用户名: 密码: 验证码:
蛭石及其复合隔热材料的组成、结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源短缺是世界上所有国家面临的共同难题,解决能源短缺最有效的途径是节能,而节能的主要措施之一就是发展和应用隔热材料。膨胀蛭石不但本身具有较低的导热系数和体积密度,而且其颗粒表面的鳞片结构还具有反射热辐射的能力,是一种有潜在应用价值的高温隔热材料。
     本文采用蛭石与镁橄榄石复合制备出了复合隔热材料,利用灰色关联分析法,对膨胀蛭石-镁橄榄石复合材料的制备工艺进行了优化。优化后工艺制备的膨胀蛭石-镁橄榄石复合材料抗折强度为9.33MPa,耐压强度为15.74MPa,200oC时,热导率在0.19W/m·K左右,300oC时约为0.22W/m·K,600oC时约为0.26W/m·K。
     基于离子极化理论和结合系统的固化反应机理,分析了膨胀蛭石复合材料强度的影响因素,考察了磷酸二氢铝的浓度及用量、促凝剂镁砂的种类和MgO/P2O5摩尔比对复合材料的显气孔率、体积密度和力学性能的影响。为进一步提高复合材料的高温隔热性能,以热传导的基本原理和协同作用原理为基础,选取了合适的外加剂提高复合材料的隔热性能。K2Ti6O13晶须的添加量为2wt%,二氧化钛添加量为2wt%,添加8wt%BiOCl的膨胀蛭石-镁橄榄石复合材料具有最优的隔热性能。300oC时热导率为0.117W/m·K,600oC时热导率为0.169W/m·K,800oC时热导率为0.184W/m·K,1000oC时热导率为0.190W/m·K。
     采用原位凝胶法对膨胀蛭石进行了改性,将膨胀蛭石微米级孔隙转化为网状结构的纳米级孔隙,有效改善了复合材料的微观结构,增强了膨胀蛭石复合材料的力学性能和隔热性能,并研究了改性膨胀蛭石的微观结构的影响因素。原位凝胶改性的膨胀蛭石的制备工艺为:n(环氧丙烷):n(A1):n(甲酰胺)):n(乙醇)=5.5:1:0.8:30,非临界干燥。制备的铝凝胶原位改性的膨胀蛭石的结构孔隙中,构成铝凝胶的骨架由近似球状的氧化铝颗粒相互聚结而成,颗粒粒度比较均匀,平均粒径约为40nm,颗粒间形成的孔径约为45nm,孔径分布较均匀。经900oC和1000oC煅烧后4h仍能保持较好的多孔网络结构,没有出现明显的团聚或孔结构塌陷的现象。
     改性的膨胀蛭石重量百分比越高,膨胀蛭石-镁橄榄石复合材料的热导系数越低,高温隔热性能越好。当改性膨胀蛭石占蛭石总量百分比为50%时,复合材料的热导率最低,在300oC,其热导系数为0.13W/m·K,600oC时为0.157W/M·K,800oC时为0.169W/m·K,900oC时为0.168W/m·K。与未改性的膨胀蛭石复合材料相比,改性的膨胀蛭石复合材料的热导率在300oC降低了约20-30%,600oC下降了30-40%,800oC和900oC约35-45%。
     为拓展蛭石的应用领域,增加其附加价值,采用离子交换法对蛭石进行无机改性,将聚羟基铝离子插入到蛭石层间,利用煅烧后插层离子在层间留下的微孔和氧化物柱子,进一步改善蛭石的微观结构,并对蛭石柱化的影响因素和离子交换反应的动力学做了基础理论研究。XRD分析表明柱化插层后Al-柱化蛭石001晶面的层间距为18.42,煅烧后的Al-柱化蛭石的层间距为17.26,通过聚羟基铝的插层,蛭石获得了永久的8.82的层间自由空间。采用TEM,TG-DSC,XRD,FT-IR和N-吸附脱附等方法对柱化前后的蛭石微观结构进行了表征,与蛭石原矿相比,经过聚羟基铝离子柱化的蛭石在热稳定性和层间微观结构都有所改善。蛭石与keggin-Al7+13离子的离子交换反应中,粒内扩散步骤为反应的速控步骤,其反应的表观活化能为26.79kJ/mol,动力学方程可表示为:(?)
