用户名: 密码: 验证码:
流化床气相聚合反应器中搅拌和颗粒外循环的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流化床气相聚合反应器广泛应用于聚烯烃生产过程。颗粒发粘或静电引起的聚合物粘壁、团聚、结块使得流化床反应器内流化状况恶化,严重制约了流化床反应器的长周期稳定运行。传统的解决方案是使用机械搅拌,新的解决思路是使用颗粒外循环。掌握搅拌流化床和带颗粒外循环流化床的反应器特性,是实现过程调控和新产品开发的基础。本文围绕这一目标,开展了四方面的研究工作:(1)基于声发射技术的搅拌流化床中关键过程参数检测;(2)搅拌流化床的流体力学行为研究;(3)带颗粒外循环流化床的流体力学行为研究;(4)流化床中搅拌和颗粒外循环作用效果的对比研究。
     本文的主要研究成果包括:
     1.基于搅拌流化床中颗粒的发声特性,实现了起始流化速度、料位和扬析量的声发射检测。定义搅拌作用因子,根据搅拌作用因子-气速曲线得到了起始流化速度的声判据。提出了自校正料位检测法,提高了料位的测量精度。建立了声能量与扬析量的对应关系,实现了扬析量的声检测。
     2.获得了搅拌对流化床流体力学行为的影响规律。阐明了流化床中搅拌的作用机制,发现搅拌通过抑制和破碎气泡,使得搅拌流化床与普通流化床相比具有较小的气泡尺寸和相对较低的压力脉动幅值,表现出类似湍动流化床的特征,在增强气固接触、强化颗粒混合、使得床内流动状况趋向于全混流的同时,减少夹带和减小静电势,改善流化质量,提高床层操作稳定性。最后,给出了搅拌转速的选取原则和建议。
     3.获得了颗粒外循环对流化床流体力学行为的影响规律。基于二维CFD模拟发现带颗粒外循环流化床具有“环核结构”的流动模式,即核心区是向下运动的平推流,环形区是全混流,并得到实验验证。以此为基础阐明了流化床中颗粒外循环的作用机制,颗粒外循环通过破碎核心区气泡并促使其向壁面运动,使得气泡主要集中在环形区,可以增强气固接触,促进床内特别是壁面附近的颗粒混合,减少夹带和减小静电势,改善流化质量,提高床层操作稳定性。当外循环流量过大时,核心区的平推流效应过强,反而不利于颗粒混合。最后给出了外循环流量的选取原则和建议。
     4.对比研究了流化床中搅拌和颗粒外循环的作用效果。提出以破碎气泡、减少夹带、强化颗粒混合、消除沟流和节涌、改善流化质量等作为关键指标,以降低床层压降和减小静电势作为参考指标,建立了搅拌和颗粒外循环的评价方法。分析发现颗粒外循环可以取代搅拌。
Gas phase fluidized bed polymerization reactor is widely used in polyolefin production process. Wall sheeting or agglomeration caused by sticky polymer particles or electrostatic effects in fluidized bed reactor, would make the fluidization deterioration. This problem seriously restricts the long term and stable operation of fluidized bed reactor. The traditional solution is using mechanical agitation, and the new solution is external particle circulation. Mastering the reactor characteristics of agitated fluidized bed and external particle circulation fluidized bed is the basis of process control and development for new products. To achieve this goal, four aspects of research works were carried out. Firstly, the key process parameters of agitated fluidized bed were measured by using acoustic emission technology. Secondly, hydrodynamic behavior of agitated fluidized bed was studied. Thirdly, hydrodynamic behavior of external particle circulation fluidized bed was also studied. Finally, effects of mechanical agitation on hydrodynamics were compared with those of external particle circulation.
