加强。
     (5)现场工业性试验,系统监测了新型机械式可回收端锚锚杆的支护效果,验证了该新型锚杆支护下的围岩稳定性和杆体的可回收性。监测结果表明,和同规格的树脂锚杆相比,新型机械式可回收端锚锚杆具有更优良的支护性能。
     研究成果可为新型机械式可回收端锚锚杆的推广应用提供重要依据。
Bolt support has been the main support form of the mine roadway in the under- ground engineering because of its obvious technical and economical superiority. The bolt types are various in coal mine roadway support. Different kinds of bolts have different anchorage performances and different applicable conditions. Resin bolts are dominant in the coal mine roadway support bolts in China. The new type mechanical reusable end-anchored bolt developed recent years has some merits, such as good anchorage performance, the reuse of bolt and quick fixing . However, there is lack of all-round understanding about the support mechanisms of the new type mechanical reusable end-anchored bolt. In this paper, A synthetically study means combined with theoretical analysis, experimental test, numerical simulation and industrial field test is applied to study systematically the mechanical mechanism of the support of the new type mechanical reusable end-anchored bolt. And the study results with innovative significance are shown in the following:
     (1) Based on the detail study on the structure characteristics of the new type mechanical reusable end-anchored bolt, the stress characteristics of bolt are analyzed systematically, the mechanical performance is comprehensively tested, and the estimating formula of the anchorage force are obtained. On the base of the comparison of the anchorage performance to resin bolts, the applicable conditions of the new type bolt are introduced.
     (2) Aimed at the stress characteristic of bolt support, the simplified mechanical model is established to analyze the stress and deformation of the anchored surrounding rock. The analytical solution of stress field of the anchored surrounding rock is gained firstly by means of the Boussinesq solution and Mindlin solution in classical elastic theory. The distribution law of the axial, radial and annular stress of the anchored surrounding rock is presented and the difference of stress distribution characteristic between the mechanical reusable end-anchored bolt and resin bolts with different anchored length are compared, which revealed the mechanical mechanism that the anchorage performance of the end-anchored bolt is superior to the resin bolt.
     (3) Numerical simulation is adopted to study systematically the distribution characteristic of the axial stress along bolt, the radial stress and equivalent stress vertical to bolt in anchored surrounding rock. With the help of strength theory, the influencing law of bolt support with different anchored length on the strength of surrounding rock. The study results indicated that: the strengthening effect of the mechanical reusable end-anchored bolt on the anchored surrounding rock is relatively high, and the strengthening acting range is relatively large.
     (4) The action effect of bolt support on the stability of roadway surrounding rock is study systematically to present the changing law of the stress, deformation and the plastic range with the anchored length and time. It can be found that: with the decreasing of the anchored length, the acting effect of the roadway surrounding rock similar to a pressure arch enhanced obviously; the roof-to-floor convergence and the side-to-side convergence of roadway decrease obviously; the capability of controlling rheological deformation of roadway strengthened.
     (5) According to the industrial field test, the support effect of the new type mechanical reusable end-anchored bolt are monitored systematically to verify the stability of surrounding rock supported by this new type bolt and the recoverability of bolt-rod. The monitoring results indicated that the new type mechanical reusable end-anchored bolt has a superior support performance compared to the same standard resin bolt.
     The study results can provide an important reference for the popularization and application of the new type mechanical reusable end-anchored bolt.
引文
[1]程良奎,范景伦,等.岩土锚固[M].北京:中国建筑工业出版社, 2003.
    [2]杨新安,陆士良.中国煤矿的锚杆支护[J].中国煤炭, 1995,(3): 5-8.
    [3]马其华,樊克恭,郭忠平,秦忠诚.锚杆支护技术的发展前景与制约因素[J].中国煤炭, 1998, 24(5): 21~24.
    [4]侯朝炯,郭宏亮.我国煤巷锚杆支护技术的发展方向[J].煤炭学报,1996,21(2): 113-118.
    [5] E. Hook. E. T Brown. Rock Mechanics for Underground Mining.1988.
    [6] S. S Peng. Coal Mine Ground Control. John Wiley & Sons. Inc. New York 1978.