Energy shortage is an important problem faced by all countries in the world, and the mosteffective way to solve the energy shortage is energy saving. The most effective way to save energyis development and application of insulation materials. Expanded vermiculite itself has low thermalconductivity and bulk density, moreover, the scale structure of its granule surface has the ability toreflect thermal radiation. It is a potential insulation refractory material with high application value.
     In this work, the insulation material was prepared from expanded vermiculite and forsterite.Based on analysis of grey relational degree, the preparation process of expandedvermiculite-forsterite composites was optimized. Prepared by the optimized preparation process, theinsulation material can endure rupture strength of9.33MPa and compression strength of15.74MPa.At the temperature of200oC, its thermal conductivity is about0.19W/m·K, at300oC, about0.22W/m·K,at600oC, about0.26W/m·K.
     Based on the polarization theory and curing mechanism of bond system, the bond system ofcomposites was optimized, and the relationship between the properties of composites and manyfactors were studied, such as the concentration and dosage of aluminum dihydrogen phosphate, thetypes of magnesia and MgO/P2O5molar ratio. Based on the synergistic effect theory, we try toimprove the thermal insulation propertiy of composites by way of selecting appropriate admixtureto improve the intensity and thermal insulation of composites material. The addictive amount ofK2Ti6O13whisker is2wt%, Titanium dioxide2wt%, BiOCl8wt%, which can produce the bestheat-resistance of expanded vermiculite and forsterite composites material. At the temperature of300oC, its thermal conductivity is0.117W/m·K, at600oC0.169W/m·K, at800oC0.184W/m·K, at1000oC0.190W/m·K.
     In order to improve the microstructure of composites material, furthermore to enhance themechanical and thermal insulation properties of composites, we adopted method of gel in situ tomodify expanded vermiculite and research the conditions for preparation process of modifiedexpanded vermiculite. Through modification of gel-in situ, the pore structure of expandedvermiculite varied from micrometers to nanometer. So the microstructure of composites can beimproved, and the mechanical strength and thermal insulation properties of composites increase. Theoptimized preparation process of gel in situ modification is: n(epoxy propane):n(A1):n(methanamide)):n(alcohol)=5.5:1:0.8:30, ambient drying. As is shown in SEM of expanded vermiculite after being optimizedby aluminum gel in situ, the framework of aluminum gel in situ is made up of sphere-like Al2O3particles, the particle size is fairly regular, the mean particle diameter is40nm, the pore size amongparticles is45nm, and the distribution of pore size is fairly regular. After being calcined under the temperature of900oC and1000oC for4hours, it can be still kept in good multi-porous network,without any distinct signs of conglobation or porous structure collapse.
     By means of in-situ modification to expanded vermiculite, thermal conductivity of compositesmaterial has been remarkably reduced. The higher proportion the modified expanded vermiculitetakes up in total weight of vermiculite, the lower the thermal conductivity of composites material is,and the better the thermal insulation. When modified expanded vermiculite takes up50wt%of totalamount of vermiculite, the thermal conductivity of composites material is the lowest. At thetemperature of300oC, its coefficient of thermal conductivity is0.13W/m·K, at600oC0.157W/m·K,at800oC0.169W/m·K, at900oC0.168W/m·K. Compared with non-modified expanded vermiculitecomposites material, the modified expanded vermiculite composites material can reduce thermalconductivity by20-30%at300oC,30-40%at600oC,35-45%at800oC or900oC.
