用户名: 密码: 验证码:
高导热炭材料的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炭材料(如炭纤维、C/C复合材料、石墨材料等)具有低密度、低热膨胀系数、优异的机械性能和较高的热导率等优点,是近年来热管理领域里最具发展前景的一类导热材料。但是炭材料内部石墨晶体的特殊性(各向异性)和多样性(微晶尺寸及其取向不同)决定了其导热性能大相径庭,从一般石墨材料的70~150W/m.K到气相生长炭纤维轴向的1950W/m.K不等。因此控制炭材料内部石墨微晶尺寸、取向及其连续性是提高其特定方向室温热导率的关键。本论文以萘系中间相沥青为原料,通过熔融纺丝制备了毫米宽度的带状沥青纤维,经预氧化、炭化和石墨化处理得到石墨层片高度取向的高导热带状石墨纤维。选择氧化稳定化并低温热处理后的带状纤维与中间相沥青粘结剂进行复合再中温(500oC)热压制备一维带状纤维/C复合材料,此材料经后续炭化和石墨化处理得到石墨层片沿带状纤维长度方向高度择优取向的一维高导热C/C复合材料。同时利用中间相沥青为粘结剂和廉价易得的高结晶度天然鳞片石墨为骨料,采用相同的成型和热处理工艺制备了高定向高导热石墨材料。研究工作取得的主要结论如下:
     1、中间相沥青基带状纤维的制备、表征及其性能测试
     (1)以中间相沥青为原料,采用熔融纺丝工艺制备出表面光洁平整、宽度(0.3~1.5mm)和厚度(15~30μm)可控的带状沥青纤维。带状沥青纤维经220~260oC氧化稳定化“固定”住了带状纤维的形貌和结构,在随后高温炭化和石墨化过程中带状纤维内部石墨微晶生长发育,其微晶尺寸逐渐变大,微晶三维有序堆积结构逐步完善,石墨层片沿带状纤维主平面高度取向。而且带状纤维在高温热处理过程中保持其带状形态,不发生变形(劈裂、褶皱和卷曲),有效克服了径向辐射状圆形纤维的易劈裂难题。
     (2)热处理温度对带状纤维的抗氧化性能和力学性能有显著影响,热处理温度越高,带状纤维的结晶度和石墨化度越高,其抗氧化性能越好。2800~3000oC石墨化带状纤维的抗氧性能明显优于K-1100石墨纤维。1.5mm宽带状纤维低温(400~700oC)热处理后的力学性能较低,经过1000oC炭化处理后其力学性能明显提高,拉伸强度和弹性模量分别达到了876MPa和109GPa,经3000oC石墨化处理后带状纤维的拉伸强度和弹性模量进一步提高至2.53GPa和421GPa。
     (3)随着热处理温度的提高,带状纤维的轴向导电性能不断提高。1.5mm宽带状纤维经3000~3200oC石墨化后其室温轴向电阻率仅为1.05~1.08μ.m,比K-1100石墨纤维的室温轴向电阻率(1.17μ.m)低。根据中间相沥青基炭纤维的导电导热关联式计算得到1.5mm宽带状纤维的室温轴向热导率可达1100~1200W/m.K。
     2、一维高导热带状纤维/C复合材料的制备、表征及其性能测试
     (1)以单向铺排带状纤维为基体材料,在其表面均匀涂覆适量的中间相沥青粘结剂,经500oC一次热压成型再高温炭化、石墨化处理,可以制备较高体积密度的一维带状纤维/C复合材料。随着热处理温度的不断提高,复合材料的体积密度逐渐增加。500oC热压成型样品的体积密度约为1.2~1.3g/cm~3,1000oC炭化处理后其体积显著收缩,密度增至1.7~1.8g/cm~3,3000oC石墨化后材料的体积密度达到了1.85~1.90g/cm~3。
     (2)XRD、PLM和SEM测试分析表明,1.5mm宽带状纤维/C复合材料具有明显的结构各向异性,带状纤维在复合材料中单向有序排布,其主平面沿热压方向有序堆积,内部石墨层片沿带状纤维长度方向高度择优取向。电阻率和热扩散系数测试表明,该复合材料具有显著的电学和热学各向异性,沿带状纤维长度方向具有优异的导电和导热性能。3000oC石墨化复合材料沿带状纤维长度方向和带状纤维主平面堆积方向的室温电阻率分别为1.5μ.m和22.2μ.m,其相应热导率为862W/m.K和11W/m.K。热处理温度对复合材料沿带状纤维长度方向的室温热扩散系数和热导率有重要影响,热处理温度越高,其热传导性能越好。复合材料沿带状纤维长度方向的室温热导率与其热处理温度和体积密度之间有着良好的线性关联,其相关系数(0.98和0.95)较高。
     (3)带状纤维的宽度和纤维的截面形态对复合材料的体积密度、室温热扩散系数和热导率有重要影响。0.5mm和0.3mm窄带状纤维/C复合材料的体积密度较高(1.88~1.91g/cm~3),沿带状纤维长度方向的室温热扩散系数和热导率分别为570~580mm~2/s和820~830W/m.K;圆形纤维/C复合材料的体积密度较低(1.70g/cm~3),沿纤维长度方向的室温热扩散系数和热导率分别为554mm~2/s和707W/m.K。虽然1.5mm宽带状纤维/C复合材料的体积密度(1.86g/cm~3)稍低,但是沿带状纤维长度方向的热扩散系数(618mm~2/s)明显较高,因此相应热导率(862W/m.K)也较高。
     3、天然鳞片石墨基高导热石墨材料的制备、表征及其性能测试
     (1)以天然鳞片石墨和中间相沥青分别为骨料和粘结剂,采用500oC一次热压成型再高温热处理可以制备较高体积密度的石墨块。鳞片石墨粒径、中间相沥青粘结剂用量、热压压力和热处理温度等对石墨块的体积密度有一定的影响,86wt.%天然鳞片石墨(+32目)和14wt.%中间相沥青混合料经10MPa压强热模压成型的炭块经2800oC石墨化后其体积密度达到1.91g/m3以上。