    [7] Schach. R. K. Garshol and A. M. Heltzen. Rock Bolting-A Practical Handbook. Premont Press. 1979.
    [8]陈炎光,陆士良,侯朝炯,等.中国煤矿巷道围岩控制[M].中国矿业大学出版社, 1994.
    [9]赵庆彪;侯朝炯;马念杰.煤巷锚杆-锚索支护互补原理及其设计方法[J].中国矿业大学学报, 2005,34(4):490-493.
    [10]杨双锁,康立勋.煤矿巷道锚杆支护研究的总结与展望[J].太原理工大学学报, 2002, (4): 376-381.
    [11]宋海涛.锚杆支护现状及其发展.矿山压力与顶板管理[J], 1999, (1):2-4.
    [12]毛光宁.美国锚杆支护综述[J].中国煤炭, 2001,27(11):52-56.
    [13]郭颂.美国煤巷锚杆支护技术概况[J].煤炭科学技术, 1998, 26 (4) : 50-54.
    [14]赵长海.预应力锚固技术[M].北京:中国水利水电出版社, 2002.
    [15]程良奎,范景伦,韩军,等.岩土锚固[M].北京:中国建筑工业出版社, 2003.
    [16]贾金青,郑卫锋,陈国周.预应力锚杆柔性支护技术的数值分析[ J].岩石力学与工程学报, 2005, 24 (21):3 978~3 982.
    [17] Song Guo, Stankus J. Control mechanism of a tensioned bolt system in the laminated roof with a large horizontal stress [A].16thInt. Conf on Ground Control in Mining[C]. Morgantown, West Virginia, 1997.
    [18]郑雨天,朱浮声.预应力锚杆体系--锚杆支护技术发展的新阶段[J].矿山压力与顶板管理, 1995 (1): 2~7.
    [19]陈庆敏,郭颂.基于高水平地应力的锚杆“刚性”梁支护理论及其设计方法[J].煤炭学报, 2001, 26 (S0):111~115.
    [20]张农,高明仕.煤巷高强预应力锚杆支护技术与应用[J].中国矿业大学学报, 2004, 33 (5): 524~527.
    [21]康红普.高强度锚杆支护技术的发展与应用[J].煤炭科学技术, 2000, 28 (2): 1~4.
    [22]康红普,林健,张冰川.小孔径预应力锚索加固困难巷道的研究与实践[J].岩石力学与工程学报, 2003, 2(3): 387~390.
    [23]王金华.我国煤巷锚杆支护技术的新发展[J].煤炭学报, 2007, 32 (2): 113~118.
    [24] T. H.汉纳.锚固技术在岩土工程中的应用[M].北京:中国建筑工业出版社,1987.
    [25]张季如,唐保付.锚杆荷载传递机理分析的双曲线函数模型[J].岩土工程学报, 2002 ( 5 ):188-192.
    [26]程良奎.岩土锚固的现状与发展[J].土木工程学报, 2001, 34 (3 ): 7-12.
    [27]张乐文,汪捻.岩土锚固理论研究之现状[J].岩土力学, 2000, 23 (5): 627-631.
    [28] Roy S,Rajagopalan A B. Analysis of rock bolt reinforcement using beam-column theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1997,21(4):241–253.
    [29] Phillips S H E. Factors affecting the design of anchorages in rock [R] , London: cementation Research Ltd.,1970.
    [30] Lutz L. Gergeley. Mechanics of bond and slip of deformed bars in concrete. Journal of American Concrete Institute, 1967, 64(11): 711-721.
    [31] Hansor N. W. Influence of surface roughness of prestressing strand on band performance. Journal of Prestressed Concrete Institute, 1969, 14(1): 32-45.
    [32] Goto Y. Cracks formed in concrete around deformed tension bars. Journal of American Concrete Institute, 1971, 68(4): 244-251.
    [33] Tepfers, R.A. Theory of bond applied to overlapped tensile reinforcement species for deformed bars. Chahners University of Technology, Sweden, Publication, 1973. 73(2): 328.