     In order to expand the application of vermiculite and increase its added value, we adopted ionexchange method to modify vermiculite by inorganic salt, insert polynuclear Al into the layers ofvermiculite, and take advantage of the micro holes and oxidized pillars in inter-layers of inserting ionsafter calcination. In order to furthermore improve microstructure of vermiculite, we also discuss thepreparation process of pillared vermiculite, and research the dynamics of ion exchange reaction. Theanalysis of XRD indicates that after being pillared, the interlayer spacing of A1pillared vermiculitecrystal face is18.42, the interlayer spacing of calcinated Al pillared vermiculite is17.26.Through inserting layer of polynuclear Al, vermiculite gains perpetual8.82interlayer free space.From the characterization of vermiculite microstructures before and after pillarization by means ofTEM, TG-DSC, XRD, FT-IR and nitrogen sorption isotherms, we find out that polynuclear Alpillared vermiculite is much better than raw vermiculite in thermal stability and interlayermicrostructure. During the ion exchange of vermiculite and keggin-Al7+13, intra-particle diffusionprocess is controlling step, the apparent activation energy of its reaction is26.79kJ/mol, and itskinetic equation can be denoted as follows:(?)
引文
[1]徐维忠.耐火材料[M].北京:冶金工业出版社,1992(5),130-211.
    [2]邹宁宇,鹿成滨,张德信.绝热材料应用技术[M].北京:中国石化出版社,2005.
    [3]李晨旭.镁橄榄石-蛭石复合材料的制备研究[D].武汉科技大学,2010.
    [4]林育炼,刘盛秋.耐火材料与能源[M].北京:冶金工业出版社,1993,58-61.
    [5]肖泽辉.磷酸盐自硬砂的研究[J].铸造技术,1997(6),38-41.
    [6]徐国平,魏国钊.耐火材料新工艺技术[M].北京:冶金工业出版社,2005.
    [7]谢文丁.绝热材料与绝热工程[M].北京:国防工业出版社,2006,(1),6-20.
    [8]张强,郑永建等.常温用无公害隔热材料--真空粉末隔热技术.西安建筑科技大学学报,1997,3(29),326-330.
    [9] Η.Μ.JΙЁΡИКИΗА.国外耐火材料,1988(6),29-31.
    [10]H.Cid-Dresdner, M. J. Buerger. The crystal structure of potassium hexatitanate K2Ti6O13. Z FurKristallographie,1962,(117),411-430.
    [11] S. J. Lukasiewicz, J. S. Reed, Phase development on reacting phosphoric acid with variousBayer-process aluminas[J]. Am. Ceram. Soc. Bull,1987,66(7),1134-1138.
    [12]J. Saggio-Woyanski, C.Scott. Processing of porous ceamics.America Ceramic Society Bulletin,1992(71),1674-1682.
    [13]黄志雄,周祖福,梅启林.论大型海洋船舶隔热材料的发展与应用[J].武汉交通科技大学学报.1998,22(3),314-317.
    [14]刘慎中,赵新乐,韩玉梅.柴油机排气管隔热技术现状[J].柴油机设计与制造,2000(3),35-38.
    [15]张娜.低热导率硅酸铝纤维复合隔热材料研究[D],山东大学,2006.
    [16]柳晓春.保温隔热材料发展及建筑应用[J].福建建材,1997(2),18-21.
    [17]何继敏.聚丙烯发泡材料的应用现状.工程塑料应用,2002,30(6),54-57.
    [18]许秀莲,徐志峰.从锡电解阳极泥中综合回收Pb、Bi的研究[J].有色冶炼,2001(6),15-17.
    [19]苏勇,何顺荣,陈建明等.微孔硅酸钙憎水性研究.化工矿物与加工,2002(2),7-8.
    [20]С.ΙΟ.ΙΟpомвз.轻质粘土粘土隔热砖的研制[J].国外耐火材料,1990(5),26-29.
    [21]Yoldas B E. A transparent Porous alumina[J]. Ceramic Bulletin,1975,54(3),86-88.
    [22] Gradeer G S, Rifkin Y, Cohen Y, etc. Preparation of alumina aerogels films by lowtemperature CO2supercritical drying process [J]. J Sol-Gel Sci Tech,1997(8),825-829.
    [23]孙杰璟.不定形耐火材料中结合剂的性能及应用[J].山东冶金,1997,19(2),39-42.
    [24]N. N. Grishin, O. A. Belogurova. A thermostable forsterite refractory developed on a model ofheat conduction and thermal failure of the refractory lining. Refractories and Industrial Ceramics.2006,47(3),168-170.
    [25]钱之荣,范之举.耐火材料实用手册[M],北京:冶金工业出版社,1993.