     The main research results are as follows:
     1. Based on the particle acoustic characteristics in the agitated fluidized bed, the initial fluidization velocity, bed level and elutriation rate were measured by acoustic emission technology. By defining agitation effect factor (AEF), a criterion for initial fluidization velocity was proposed from the AEF-gas velocity figure. Subsequently, self-correction bed level measurement method was proposed. This method could improve the measurement accuracy. Finally, the measurement of elutriation rate was realized on the basis of corresponding relationship between AE energy and elutriation rate.
     2. Effects of agitation on hydrodynamic behavior of fluidized bed were obtained. Based on the experimental results, effect mechanism of agitation in the fluidized bed was clarified. It was found that the agitated fluidized bed showed similar characteristics of turbulent fluidized bed, and there were much smaller size bubbles and lower pressure fluctuation amplitude in the agitated fluidized bed compared to general fluidized bed, due to the bubble repression and breakage caused by mechanical agitation. This could enhance gas-solid contact and intensify particle mixing in the bed. Meanwhile, reduction of entrainment and bed electrostatic potential, improvement of fluidization quality, increase of bed operating stability could also be realized. Finally, selection principles and recommendations for stirring speed were proposed.
     3. Effects of external particle circulation on hydrodynamic behavior of fluidized bed were obtained. Based on two dimensional CFD simulations, the core-annulus structure flow pattern composed of plug flow in core zone and mixed flow in annulus was proposed and validated by experiments. Then effect mechanism of external particle circulation in the fluidized bed was clarified. External particle circulation broke the bubbles in the core zone and caused them move towards the wall, then concentrated in the annular zone. This could enhance gas-solid contact and intensify particle mixing in the bed, especially near the wall. Meanwhile, reduction of entrainment and bed electrostatic potential, improvement of fluidization quality, increase of bed operating stability could also be realized. However, excessive external particle circulation may adversely affect the particle mixing due to strong PFR effects in the core zone. Ultimately, selection principles and recommendations for external particle circulation flow rate were provided.
     4. Effects of mechanical agitation and external particle circulation on hydrodynamics behavior in fluidized bed were compared. To establish the evaluation method for mechanical agitation and external particle circulation, five key evaluation indexs and two reference evaluation indexs were put forward. Key evaluation indexes included entrainment reduction, bubble breakage, particle mixing, gas channeling and slugging elimination, fluidization quality improvement. Reference evaluation indexes included electrostatic charge reduction and pressure drop reduction. The analysis results showed that external particle circulation could replace the traditional mechanical agitation.
引文
1. Chen, L; Land, S., Catalyst composition with mixed selectivity control agent and method. USP 2009/034875,2009-02-23.
    2. Chen, L.; Campbell Jr., R. E., Self limiting catalyst composition and propylene polymerization process. USP 2004/030496,2004-09-17.
    3. Ping Cai; Linfeng, C.; Jan, V. E.; Mike, T., Some recent advances in fluidized-bed polymerization technology. Particuology,2010,8, (6),578-581.
    4. Cao, Y.; Wang, J.; He, Y.; Lin, W.; Yang, Y., Agglomeration detection based on attractor comparison in horizontal stirred bed reactors by acoustic emission sensors. AIChE Journal,2009, 55, (12),3099-3108.
    5. Cao, Y.; Wang, J.; Liu, W.; Yang, Y., Wall sheeting diagnosis in fluidized beds based on chaos analysis of acoustic emission signals. Journal of Zhejiang University-Science A,2009,10, (9),1341-1349.
    6. Nijenhuis, J.; Korbee, R.; Lensselink, J.; Kiel, J.; van Ommen, J. R., A method for agglomeration detection and control in full-scale biomass fired fluidized beds. Chemical Engineering Science,2007,62, (1),644-654.
    7. Zacca, J. J.; Debling, J. A., Particle population overheating phenomena in olefin polymerization reactors. Chemical Engineering Science,2001,56, (13),4029-4042.
    8. van Ommen, J. R.; Coppens, M. O.; van den Bleek, C. M.; Schouten, J. C., Early warning of agglomeration in fluidized beds by attractor comparison. AIChE Journal,2000,46, (11), 2183-2197.