    [34] Mindlin(弗洛林BA).土力学原理(第一卷)[M].北京:中国工业出版社,1965.
    [35]陈玉祥,王霞,刘少伟.煤巷锚杆支护稳定性的数值模拟分析[J].辽宁工程技术大学学报, 2004,23(05) :588-590.
    [36]严德群.三维锚杆的数值模拟及相互作用分析[D].河海大学硕士学位论文. 2001.
    [37]陈玉祥,王霞,刘少伟.锚杆支护理论现状及发展趋势探讨[J].西部探矿工程, 2004,(10):155-157
    [38] [英]A哈依斯,等.岩层控制技术的发展现状[C].国外锚杆支护技术译文集.煤炭科学研究总院北京开采所, 1997, 6.
    [39]董方庭,等.井巷设计与施工[M].中国矿业大学出版社, 1994.
    [40]张文轩,张公开.井巷工程[M].山西人民出版社, 1989.
    [41]靳钟铭,徐林生.煤矿坚硬顶板控制[M].煤炭工业出版社,1994.
    [42]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社, 1998.
    [43]侯朝炯,郭励生,勾攀峰,等.煤巷锚杆支护[M].徐州:中国矿业大学出版社, I999.
    [44]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报, 2000,19(3):342-345.
    [45]董方庭.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社, 2001.
    [46]董方庭,宋宏伟,郭志宏,等.巷道围岩松动圈支护理论[J].煤炭学报, I994, 19(1):21-31.
    [47]靖洪文,宋宏伟,郭志宏.软岩巷道围岩松动圈变形机理及控制技术研究[J].中国矿业大学学报, 1999,28(6):560-564.
    [48]袁和生.煤矿巷道锚杆支护技术[M].北京:煤炭工业出版社, 1997.
    [49]刘长武、褚秀生.软岩巷道锚注加固原理与应用[M].徐州:中国矿业大学出版社,2000.
    [50]康红普,王金华,等.煤巷锚杆支护理论成套技术[M].煤炭工业出版社,2007.
    [51]江以德.锚固失效分析[J].安徽理工大学学报(自然科学版),2004,24(02):5-8.
    [52]姚显春,李宁,陈蕴生.隧洞中全长粘结式锚杆的受力分析[J].岩石力学与工程学报, 2005,24(13):2272-2276.
    [53]尤春安.全长粘结式锚杆的受力分析[J].岩石力学与工程学报,2000,19(03): 339-341.
    [54]杨超,陆士良,姜耀东.支护阻力对不同岩性围岩变形的控制作用[J].中国矿业大学学报, 2000,29(02):170-173.
    [55]谢文兵,陆士良,赵有功,等.软岩巷道的合理支护阻力[J].矿山压力与顶板管理, 1998, (02): 37-39.
    [56]张朋寿,赵凤飞,黄成麟,等.锚杆支护适用性分析[J].煤矿安全,2003,34(02):25-26.
    [57]任永安.预应力锚杆支护的实践与认识[J].中国西部科技,2005,(06):42.
    [58]张红军.锚杆支护工作机理及现场应用探讨[J].煤炭技术,2004,23(06):112-114.
    [59]张永吉,田瑞云,段克信,等.杆体可回收锚杆锚固性能分析[J].辽宁工程技术大学学报(自然科学版),1999,18(02):113-117.
    [60]张吉雄,李青锋,欧阳昶,等.新型机械式可回收端锚锚杆试验研究[J].矿山压力与顶板管理,2005,(04):7-11.
    [61]胡云江,王忠勇,郑培虎.可回收树脂锚杆的应用[J].煤炭科学技术,2002,30(06):29-30.
    [62]王永生.机械式可回收锚杆及支护机理分析[J].煤炭科学技术, 2003,31(12):48-51.
    [63]冯梅梅,茅献彪.机械式可回收锚杆支护效果分析[J].矿山压力与顶板管理, 2005,(04):15-19 .
    [64]陈旭忠.可回收尼龙套端锚式锚杆在煤矿巷道支护中的应用[J].建井技术, 2004, 25(01): 17-21.