    [26]刘国杰.纳米材料改型涂料[M].北京:化学工业出版社,2008.
    [27] S.J. Lukasiewicz, J.S. Reed. Phase development on reacting phosphoric acid with variousBayer-process aluminas [J]. Am. Ceram, Soc, Bull.1987,66(7),1134-1138.
    [28]任国斌,伊汝珊,张海川等. Al2O3-SiO2系耐火材料[M].北京:冶金工业出版社,1986.
    [29] С. ΙΟ. ΙΟpомвз.轻质粘土粘土隔热砖的研制[J].国外耐火材料,1990,5(5),26-29.
    [30]王维邦.耐火材料工艺学[M].北京:冶金工业出版社,2004.
    [31]李楠,顾华志,赵惠忠.耐火材料学[M].北京:冶金工业出版社,2010,北京.
    [32]冯小明,张崇才.复合材料[M].重庆:重庆大学出版社,2007.
    [33]蔡子明.硅酸钙制品的性能及应用[J].保温材料与节能技术.1996(4),25-30.
    [34] M. T. Tsai. Effects of hydrolysis processing on the character of forsterite gel fibers. Part II:crystallites and microstructural evolutions [J]. Journal of the European Ceramic Society.2002(22),1085-1094.
    [35]谢文丁.绝热材料与绝热工程[M].北京:国防工业出版社,2006,6-20.
    [36]刘小杰,黄婉霞,张月等.珠光颜料的最新研究进展[J].材料导报:纳米与新材料专辑,2008(2),280-282.
    [37]唐冠中,许秀莲,杨新生.从低品位硫化铋矿中生产氯氧化铋的新方法[J].有色金属(冶炼部分),1994(4),16-18.
    [38] Lux, Ardunni-Schu Ster M C, Kuln J, et.al. Thermal conductivity of monolithic organicaerogels[J]. Sci,1992,5047(225),971-972.
    [39] W.Schule.E.Schlegel.国外耐火材料,1991(3).
    [40]丁子上.硅酸盐物理化学[M].北京:中国建筑出版社,1980.
    [41]韩恩山,武昭华,陈宗祺等.均分散氯氧化铋胶体粒子的制备[J].物理化学学报,1993,9(1),94-97.
    [42] Ranjit K. T, Willner I, Bossmann S. H. Lanthanide oxide-doped titanium dioxidephotocatalysts: Novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid[J]. Environ Sci Tedanol,2001(35),1544-1549.
    [43]罗森诺.传热学基础手册[M].北京:科学出版社,1992.
    [44]洪彬,陈建华,冯春霞等.新型太阳热反射隔热涂料的研制[J].太阳能学报,2008,29(12),1522-1527.
    [45]N. N. Grishin and O. A. Belogurova. Athermostable forsterite refractory d eveloped on a modelof heat conduction and thermal failure of the refractory lining [J]. Refractories and IndustrialCeramics.2006,47(3),168-170.
    [46]夏淑琴,唐竹兴,陈达谦.无机复合材料外包排气管套的研制.现代陶瓷技术,1997(1),22-25.
    [47]吕兆华.泡沫型多孔介质等效导热系数的计算[J].南京理工大学学报,2001,25(3),257-261.
    [48]田立楠.纯气体和混合气体及液体导热系数的计算[J].氮肥设计.1996,34(4),19-22.
    [49] DMC MacEwan. Cardenite, a Trioctahedral Montmorillonoid Derived from Biotite [J]. ClayMinerals,1954(2),120-125.
    [50] Schulze DG. An introduction to soil mineralogy. In: Dixon JB, Weed SB Minerals in soilenvironments [M]. Soil Science Society of America,1989,1-34.
    [51]孙金梅.蛭石的层电荷及其层间化学反应特性研究[D].西南科技大学,2008.
    [52]刘福生,彭同江.金云母—蛭石间层矿物分晶层晶体化学式的计算及意义[J].岩石学报,2002,18(2),238-246.
    [53]杨越.从国内外专利看我国蛭石开发利用与世界的差距[J].矿产保护与利用,1997(5),48-50.