     (2)XRD、PLM和SEM测试分析表明,制备的石墨块具有明显的结构各向异性,天然鳞片石墨主平面沿热压方向高度有序堆积排列。除体积密度和比热容外,石墨块其它物理性能(如力学性能、导电性能、导热性能)具有明显的各向异性,在垂直和平行热压方向存在较大差异。
     (3)石墨块沿垂直热压方向的室温电阻率受天然鳞片石墨粒径、中间相沥青粘结剂用量和热处理温度的影响较大。2800oC石墨化后的石墨块沿垂直热压方向具有优异的导电和导热性能,其室温电阻率和热导率分别达到了1.45μ.m和622W/m.K,而在平行热压方向的室温电阻率和热导率分别为8.35μ.m和25W/m.K。该石墨块在垂直热压方向的耐压强度(11.3MPa)和抗弯强度(7.7MPa)较低。
     (4)除热处理温度、中间相沥青粘结剂的用量和晶体取向对石墨块的热导率有非常明显的影响以外,其它因素(如测试环境温度、天然鳞片石墨的粒度、不同的沥青粘结剂、热压成型温度、掺杂处理等)也会影响石墨材料的热导率。
     4、高导热炭材料的导热导电性能关联及其导热机理初步探讨
     (1)带状炭(石墨)纤维及其一维C/C复合材料的室温轴向热导率与其轴向电阻率、石墨化度和石墨微晶参数(d002、Lc、La)密切关联,其相关系数都较高(≥0.91)。石墨块沿垂直热压方向的室温热导率与此方向的电阻率关联度不大,但是和沥青粘结剂衍生石墨的微晶参数(Lc、La)有一定关联,其相关系数(0.46和0.64)较低。
     (2)由带状纤维室温轴向热导率和电阻率的关联式可知:3000oC石墨化带状纤维的室温轴向热导率达到了1084~1174W/m.K。利用一维C/C复合材料的热导率混合计算公式反推3000oC石墨化带状纤维的室温轴向热导率可达到1136W/m.K,这表明利用带状纤维轴向电阻率来计算其轴向热导率是有效可行的。采用这两种方法预测C/C复合材料沿带状纤维长度方向的室温热导率有望达到890~920W/m.K。
     (3)3种高导热炭材料(带状纤维、C/C复合材料、石墨材料)的导热机理分析表明:炭材料热传导性能受样品热处理温度、石墨化度、微晶参数和晶体取向的影响较大。炭材料内部石墨微晶的尺寸大小是决定其导热性能高低的主要内在因素之一,其沿垂直热压方向的室温热导率与石墨微晶平面大小La成正比。
Owing to their low density, low thermal expansion coefficient, excellent mechanical propertiesand high thermal conductivity, carbon materials (such as carbon fibers, C/C composites, graphitematerials, etc.) become the most promising materials in thermal management field in recentyears. However, the particularity (anisotropy) and diversity (differentia of micro-crystallite sizeand graphitic crystal orientation) of carbon materials lead to their room-temperature thermalconductivities varying widely from70~150W/m.K (general graphite materials) to1950W/m.K(vapor grown carbon fibers). Therefore, the control of the size, orientation and continuity ofgraphite crystals in carbon materials is very important for enhancing the room-temperaturethermal conductivity along a specific direction. In this thesis, ribbon-shaped pitch fibers withwidth in milimeter-scale were prepared by a melt-spinning method using a naphthalene-basedmesophase pitch as a raw material, and highly oriented ribbon-shaped graphite fibers with highthermal conductivity were otained through pre-oxidation, carbonization and graphitization.One-dimensional C/C composites were prepared by a hot-pressing method at about500oC usingthe unidirectional stacked ribbon-shaped fibers (after stabilization and low temperature treatment)as matrix and mesophase pitch as binder. The C/C composites with high thermal conductivitywere obtained by subsequent carbonization and graphitization treatment, in which carbon layersof the ribbon-shaped