    [65]盛宏光,聂德新,傅荣华.可回收式锚索试验研究[J].地质灾害与环境保护, 2003, 14(04): 68-73.
    [66]张乐文,刘传波.新型锚杆及岩土锚固新技术[J].公路交通科技,2004, 21(07):26-29.
    [67]杨双锁,康立勋.锚杆作用机理及不同锚固方式的力学特征[J].太原理工大学学报, 2003, 34(05):540-543.
    [68]初泰安.螺栓拧紧方法及预紧力控制[J].化工设备与管道,2005,42(03):8-11.
    [69]许兴亮.锚固岩体中锚杆预紧力的作用[J].能源技术与管理,2004,(02):38-39.
    [70]许兴亮,孙明来.预应力锚杆支护技术对两帮的效用分析[J].矿山压力与顶板管理, 2004, (02):71-73.
    [71]王晓鸣.锚杆支护预紧力的初步研究及应用[J].煤炭科学技术,2006,34(12):26-27.
    [72]杨双锁,张百胜.锚杆对岩土体作用的力学本质[J].岩土力学, 2003 ,24(增): 279 -282.
    [73]苏霞.锚杆作用机理的RFPA数值试验研究.清华大学硕士论文, 2004.6.
    [74]王秦宜,张贤芝.用光弹性实验的应力分析方法探讨湘西金矿锚杆护顶工作原理[J].矿山压力与顶板管理, 2002, 34 (5): 540 -543.
    [75]康立勋,杨双锁.拱形整体锚固结构稳定性相似模拟研究[J].长沙矿山研究院季刊, 1987, 7(1): 50 -57
    [76]陈玉祥,王霞,刘少伟.煤巷锚杆支护稳定性的数值模拟分析[J].辽宁工程技术大学学报, 2004 , 23(4): 588– 590.
    [77] Rota M. A methodology for seismic vulnerability of masonry arch bridge walls [J]. Journal of Earthquake Engineering, 2005, 9 (2) : 331 - 353.
    [78]徐芝纶.弹性力学[M].北京:高等教育出版社, 1990, 293-298.
    [79]祝彦知,程楠. Kelvin半无限体内部作用竖向力时的解答与应用[J].强度与环境, 2006, 33(3):30-36.
    [80]薛顺勋,聂光国,姜光杰,等.软岩巷道支护技术指南[M].北京:煤炭工业出版社, 2002: 22 - 28.
    [81]翟英达.锚杆预紧力在巷道围岩中的力学效应[J].煤炭学报, 2008 , 33(8) : 856– 859.
    [82]张百胜,杨双锁,康立勋.全煤巷道拱形整体锚固结构模拟研究[J].山西煤炭, 2001, 21 (3) : 19-22.
    [83]杨双锁.回采巷道围岩控制理论及锚固结构支护原理[M].北京:煤炭工业出版社, 200, 119-175.
    [84]李锡润,林韵梅,郑雨天.锚杆支护机理的探讨[J].东北工学院学报, 1981 (4) : 21-32.
    [85]任青文,罗军.锚杆应用及加固机理研究综述[J].水利水电科技进展, 1997,17(1):29~33.
    [86]李术才,朱维申.含充填节理岩体加锚节理面力学特性研究[J].岩土力学, 1997,18(增刊):54~59.
    [87]杨延毅.加锚层状岩体的变形破坏过程与加固效果分析模型[J].岩石力学与工程学报,1994,13(4):309~317.
    [88] Roy S, Rajagopalan A B. Analysis of rockbolt rein-forcemet using beam-column theory [J].International Journal for Numerical and Analytical Methods in Ge-omechanics, 1997, 21(4):241~253.
    [89] Adhikary D P, Dyskin A V. A continuum model of layered rock masses with nonassociative joint plasticity[J]. International Journal for Numerical and Ana-lytical Methods in Geomechanics, 1998, 22(4):245~261.
    [90]缪协兴,茅献彪,朱川曲,刘卫群.综放沿空巷道顶部锚杆剪切变形分析[J].煤炭学报, 2005,30(6):681-684.