    9. Hutchinson, R. A.; Ray, W. H., Polymerization of olefins through heterogeneous catalysis. VII. Particle ignition and extinction phenomena. Journal of Applied Polymer Science,1987,34, (2),657-676.
    10. McLaughlin, L. J.; Rhodes, M. J., Prediction of fluidized bed behaviour in the presence of liquid bridges. Powder Technology,2001,114, (1-3),213-223.
    11. Seville, J.; Clift, R., The effect of thin liquid layers on fluidization characteristics. Powder Technology,1984,37,117-129.
    12.洪定一,聚丙烯——原理,工艺与技术.中国石化出版社:2002.
    13.G·彭佐;R·里纳尔迪,用于烯烃聚合的气相方法和装置.CN200680048747.8,2006-11-27.
    14. Mei, G.; Beccarini, E.; Caputo, T.; Fritze, C.; Massari, P.; Agnoletto, D.; Pitteri, S., Recent technical advances in polypropylene. Journal of Plastic Film and Sheeting,2009,25, (2),95-113.
    15. Mei, G.; Herben, P.; Cagnani, C.; Mazzucco, A. In The Spherizone Process:A New PP Manufacturing Platform, Macromolecular Symposia,2006-01-01; Wiley Online Library:2006; pp 677-680.
    16. Wang, J. D.; Ren, C. J.; Yang, Y. Y., Characterization of flow regime transition and particle motion using acoustic emission measurement in a gas - solid fluidized bed. AIChE Journal,2010, 56,(5),1173-1183.
    17. Wang, J. D.; Cao, Y. J.; Jiang, X. J.; Yang, Y., Agglomeration detection by acoustic emission (AE) sensors in fluidized beds. Industrial & Engineering Chemistry Research,2009,48, (7), 3466-3473.
    18. Ren, C. J.; Jiang, X. J.; Wang, J. D.; Yang, Y. Y.; Zhang, X. H., Determination of critical speed for complete solid suspension using acoustic emission method based on multiscale analysis in stirred tank. Industrial & Engineering Chemistry Research,2008,47, (15),5323-5327.
    19. Jiang, X. J.:Wang, J. D.; Jiang, B. B.; Yang, Y. Y.; Hou, L. X., Study of the power spectrum of acoustic emission (AE) by accelerometers in fluidized beds. Industrial & Engineering Chemistry Research,2007,46, (21),6904-6909.
    20. Wang, J. D.; Cao, Y. J.; Ren, C. J.; Yang, Y.Y.; Hou, L. X., Measurement of acoustic emissions and flow pattern in gas-solid fluidized bed. Journal of Chemical Industry and Engineering (China),2007,58, (7),1713.
    21. WR Boyd, J.; Varley, J., The uses of passive measurement of acoustic emissions from chemical engineering processes. Chemical Engineering Science,2001,56, (5),1749-1767.
    22. Cody, G. D.; Bellows, R. J.; Goldfarb, D. J.; Wolf. H. A.; Storch. G. V., A novel non-intrusive probe of particle motion and gas generation in the feed injection zone of the feed riser of a fluidized bed catalytic cracking unit. Powder Technology,2000,110, (1),128-142.
    23. Tsujimoto, H.; Yokoyama. T.; Huang, C. C.; Sekiguchi, I., Monitoring particle fluidization in a fluidized bed granulator with an acoustic emission sensor. Powder Technology,2000,113, (1), 88-96.
    24. Cody, G. D.; Goldfarb, D. J.; Storch, G. V.; Norris, A. N., Particle granular temperature in gas fluidized beds. Powder Technology,1996,87, (3).211-232.
    25. Cody. G. D.; Baker. C. L.; Elzinga Jr, E. R., Passive acoustics process to monitor fluidized bed level. USP4993264,1991-02-19.