graphite fibers show highly preferred orientation parallel to the longitudinaldirection of the ribbon fibers. Graphite materials with natural graphite flake with highlypreferred orientation perpendicular to the hot-pressing direction were also prepared by a similarhot-pressing and heat treatment process using mesophase pitch and natural flake graphite withhigh crystallinity as raw materials. The main conclusions of the work were obatined as follows:
     1. Preparation, characterization and property measurements of mesophase pitch-based ribbonfibers
     (1) Using mesophase pitch as a raw material, ribbon-shaped pitch fibers with a flat and smoothsurface and controllable width (0.3~1.5mm) and thickness (15~30μm) were prepared by amelt-spinning method. The morphology and structure of the ribbon-shaped pitch fibers werefixed through oxidation stabilization at220~260oC for a certain time. During the followingcarbonization and graphitization treatment, the internal graphitic crystals of ribbon fibersgradually grows and develops, the crystal size gradually becomes larger, and as a result athree-dimensional ordered stacking structure of micro-crystals becomes complete. Thegraphitic layers possess a higher degree of orientation parallel to the main plane of ribbonfibers. Ribbon-shaped fibers keep their ribbon shape and do not deform (split, fold or crimp)during the whole high-temperature carbonization and graphitization process. It can overcomethe problem of easy splitting of round-shaped carbon fibers with a radial texture after hightemperature heat treatment.
     (2) The heat treatment temperature has an obvious influence on the anti-oxidation property andmechanical properties of ribbon-shaped carbon fibers. The crystallization degree andgraphitization degree of the ribbon-shaped carbon fibers gradually increase with the increase of heat treatment temperature, which results in a better oxidation resistance of the ribbonfibers after graphitization treatment. The anti-oxidation property of the ribbon-shaped fibersgraphitized at2800~3000oC is significantly better than that of the K-1100fibers. Themechanical properties of the ribbon-shaped pitch fibers with a width of1.5mm carbonized atlow temperature (400~700oC) are relatively low. The tensile strength and elastic modulus ofthe ribbon-shaped fibers carbonized at1000oC reach876MPa and109GPa, which furtherincrease to2.53GPa and421GPa after graphitized at3000oC.