    [91]钱鸣高,缪协兴.采动岩体力学—一门新的应用力学研究分支学科[J].科技导报, 1997, (03):8-11.
    [92]缪协兴,钱鸣高.采动岩体的关键层理论研究新进展[J].中国矿业大学学报, 2000, 29(01): 25-29.
    [93]缪协兴,茅献彪,钱鸣高.采动覆岩中关键层的复合效应分析[J].矿山压力与顶板管理, 1999, (Z1):19-23.
    [94] Song Guo, J. Stankus. Control mechanism of a tensioned bolt system in the laminated roof with a large horizontal stress[A] 16th Int. Conf. on Ground Control in Mining, Morgantown West Virginia,1997.
    [95] R. G. Siddall, W. J. Gale. Strata Control A New Science for an Old Problem [A]. The Annual Joint Meeting of the Institution of Mining Engineers and the Institution of Mining and metallurgy at The Majestic Hotel[A]. Harrogate 1992.
    [96] Matthews S M. Horizontal stress control in underground comines [A]. 11th International Conference on Ground Control Mining, The University of Wollongong, N.S.W, July 1992.
    [97]王国强.实用工程数值模拟及其在ANSYS上的实现[M].西安:西北工业大学出版社,1999.
    [98]谢文兵,陈晓祥,郑百生.采矿工程问题数值模拟研究与分析[M].徐州:中国矿业大学出版社, 2005.
    [99]王连国,易恭猷,韩继胜.软岩巷道支护方案的数值模拟研究[J].煤, 2000(4): 4-7.
    [100]王连国,韩继胜,孙求知.软岩巷道支护效果的数值模拟研究[J].山东科技大学学报, 2001, 20(1): 53-56.
    [101]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社, 1998.
    [102]侯朝炯,郭励生,勾攀峰等.煤巷锚杆支护[M].徐州:中国矿业大学出版社, 1999.
    [103] W. J. Gale, R. L. Blackwood. Stress Distribution and Rock Failure Around Coal Mine Roadways[J]. Int. J. Rock Mech.Min. Sci. & Geomech,1987,24(3):165—173.
    [104] J. Stankus, Song Guo. Computer automated finite element analysis--a powerful tool for fast mine design and ground control problem diagnosis and solving [A]. 5th Conf. on the Use ofComputers in the Coal Industry, Morgantown, West Virginia,1996.
    [105]郑雨天,朱浮声.预应力锚杆体系——锚杆支护技术发展的新阶段[J].矿山压力与顶板管理, 1995,(1):2-7.
    [106]刘波,韩彦辉(美国). FLAC原理、实例与应用指南[M].人民交通出版社, 2005.
    [107]王飞虎.地下洞室预应力锚杆支护机理及设计参数确定方法研究[D].西安理工大学,硕士学位论文,2001.
    [108]陈东印.地下工程预应力锚杆支护数值模拟分析[D].山东科技大学,硕士学位论文,2005.
    [109]杨典森.锚固岩体等效参数数值模拟研究及应用[D].中国科学院武汉岩土力学研究所,硕士学位论文,2004.
    [110]岳志平.岩土锚固的作用机理[D].中南大学,硕士学位论文, 2004.
    [111]姚显春.隧洞全粘结式锚杆受力分析与数值仿真试验研究[D].西安理工大学,硕士学位论文,2005.
    [112]朱亚林.预应力锚杆柔性支护方法的数值分析[D].大连理工大学,硕士学位论文,一2004.
    [113] Yue Cai. Tersuro Esaki,Yujing Jiang. A rock bolt and rock mass interactior model [J].International Journal of Rock Mechanics & Mining Sciences. 41(2004)1055-1067
    [114]朱浮声,郑雨天.全长粘结式锚杆的加固作用机理分析[J].岩石力学与程学报, 1996,15(4):333~337.
    [115]朱芳清.预应力锚杆的现场试验和数值模拟[D].天津大学,硕士学位论文,2004.
    [116]丁秀丽,盛谦,韩军.预应力锚索锚固机理的数值模拟试验研究[J].岩石力学与工程学报, 2002, 21(7):342~345.