    26.冯连芳.丙烯聚合反应器与过程模型化研究.博士学位论文,浙江大学,2006.
    27.骆广海;阳永荣;魏舸裔;吴文清;韩国栋;王树芳;王靖岱,一种烯烃聚合反应的装置和方法.CN 201010160512.6,2010-04-30.
    28.骆广海;阳永荣;魏舸裔;吴文清;韩国栋;王树芳;王靖岱,一种烯烃聚合的多区循环反应装置和反应方法.CN200910222301.8,2009-11-13.
    29.M·科维兹;G·梅尔;G·梅,聚合方法.CN03824043.2,2003-09-25.
    30.魏舸裔.新型乙烯聚合循环反应器的实验与模拟研究.硕士学位论文,浙江大学,2011.
    31.张文峰.丙烯气相聚合流化床反应器冷态模拟研究.硕士学位论文,浙江大学,2006.
    32. Morterol, F. R. M. M.; Raufast. C. Polymerization process. FR08/092809,1993-07-16.
    33.G·彭佐;G·梅;G·迈耶气相烯烃聚合方法.CN200480012818,2004-04-01.
    34. Reed, T. M.; Fenske, M. R., Effects of agitation on gas fluidization of solids. Industrial& Engineering Chemistry,1955,47, (2),275-282.
    35. Hare, C.; Ghadiri, M.; Dennehy. R.. Prediction of attrition in agitated particle beds. Chemical Engineering Science,2011,66, (20),4757-4770.
    36. LEVA, M., Pressure drop and power requirements in a stirred fluidized bed. AIChE Journal, 1960,6, (4),688-692.
    37.李凡;冯连芳;顾雪萍;王凯;刘波,气固搅拌流化床的床层压降.高校化学工程学报,2002,(04),384-388.
    38.王嘉骏;张文峰;冯连芳;顾雪萍,气固搅拌流化床压力脉动的小波分析.化工学报,2006,(12),2854-2859.
    39.高华;彭峰;叶世超,气固搅拌流化床流化和干燥特性实验研究.化工装备技术,2006,(04),1-5.
    40.郭慕孙;李洪钟,流态化手册.化学工业出版社:2008.
    41.于才渊;李富贵;王喜忠,搅拌流化床喷雾造粒过程实验研究.化学工程,2001,(06),34-37.
    42. Godard, K.; Richards, J. F., Use of slow speed stirring to initiate particulate fluidisation. Chemical Engineering Science,1969,24,(1),194-195.
    43.冯连芳;马青山;陈鹏飞;顾雪萍;王凯,搅拌流化床流化特性实验研究.化学工程,2000,(03),33-37.
    44. Alavi, S.; Caussat, B., Experimental study on fluidization of micronic powders. Powder Technology,2005,157, (1-3),114-120.
    45. Kim, J.; Han, G. Y., Effect of agitation on fluidization characteristics of fine particles in a fluidized bed. Powder Technology,2006,166, (3),113-122.
    46. Shi, D. P.; Luo, Z. H.; Guo, A. Y., Numerical Simulation of the Gas-Solid Flow in Fluidized-Bed Polymerization Reactors. Industrial & Engineering Chemistry Research,2010,49, (9),4070-4079.
    47.宋乙峰;朱庆山,搅拌流化床中超细氧化铁粉流态化及还原实验研究.过程工程学报2011,(03),361-367.
    48. Bait, R. G.; Pawar, S. B.; Banerjee, A. N.; Mujumdar, A. S.; Thorat, B. N., Mechanically agitated fluidized bed drying of cohesive particles at low air velocity. Drying Technology,2011,29,(7),808-818.
    49.马青山;冯连芳;陈鹏飞;王凯,搅拌流化床搅拌功率研究.化学工程,2001,(03),20-24.
    50. Watano, S.; Yeh, N.; Miyanami, K., Drying of granules in agitation fluidized bed. Journal of Chemical Engineering of Japan,1998,31, (6),908-913.