    [54]王超,刘文彬,刘济江等.磷酸盐基耐高温胶黏剂的研制[J].化学与黏合,2007,29(2),90-91.
    [55] B. d’Espinose de la Caillerie, J.J. Fripiat. Dealumination and aluminum intercalation ofvermiculite. Clays Clay Miner,1991(39),270–280.
    [56]刘玉芹,吕宪俊,邱俊.几种蒙脱石层电荷密度的测试方法原理及对比[J].中国科技论文在线,2008,3(4),288-292.
    [57] Bailey S W. Summary of the recommendation of AIPEA nomenclature committee [J]. Clayand caly minerals,1980(28),73-78.
    [58] Laird D A, Fenton T E, Scott A D. Layer charge of smectites in Argialboll-argiaquollsequence[J]. Soil Science Society of America Journal.1988(52),463-467.
    [59]Chen C, Turner F T, Dixon J B. Ammonium fixation by high-charge smectite in selected TexasGulf Coast soils [J]. Soil Science Society of America Journal,1989(53),1035-1040.
    [60] L. J. Michot, D. Tracas, B.S. Lartiges, etc. Partial pillaring of vermiculite by aluminumpolycations [J]. Clay Miner.1994(29),133-136.
    [61] A. Camposa, B. Gageab, S. Morenoa, etc. Decane hydroconversion with Al-Zr, Al-Hf,Al-Ce-pillared vermiculites [J]. Applied Catalysis A: General,2008(345),112-118.
    [62]潘兆橹,万朴.应用矿物学[M].武汉:武汉工业大学出版社,1993.
    [63]彭同江,刘福生, John Huan.含蛭石晶层间层矿物的可交换性阳离子及交换容量研究[J].岩石矿物学杂志.2003,22(4),391-396.
    [64] H. Suquet, S. Chevalieretal, Preparation of porous materials by chemical activation from Lianovermiculite [J]. Clay Minerals.1991,(26),49-60.
    [65] Mohamed Kehal, Larurence Reinert, Laurent Duclaux. Characterization and boron adsorptioncapacity of vermiculite modified by thermal shock or H2O2reaction and/or sonication [J], AppliedClay Science,2010(48),561-568.
    [66] Morgado E, Yiu J R, Lam L, etc. Formation of peptizable boehmites by hydrolysis ofaluminum nitrate in aqueous solution. J Colloid Interface Sci,1997(188),257-269.
    [67] F.Figueras. Pillared clay as catalysts [J]. Catal. Rev. Sci. Eng,1988,30(3),457-499.
    [68] Cool P, Vansant E F. Pillared clays: Preparation, characterization and applications[J].Molecular Sieves,1998(1),265-288.
    [69] Kloprogge J T. Synthesis of smectites and porous pillared clay catalysts: a review [J]. Journalof Porous Materials,1998(5),5-41.
    [70] D. Panias, P. Asimidis, I. Paspaliaris. Solubility of boehmite in concentrated sodium hydroxidesolutions: model development and assessment [J]. Hydrometallurgy,2001(59),15-29.
    [71] Brindley G W, Sempels R E1Preparation and properties of some hydroxyl aluminiumbeidellites[J]. Clay Minerals,1977(12),229-237.
    [72]Lahav N, Shani U, Shabtai J. Synthesis and properties of hydroxyl aluminum montmorillonite[J]. Clays and Clay Minerals,1978(26),107-115.
    [73]Kloprogge J T. Synthesis of smectites and porous pillared clay catalysts: a review[J]. Journalof Porous Materials,1998(5),5-41.
    [74] Vaughan D EW. Pillared clays-a historical perspective [J]. Catalyst is Today,1988(2),187-198.
    [75] Vicente M A, Munoz M A, Gil A. On the structural changes of a saponite intercalated withvarious polycations upon thermal treatments [J]. Applied Catalysis A: General,2000(217),191-204.
    [76] Perathoner S, Vaccari A. Catalysts based on pillared interlayered clays for the selectivecatalytic reduction of NO[J]. Clay Minerals,1997(32),123-134.
    [77] Ernst Booij, Kloprogge J T, Rob Van Veen J A. Preparation, structural characteristics andcatalytic properties of large-pore rare earth element (Ce, La)/Al-pilared smectites [J]. Clays andClay Minerals,1996,44(6),774-782.