     (3) The axial electric conductivity of ribbon-shaped fibers gradually improves with the increaseof heat treatment temperature. The axial room-temperature electrical resistivity of the ribbonfibers with a width of1.5mm graphitized at3000~3200oC is as low as1.05~1.08μ.m,which is lower than that of the K-1100fibers (1.17μ.m). The axial room-temperaturethermal conductivity of the ribbon fibers graphitized at3000oC calculated by the universalcorrelation of electrical resistivity and thermal conductivity of mesophase pitch-based carbonfibers is up to1100~1200W/m.K.
     2. Preparation, characterization and property measurements of one-dimensional ribbon fiber/Ccomposites with high thermal conductivity
     (1) Using the unidirectional stacked ribbon-shaped fibers as a matrix material, followed bycoating mesophase pitch binder on them, ribbon fiber/C composite materials with high bulkdensity were fabricated through one-step hot-press molding at about500oC and subsequentcarbonization and graphitization treatment. As the heat treatment temperature rises, the bulkdensity of the composites gradually increases. The bulk density of the hot-pressed sample atabout500oC is only about1.2~1.3g/cm3, which increases to1.7~1.8g/cm3after thecarbonization treatment at1000oC due to the significant volume shrinkage, and furtherincreases to1.85~1.90g/cm3after the graphitization treatment at3000oC.
     (2) XRD, PLM and SEM analyses show that the1.5mm wide ribbon fiber/C composite blockprepared exhibits a structural anisotropy. Ribbon-shaped fibers have been unidirectionallydistributed in the composite block and the main planes of the ribbon fibers are orderlyaccumulated along the hot-pressing direction. The internal graphitic layers possess a higherdegree of preferred orientation parallel to the longitudinal direction of the ribbon fibers. Theribbon fiber/C composite block shows obvious electrical and thermal anisotropy and hasexcellent electrical and thermal conductivities along the longitudinal direction of the ribbonfibers. The room-temperature electrical resistivities of the composite sample graphitized at3000oC along the longitudinal direction of the ribbon fibers and along the ribbon fiberaccumulation direction are1.5μ.m and22.2μ.m, respectively. The correspondingroom-temperature thermal conductivities of the sample are862W/m.K and11W/m.K. Heattreatment temperatures have an obvious influence on the thermal diffusivity and thermalconductivity of the composites. The thermal conductivity of the composites increases withthe increasing of heat treatment temperature. There is a good linear correlation between theroom-temperature thermal conductivity of the composite along the longitudinal direction ofthe ribbon fibers and its heat treatment temperature and bulk density, the correlation coefficients (0.98and0.95) of which are both high.
     (3) The width of the ribbon fibers and transversal shape of fibers have a big influence on thebulk density, the room-temperature thermal diffusivity and thermal conductivity of C/Ccomposites along the longitudinal direction of the ribbon fibers. Narrow (0.5mm and0.3mmwide) ribbon fibers/C composite has a high bulk density (1.88~1.91g/cm3), and theirroom-temperature thermal diffusivity and thermal conductivity along the longitudinaldirection of the ribbon fibers reach570~580mm2/s and820~830W/m.K, respectively.However, a round-shaped fiber/C composite has a lower bulk density (1.70g/cm3), and itsthermal diffusivity and thermal conductivity along the longitudinal direction of the ribbonfibers at room temperature are554mm2/s and707W/m.K. The bulk density of the wide (1.5mm) ribbon fiber/C composite is1.86g/cm3, lower than that of the narrow ribbon fibers/Ccomposite, but the former has a significantly larger thermal diffusivity (618mm2/s) andthermal conductivity (862W/m.K).
     3. Preparation, characterization and performance testing of graphite materials with high thermalconductivity made with natural flake graphite
     (1) Using natural flake graphite and mesophase pitch powder as bone-material and binder,graphite blocks with a high bulk density were prepared through a hot-pressing method at about500oC and subsequent heat treatment at high temperature. Flake graphite particle size, themesophae pitch binder content, hot-pressing pressure and heat treatment temperature have acertain impact on the bulk density of the graphite block. The bulk density of the graphiteblocks made with86wt.%natural flake graphite (+32mesh) and14wt.%mesophase pitchpowder hot-pressed at about10MPa pressure is above1.91g/m3after2800oC graphitizationtreatment.