    51. Watano, S.; Yeh, N.; Miyanami, K., Heat transfer and the mechanism of drying in agitation fluidized bed. Chemical & Pharmaceutical Bulletin,1999,47, (6),843-846.
    52. Reyes, A.; Alvarez, P. I.; Marquardt, F. H., Drying of carrots in a fluidized bed. I. Effects of drying conditions and modelling. Drying Technology,2002,20, (7),1463-1483.
    53. Toyokura, K.; Ueno, T.; Uchiyama, M.; Kawai, M., Effect of seed crystal size on secondary nucleation rate of k-alum in agitated fluidized bed crystallizer. Kagaku Kogaku Ronbunshu,1983, 9, (5),569-571.
    54.王永安;白孟田;朱寿康,双层搅拌流化床焙烧锡精矿.有色金属,1991,(01),50-54.
    55. BEECKMANS, J. M.; YU, Z., Continuous separation of solids in a mechanically fluidized bed. Powder Technology,1992,70, (1),77-81.
    56. Chang, Y. K.; Chang, I. P., Method development for direct recovery of lysozyme from highly crude chicken egg white by stirred fluidized bed technique. Biochemical Engineering Journal, 2006,30,(1),63-75.
    57. Remy, B.; Khinast, J. G.; Glasser, B. J., Discrete Element Simulation of Free Flowing Grains in a Four-Bladed Mixer. AIChE Journal,2009,55, (8),2035-2048.
    58. Murthy, J.; Surendar Reddy, V.; Sankarshana, T., Solid-solid reaction in a fluidized bed. Asia - Pacific Journal of Chemical Engineering,2011,6, (2),244-256.
    59. Hakim, L. F.; Blackson, J. H.; Weimer, A. W., Modification of interparticle forces for nanoparticles using atomic layer deposition. Chemical Engineering Science,2007,62, (22), 6199-6211.
    60. Wang, X. S.; Rahman, F.; Rhodes, M. J., Nanoparticle fluidization and Geldart's classification. Chemical Engineering Science,2007,62, (13),3455-3461.
    61. Hakim, L. F.; Portman, J. L.; Casper, M. D.; Weimer, A. W., Aggregation behavior of nanoparticles in fluidized beds. Powder Technology.2005,160, (3),149-160.
    62. Zhang, W., A Review of Techniques for the Process Intensification of Fluidized Bed Reactors. Chinese Journal of Chemical Engineering,2009,17, (4),688-702.
    63. Zhu, C.; Liu, G.; Yu, Q.; Pfeffer, R.; Dave, R. N.; Nam, C. H., Sound assisted fluidization of nanoparticle agglomerates. Powder Technology,2004,141,(1),119-123.
    64. Ajbar, A.; Bakhbakhi, Y.; Ali, S.; Asif, M., Fluidization of nano-powders:Effect of sound vibration and pre-mixing with group A particles. Powder Technology,2011,206, (3),327-337.
    65. Kaliyaperumal, S.; Barghi, S.; Zhu, J.; Briens, L.; Rohani, S., Effects of acoustic vibration on nano and sub-micron powders fluidization. Powder Technology,2011,210, (2),143-149.
    66. Guo, Q.; Liu, H.; Shen. W.; Yan, X.; Jia, R., Influence of sound wave characteristics on fluidization behaviors of ultrafine particles. Chemical Engineering Journa,l 2006,119, (1),1-9.
    67. Yu, Q.; Dave, R. N.; Zhu, C.; Quevedo, J. A.; Pfeffer. R., Enhanced fluidization of nanoparticles in an oscillating magnetic field. AIChE Journal,2005,51, (7),1971-1979.
    68. Lepek, D.; Valverde, J. M.; Pfeffer, R.; Dave, R. N., Enhanced Nanofluidization by Alternating Electric Fields. AIChE Journal,2010,56, (1),54-65.