    [78]Kloprogge J T, Booy E, Jansen J B H, etc. The effect of thermal treatment on the properties ofhydroxyl Al and hydroxyl Ga pillared montmorillonite and beidellite [J]. Clay Minerals,1994(29),153-167.
    [79] Carrado KA, Kostapapas A, Suib SL. Physical and chemical stabilities of pillared clayscontaining transition metal ions[J]. Solid State Ionics.1986(22),117-125.
    [80] Moreno S, Sun Kou R, Molina R etc. Al-, Al, Zr-, and Zr-pillared montmorillonites andSaponites: preparation, characterization, and catalytic activity in heptane hydroconversion[J].Journal of Catalysis,1999(182),174-185.
    [81] Johnson I J, Werpy T A, Pinnavaia TJ. Tubular silicate layered silicate intercalationcompounds: A new family of pillared clays [J]. J. Amer. Chem. Soc.1988(110),8545-8547.
    [82]刘灵燕,肖金凯,张澄博等.柱化剂研究进展[J].矿物岩石地球化学通报.2002,21(4),247-252.
    [83]A.Czímerová, J. Bujdák, R. Dohrmann. Traditional and novel methods for estimating the layercharge of smectites [J]. Applied Clay Science,2006(34),2-13
    [84] C. Brosset. On the reaction of the aluminum ion with water [J]. Acta Chem. Scand.1952(6),910-915.
    [85] G. Biedermann, L.G. Sillén. Studies on the hydrolysis of metal ions. Acta Chem. Scand,1954(8),299-303.
    [86] Mü erref nal. Swelling and cation exchange capacity relationship for the samples obtainedfrom a bentonite by acid activations and heat treatments [J]. Applied Clay Science,2007(37),74-80.
    [87] Tjiong S C, Meng Y Z. Preparation and characterization of melt-compoundedpolytthlene/cermiculete nanocomposites [J]. Journal of Polymer Science, Part B: Polymer Physics,2003,41(13),1476-1484.
    [88]F. Figueras. Pillared clays as catalysts [J]. Catal. Rev. Sci. Eng.1988(30),457-499.
    [89]Del F J Rey-Perez-Caballero, Poncelet G. Micrpporous18AAl-pilled vermiculites: Preparationand characterization[J]. Microporous and Mesoporous Materials,2000,37(3),313-327.
    [90] Dobinson B,HofmannW Stark B P. The Determination of Epoxides[M]. Permann: Oxford,1969.
    [91] R. J. Stol, A. K. van Helden, P. L. Bruyn [J]. Colloid Interface Sci.1976(57),115-119.
    [92]F. Figueras. Pillared clays as catalysts [J]. Catal. Rev. Sci. Eng.1988(30),457-499.
    [93] Bi S, Wang C, Cao Q, Zhang C. Studies on the mechanism of hydrolysis and polymerizationof aluminum salts in aqueous solution:Correlations between the “Core-links” model and“Cage-like” Keggin-All3model[J]. Coordination Chemistry Reviews,2004(248),441-455.
    [94] J.-F. Lambert, G. Poncelet. Acidity in pillared clays:Origin and catalytic manifestations [J].Topics Catal.1997(4),43-56.
    [95] E. Gauthier, I. Fortier, F. Courchesne, etc. Aluminum forms in drinking water and risk ofAlzheimer’s disease [J]. Environ. Res. Sect. A.2000(84),234-246.
    [96] Dobinson B, HofmannW Stark B P. The Determination of Epoxides[M]. Permann: Oxford,1969.
    [97]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社.2008.
    [98]北京大学化学系,无机粘结剂原理的研究,笫一机械工业部技术情报室单行材料(1988).
    [99]钟克煌.氧化铜无机粘接剂[J].技术通讯,1978(1),1-25.
    [100]姜文勇,张辉,周军林等.型砂用磷酸盐粘结剂[J].黑龙江冶金,1998(1),14-16.
    [101]C. Brosset, Acta Chem. Scand.1952(6),910.