    [117]周保生.煤巷锚杆支护形式及合理支护参数研究[D].中国矿业大学硕士学位论文, 1996.
    [118]维申,张玉军,任伟中.系统锚杆对三峡船闸高边坡岩体加固作用的体相似模型试验研究[J].岩土力学, 1996,17(2):1~6.
    [119]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报,1995,14(1):39-47.
    [120] Franklin J. A. & Dusseault M. B.Rock Engineering[M]. McGraw-Hill Publishing Co.1989.
    [121] Fairhurst C.Laboratory measurement of some physical properties of rock[A].In:Hartman H L ed. Proceedings of the Fourth Symposium on Rock Mechanics[C].[s.l.], 1961: 105–118.
    [122] Kaiser P K, Morgenstern N R.Time-dependent deformation of jointed rock near failure[A].In:Proc.the 4th Int.Conf.Rock Mech.[C].[s.l.],1979:195–202.
    [123] Trow W. A. & Lo K. Y. Horizontal displacements induced by rock excavation: Scotia Plaza, Toronto, Ontario.Can. Geotech. J.1989, 26.
    [124] Zhang Zhongchun & Wang Shengzu: Long-term monitoring of subgrade stability of the Qinghai-Tibet Railway in the Charhan Playa Region, Engineering in Complex Rock Formation, 1986.
    [125] Kemeny J. M. & Cook N. G. W. Time-dependent borehole stability under mechanical and thermal stresses: application to underground nuclear waste storage, Rock Mechanics as A Multi-Disciplinary Science, Proc. 32nd US Symposium. The University of Oklahoma, Norman, 1991.
    [126] Lama R. D.&Vulukuri V. S. Handbook on Mechanical Properties of Rocks. Vol.Ⅱ, TRANS TECH PUBLICATIONS, 1978.
    [127] Ito H. On rheological behaviour of in situ rock based on longterm creep experiments[J], Proc. of the 7th Cong. ISRM. Aachen,1991.
    [128] Tan Jong-kie & Kang Wen-Fa: Locked in stresses, creep and dilatancy of rocks, and constitutive equations. Rock Mechanics, 1980, 13: 5-22.
    [129] Bieniawski Z. T. Time-dependent behaviour of fractured rock. Rock Mechanics,1970, 2: 123-137.
    [130] Wawersik W. R. Time-dependent behaviour of rock in compression[J], Proc. 3rd Cong. ISRM. Denver: 1974.
    [131] Passis A.& Kaiser P. K.:Stress path dependence of creep parameters, Proc. of the 7th Cong. ISRM. Aachen,1991.
    [132] Hardin J. & Carte N.:Rheological properties of rocks at high termperatures, Proc. of the 4th Cong. ISRM. Suiss, 1979.
    [13] Afronz A.& Harvey J. M.:Rheology of rocks within the soft to medium strength range. Int. J. Rock Mech. Min. Sci.& Geotech. Abstr, 1974, 11.
    [134] Hettema M. H. Pater C. J.& Wolf K. H. A. A. Effects of temperature and pore water on creep of sandstone rock, Rock Mechanics as A Multi-Disciplinary Science, Proc. of the 32nd US Symp. The University of Oklahoma, Norman, 1991.
    [135] Griggs D. Creep of rocks. J. Geol. 1939,47: 225-251.
    [136] Robertson E. C. Viscoelasticity of rocks,in State of Stress in the Earth's Crust (W. R. Judd Ed.).New York: Elsevie, 1964.
    [137] Rutter E. H. On the creep testing of rock at constant stress and constant force. Int. J. Rock Mech. Sci. 1972,9: 191-195.
    [138] Langer M. Rheological behaviour of rock masses, Proc. of the 4th Inter. Cong. of ISRM. Suiss,1979
    [139]高地应力区结构性流变围岩稳定性研究[D].成都理工大学博士学位论文, 2001.
    [140]翟英达,石兴,刘吉新.泥岩蠕变性质的研究[J].山西矿业学院学报,1995,13(1):279-283.
    [141]许宏发.软岩强度和弹模的时间效应研究[J].岩石力学与工程学报,1997.16(3): 246-251.