    69. Quintanilla, M.; Valverde. J. M.; Castellanos, A.; Lepek, D.; Pfeffer, R.; Dave, R. N., Nanofluidization as affected by vibration and electrostatic fields. Chemical Engineering Science, 2008,63, (22),5559-5569.
    70. Moreno, R. M.; Antolin, G.; Reyes, A., Aerodynamics of a fluidized bed of forestry biomass particles with mechanical agitation. Latin American Applied Research,2009,39, (1),11-18.
    71. Moreno, R. M.; Antolin, G.; Reyes, A., Thermal behaviour of forest biomass drying in a mechanically agitated fluidized bed. Latin American Applied Research,2007,37, (2),105-113.
    72.尹少武;王立;童莉葛;孙溆凤;刘传平,超细颗粒振动搅拌流态化供料方法的实验研究.冶金能源,2008,(02),16-20.
    73. Kuipers, N.; Stamhuis, E. J.; Beenackers, A., Fluidization of potato starch in a stirred vibrating fluidized bed. Chemical Engineering Science,1996,51, (11),2727-2732.
    74.冯连芳;张文峰;王嘉骏;顾雪萍;王凯,气固搅拌流化床内的压力脉动特性.浙江大学学报(工学版)2007,(03),524-528.
    75. Kunii, D.; Levenspiel, O., Fluidization engineering.2 ed.; Butterworth-Heinemann Boston: 1991.
    76. Cao, C.; Dong, S.; Zhao, Y.; Guo, Q., Experimental and numerical research for fluidization behaviors in a gas-solid acoustic fluidized bed. AIChE Journal,2010,56, (7),1726-1736.
    77. Chirone, R.; Massimilla, L.; Russo, S., Bubble-free fluidization of a cohesive powder in an acoustic field. Chemical Engineering Science,1993,48, (1),41-52.
    78. Guo, Q.; Li, Y.; Wang, M.; Shen, W.; Yang, C., Fluidization Characteristics of SiO2 Nanoparticles in an Acoustic Fluidized. Chemical Engineering & Technology,2006,29, (1), 78-86.
    79. Langde, A.; Sonolikar, R. L.; Tidke, D. J., Effect of variable acoustic field and frequency on gas-solid suspension of fine powder:a review. Chemical Engineering Communications,2012,199, (3),384-398.
    80. Levy, E. K.; Shnitzer, I.; Masaki, T.; Salmento, J., Effect of an acoustic field on bubbling in a gas fluidized bed. Powder Technology,1997,90, (1),53-57.
    81. Russo, P.; Chirone, R.; Massimilla, L.; Russo, S., The influence of the frequency of acoustic waves on sound-assisted fluidization of beds of fine particles. Powder Technology,1995,82, (3), 219-230.
    82. Xu, C.; Cheng, Y.; Zhu, J., Fluidization of fine particles in a sound field and identification of group C/A particles using acoustic waves. Powder Technology,2006,161, (3),227-234.
    83. Zhu, C.; Liu, G.; Yu, Q.; Pfeffer, R.; Dave, R. N.; Nam, C. H., Sound assisted fluidization of nanoparticle agglomerates. Powder Technology,2004,141,(1),119-123.
    84. Garcia-Perez, J. V.; Carcel, J. A.; De la Fuente-Blanco, S.; Riera-Franco De Sarabia, E., Ultrasonic drying of foodstuff in a fluidized bed:Parametric study. Ultrasonics,2006,44, 539-543.
    85. Razzak, S. A.; Barghi, S.; Zhu, J. X.; Mi, Y., Phase holdup measurement in a gas-liquid-solid circulating fluidized bed (GLSCFB) riser using electrical resistance tomography and optical fibre probe. Chemical Engineering Journal,2009,147, (2-3),210-218.
    86. Zheng, Y.; Zhang, Q., Simultaneous measurement of gas and solid holdups in multiphase systems using ultrasonic technique. Chemical Engineering Science,2004,59, (17),3505-3514.