    [102]R.J. Stol, A. K. van Helden, P. L. Bruyn, J. Colloid Interface Sci.1976(57),115-121.
    [103]Dobinson B, HofmannW Stark B P. The Determination of Epoxides[M].Permann: Oxford,1969.
    [104]甘礼华.气凝胶的制备方法、结构和品质的优化[D],同济大学.2005.
    [105] Laird D A, Fenton T E, Scott A D. Layer charge of smectites in Argialboll-argiaquollsequence[J]. Soil Science Society of America Journal, l988(52),463-467.
    [106] Chen C, Turner F T, Dixon J B. Ammonium fixation by high-charge smectite in selectedTexas Gulf Coast soils[J]. Soil Science Society of America Journal,1989(53),1035-1040.
    [107]刘玉芹,吕宪俊,邱俊.几种蒙脱石层电荷密度的测试方法原理及对比[J].中国科技论文在线.2008,3(4),288-292.
    [108] B.G. Johansson, L. Rymo. Separation of Proteins by Thin-Layer Gel filtration [J]. Acta Chem.Scand,1964(18),217-223.
    [109] J.T. Kloprogge, W.J.J.Welters, E. Booy. Catalytic activity of nickel sulfide catalysts supportedon Al-pillared montmorillonite for thiophene hydrodesulfurization [J]. Applied Catalysis A,1993,(97),77-85.
    [110]J.W. Akitt, N.N. Greenwood, B.L. Khandelwal, et.27Al nuclear magnetic resonance studiesof the hydrolysis and polymerization of the hexa-apuo-aluminum(Ⅲ) cation [J]. J.Chem,1972,604-610.
    [111] J.T.Kloprogge, D.Seykens, J.w. Geus,et,al., Temperature influence on the Al13complex inpartially neutralized aluminum solutions: a Al27nuclear magnetic resonance study [J]. Journal ofNon-Crystalline Solids,1992(142),87-93.
    [112] P.M. Bertsch, R.I. Barnhisel, G.W. Thomas,W.J. et, al., Quantitative determination ofAlminum-27by High-resolution nuclear Magnetic Resonance Spectrometry [J]. Anal. Chem,1986(58),2583-2587.
    [113] D.R. Parker, P.M. Identification and quantification of the “Al13” tridecameric AluminumPolycation using Ferron [J]. Environ. Sci.Technol, Bertsch,1992(26),908-913.
    [114] F. del Rey-Perez-Caballero, M.L. Sanchez-Henao, G. Poncelet, P247,12th InternationalCongress on Catalysis, Granada, Spain,2000. Studies in Surface Science and Catalysis,2000(130),2417-2422.
    [115] J. Guan, E. Min, Z. Yu, in: M.J. Phillips, M. Ternan (Eds.), Proceedings of9th InternationalCongress on Catalysis Chem. Inst. of Canada, Ottawa,1988,104-111.
    [116]翁诗甫.傅里叶变换红外光谱分析[M].北京:化学工业出版社,2010.
    [117]杨雅秀等.中国粘土矿物[M].北京:地质出版社,1994.
    [118]严继民,张启元.吸附与凝聚-固体的表面与孔[M].北京:科学出版社,1979.
    [119] S. J. Gregg, K. S. W. Sing. Adsorption Surface Area and Porosity [M]. Academic Press, Chap.IV. London and New York,1967.
    [120] Da Fonseca, Maria G, etc. Self-organized inorganic-organic hyrids induced by silylatingagents with phyllosilicate-like structure and the influence of the adsorption of cations [J]. Journal ofColloid and Interface Science,2005(285),50-55.
    [121] Sawhney B L. Selective Sorption and Fixation of Cations by Clay Minerals: a Review [J].Clays and Clay Mineral,1972(20),93-100.
    [122] Ogwada R A, Sparks D L. Kinetics of ion exchange on clay minerals and soil:1. Evaluation ofmethods [J]. Soil Sci Soc Am J,1986(50),1158-1166.
    [123]蒋汉瀛.湿法冶金过程物理化学[M].北京:冶金工业出版社,1984.
    [124]姜志新等.离子交换分离工程[M].天津:天津大学出版社,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700