    [142]邓广哲,朱维申.蠕变裂隙扩展与岩石长时强度效应实验研究[J].实验力学, 2002, 17(2): 177-183.
    [143]贺德胜.浅谈锚杆支护理论及设计方法的应用与发展[J].科技情报开发与经济, 2006,16(21):184-186.
    [144]姜有,周贵全,汤林.回采巷道锚杆支护设计[J].河北煤炭, 1999,(02):32-33.
    [145]陈庆敏,郭颂,张农.煤巷锚杆支护新理论与设计方法[J].矿山压力与顶板管理, 2002, (01) : 12-15.
    [146]康天合,薛亚东,靳钟铭.基于围岩条件与动载作用的回采巷道锚杆支护设计原则[J].岩石力学与工程学报, 1996,15(S1):571-576.
    [147]耿献文,王子升.深部综放工作面特厚煤层全煤巷道锚杆支护技术[J].有色金属(矿山部分) , 2002,23(01):17-21.
    [148]赵奇.松散特厚煤层全煤巷道锚杆支护试验研究[J].煤炭科技, 2004,(02):5-8.
    [149]王彦伦.深部全煤巷道锚梁网支护实践[J].煤炭科学技术, 2003,31(11)58-59.
    [150]闫利显,郎加平.深部全煤巷道锚梁网支护实践[J].煤矿开采, 2000,(04):42-43.
    [151]李树奎,刘正光.锚杆支护在综放工作面中的应用[J].煤, 1997,6(04):52-55.
    [152]毕思存,石长坤.三河尖煤矿综放工作面全煤巷道锚杆支护技术[J].煤炭科技, 2003, (01): 34-36.
    [153]张文军,张宏伟,于世功.锚杆支护巷道顶板离层监测方法探讨[J].辽宁工程技术大学学报, 2002,21(04) :441-444.
    [154]陆庭侃,刘玉洲,许福胜.大埋深煤巷顶板离层研究[J].矿山压力与顶板管理, 2005, (03) : 110-112.
    [155]时连强.锚杆支护巷道离层失稳机理及控制研究[D].山东科技大学, 2003 .
    [156]王自立.鹤壁四矿综放开采回采巷道全锚网支护[J].矿山压力与顶板管理, 2002, (03): 24-26.
    [157]谭云亮,何孔翔,马植胜,闫相宏.坚硬顶板冒落的离层遥测预报系统研究[J]岩石力学与工程学报, 2006,25(08):1705-1709 .
    [158]伊克良,徐华斌,胡佳兴.全长粘结型岩石锚杆抗拔力检测问题的探讨[J].有色金属设计, 2004,31(02):12-17.
    [159]胡计平,建立.全煤巷道锚杆支护围岩活动规律研究[J].河北煤炭, 2000,(04):20-23.
    [160]耿献文,王子升,林东才,林园.特厚煤层综放煤巷锚杆支护矿压观测[J].矿山压力与顶板管理, 2002,(02):48-50.
    [161]王连捷.地应力测量及其在工程中的应用[M].北京:地质出版社,1991.
    [162]孔恒,马念杰,王梦恕,张成平.基于顶板离层监测的锚固巷道稳定性控制[J].中国安全科学学报, 2002,12(03):55-59 .
    [163]王兵.煤巷锚杆支护围岩应力分布及顶板离层规律的研究[D].安徽理工大学, 2005 .
    [164]张洪涛.煤巷锚杆支护的矿压监测[J].煤炭技术, 2006,25(01):52-55 .
    [165]王诚,高谦,李月.锚杆支护巷道顶板离层的现场监测与分析[J].矿业工程, 2006, 4(06): 29-31.
    [166]鞠文君.锚杆支护巷道顶板离层机理与监测[J].煤炭学报, 2000,25(S1):58-61 .
    [167]鞠文君,周寅生.锚杆支护巷道安全监测技术[J].中国安全科学学报, 2004, 14(10): 105- 109 .
    [168]兖矿集团有限公司煤巷锚杆支护技术规范[M].煤炭工业出片社, 2001年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700