    87. Macchi, A.; Grace, J. R.; Bi, H., Use of ultrasound for phase holdup measurements in multiphase systems. The Canadian Journal of Chemical Engineering,2001,79, (4),570-578.
    88. Uchida, S.; Katsumata, T.; Okamura, S., Measurement of longitudinal distribution of solids holdup in a three - phase fluidized bed by ultrasonic technique. The Canadian Journal of Chemical Engineering,1989,67,(1),166-169.
    89. Ohkawa, M.; Kawata, N.; Uchida, S., Cross-sectional distributions of gas and solid holdups in slurry bubble column investigated by ultrasonic computed tomography. Chemical Engineering Science,1999,54, (21),4711-4728.
    90.任聪静;陈敏;曹翌佳;黄正梁;王靖岱;阳永荣,声发射技术在化工过程中的应用.化工进展,2011,30,(5),918-929.
    91.曹翌佳;刘伟;姜晓静;王靖岱;阳永荣,从噪声到信息——声发射技术在流程工业中的应用.化工进展,2007,26,(012),1702-1707.
    92. Allan, P.; Bellamy, L. J.; Nordon, A.; Littlejohn, D., Non-invasive monitoring of the mixing of pharmaceutical powders by broadband acoustic emission. Analyst,2010,135, (3),518-524. 93. Chen, X. M.; Chen, D. Z., Measuring average particle size for fluidized bed reactors by employing acoustic emission signals and neural networks. Chemical engineering & technology, 2008,31,(1),95-102.
    94. Wang, J. D.; Jiang, B. B.; Yang, Y. Y.; Shu, W. J., Multi-scale analysis of acoustic emissions and malfunction diagnosis in gas-solid fluidized bed. Journal of Chemical Industry and Engineering (China),2006,57, (7),1560.
    95. Hou, L. X.; Wang, J. D.; Yang, Y. Y.; Hu, X. P., Frequency analysis of acoustic emission and applicati on in gas-solid fluidized bed [J]. Journal of Chemical Industry and Engineering (China), 2005,8.
    96. Ren, C. J.; Tang, Y. Q.; Wang, J. D.; Yang, Y. R.; Cao, Y. J.; Yu, X. B., On-line estimation of coke in a circulating fluidized bed based on acoustic emission sensors and multivariate calibration. Industrial & Engineering Chemistry Research,2011,50, (14),8420-8429
    97.任聪静.多相流体系临界现象的转变和调控.博士学位论文,浙江大学,2010.
    98.徐清;曹翌佳;蒋斌波;王靖岱;阳永荣,超声波技术测量气固流化床的料位高度.浙江大学学报(工学版),2007,(8),1361-1365.
    99.董克增;任聪静;王靖岱;阳永荣,丙烯聚合卧式搅拌床反应器中持料量的检测.化工学报,2011,(6).1509-1514.
    100. Huang, J.; Ose, S.; de Silva, S.; Esbensen, K. H., Non-invasive monitoring of powder breakage during pneumatic transportation using acoustic chemometrics. Powder Technology,2003, 129,(1),130-138.
    101.曹翌佳;王靖岱;阳永荣,声波信号多尺度分解与固体颗粒质量流率的测定.化工学报2007,(6),1404-1410.
    102.魏舸裔;周业丰;廖祖维;王靖岱;阳永荣,基于声发射信号测定高速流态化中的固体颗粒质量流量.石油学报(石油加工),2011,(5),773-779.
    103.金涌,流态化工程原理.清华大学出版社:2001.
    104.徐怡.聚乙烯气固流化床静电场调控及实验研究.硕士学位论文,浙江大学,2010.
    105.陈甘棠,化学反应工程.化学工业出版社:2007.
    106. Chilekar, V. P.; Warnier, M.; Van Der Schaaf, J.; Kuster, B.; Schouten, J. C.; Van Ommen, J. R., Bubble size estimation in slurry bubble columns from pressure fluctuations. AIChE Journal, 2005,51,(7).1924-1937.
    107. Rudisuli, M.; Schildhauer, T. J.; Biollaz, S. M. A.; Wokaun, A.; Ruud Van Ommen, J., Comparison of bubble growth obtained from pressure fluctuation measurements to optical probing and literature correlations. Chemical Engineering Science,2012,74,266-275.
    108. Van der Schaaf, J.; Schouten, J. C.; Johnsson, F.; Van den Bleek, C. M., Non-intrusive determination of bubble and slug length scales in fluidized beds by decomposition of the power spectral density of pressure time series. International Journal of Multiphase Flow,2002,28, (5), 865-880.
    109. Puncochar, M.; Drahos, J., Origin of pressure fluctuations in fluidized beds. Chemical Engineering Science,2005,60,(5),1193-1197.
    110.王芳.气固流化床静电分布的理论及实验研究.博士学位论文,浙江大学,2008.
    111.侯琳熙.声波测量和流化床聚合反应器多尺度结构的研究.博士学位论文,浙江大学,2005.
    112. Lim, C. N.; Gilbertson, M. A.; Harrison, A., Bubble distribution and behaviour in bubbling fluidised beds. Chemical Engineering Science,2007,62, (1),56-69.
    113.张锴;Stefano, B.,流化床内颗粒流体两相流的CFD模拟.化工学报,2010,(09),2192-2207.
    114. Chen, X. Z.; Shi, D. P.; Gao, X.; Luo, Z. H., A fundamental CFD study of the gas-solid flow field in fluidized bed polymerization reactors. Powder Technology,2011,205, (1),276-288.
    115. Cooper, S.; Coronella, C. J., CFD simulations of particle mixing in a binary fluidized bed. Powder Technology,2005,151, (1),27-36.
    116. Hulme, I.; Clavelle, E.; van der Lee, L.; Kantzas, A., CFD modeling and validation of bubble properties for a bubbling fluidized bed. Industrial & Engineering Chemistry Research,2005,44, (12),4254-4266.
    117. Taghipour, F.; Ellis, N.; Wong, C., Experimental and computational study of gas-solid fluidized bed hydrodynamics. Chemical Engineering Science,2005,60, (24),6857-6867.
    118. Fujino, M.; Ogata, S.; Shinohara, H., The electric potential distribution profile in a naturally charged fluidized bed and its effects. Int. Chem. Eng.,1985,25, (1),149-159.
    119. Ding, J.; Gidaspow, D., A bubbling fluidization model using kinetic theory of granular flow. AIChE Journal,1990,36, (4),523-538.
    120. Gidaspow, D., Multiphase flow and fluidization:continuum and kinetic theory descriptions. Academic Press:1994.
    121. Chepurniy, N., Kinetic theories for granular flow:inelastic particles in couette flow and slightly inelastic particles in a general flowfield. J. Fluid Mech,1984,140,223-2.
    122. Darelius, A.; Rasmuson, A.; van Wachem, B.;Niklasson Bjorn, I.; Folestad, S., CFD simulation of the high shear mixing process using kinetic theory of granular flow and frictional stress models. Chemical Engineering Science,2008,63, (8),2188-2197.
    123. Boemer, A.; Qi, H.; Renz, U., Eulerian simulation of bubble formation at a jet in a two-dimensional fluidized bed. International Journal of Multiphase Flow,1997,23, (5),927-944.
    124. van Wachem, B. G. M.; Schouten, J. C.; van den Bleek, C. M.; Krishna, R.; Sinclair, J. L., Comparative analysis of CFD models of dense gas-solid systems. AIChE Journal,2001,47, 1035-1051.
    125.石惠娴.循环流化床流动特性PIV测试和数值模拟.博士学位论文,浙江大学,2003.
    126.武锦涛.移动床中固体颗粒运动与传热的研究.博士学位论文,浙江大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700