     (2) XRD, PLM and SEM analyses show that the prepared carbon (graphite) blocks have anobvious structural anisotropy, and the natural flake graphite has been stacked orderly alongthe hot-pressing direction. Except the bulk density and specific heat capacity, other physicalproperties (such as mechanical properties, electrical property, and thermal property) of thegraphite block have an obvious anisotropy. There is a significant difference between thevertical and parallel to the hot-pressing direction.
     (3) The particle size of natural flake graphite, mesophase pitch binder content and heat treatmenttemperature have a great influence on the room-temperature electrical resistivity of graphiteblocks along the direction perpendicular to the hot-pressing direction. The graphite blocksafter treatment at2800oC show good electrical and thermal conductivity along the directionperpendicular to the hot-pressing direction. Their room-temperature electrical resistivity andthermal conductivity are1.45μ.m and622W/m.K, respectively. However, along thedirection parallel to the hot-pressing direction, the room-temperature electrical resistivity andthermal conductivity are8.35μ.m and25W/m.K, respectively. The compressive andbending strengths of the graphite blocks are relatively low, which are1.3MPa and7.7MPa,respectively.
     (4) Except heat treatment temperature, the content of mesophase pitch binder and graphitic crystal orientation, other factors (such as the environmental testing temperature, thegranularity of the natural graphite flakes, the properties of pitch binder, hot-pressingtemperature and doping treatment, etc.) have also influences on the room-temperaturethermal conductivity of the graphite blocks along the direction perpendicular to thehot-pressing direction.
     4. Discussion on the thermal conductivity of carbon materials associated with its electricalconductivity and thermal conductivity mechanism
     (1) For ribbon-shaped carbon (graphite) fibers and their one dimensional C/C composites, theaxial room-temperature thermal conductivity has close relationships with the axial electricalresistivity, degree of graphitization and graphitic micro-crystallite parameters (d002, Lc, La).The correlation coefficients are all as high as above0.91. There is no obvious relationshipbetween the room-temperature thermal conductivity and electrical resistivity of graphiteblocks along the direction perpendicular to the hot-pressing direction, but theroom-temperature thermal conductivity of graphite blocks in the direction has some weakrelevance with the pitch binder derived graphitic micro-crystallite parameters (Lc and La).The correlation coefficients are0.46and0.64, respectively.
     (2) The axial room-temperature thermal conductivity of the ribbon-shaped fibers graphitized at3000oC reach1084~1174W/m.K calculated according to the relationship between the axialthermal conductivity and electrical resistivity of ribbon-shaped fibers, which is up to1136W/mK through back-calculating by thermal conductivity mixed formula for one dimensionalC/C composites. It is feasible to estimate the axial thermal conductivity of ribbon fibers bytesting the electrical resistivity. The room-temperature thermal conductivity of C/Ccomposites along the longitudinal direction of fiber is expected to reach890~920W/m.Kaccording to both methods.
     (3) The thermal conduction mechanism analyses of three kinds of carbon materials(Ribbon-shaped fibers, C/C composites and graphite materials) with high thermalconductivity show that heat treatment temperature, graphitization degree, micro-crystalliteparameters and crystal orientation have significant influences on the thermal conductivity ofcarbon materials. The micro-crystallite size of carbon materials is one of the most importantinternal factors impacting the thermal conductivity of the carbon materials. Theroom-temperature thermal conductivity along the direction perpendicular to the hot-pressingdirection is proportional to the micro-crystallite coherence length La measured by X-raydiffraction.
引文
[1]尹志忠,李强.近空间飞行器及其军事应用分析[J].装备指挥技术学院学报,2006,17(5):64-68.
    [2]朱春玲,宁献文,刘永绩.高超声速飞行器综合热管理系统[C].中国第一届近代空气动力学与气动热力学会议,2006:351-355.
    [3] Hino T, Akiba M. Japanese development of fusion reaction plasma components[J]. FusionEngineering and Design,2000,49-50:97-105.
    [4] Guo Q G, Liu L, Song J R, et al. Research activities on carbon based materials for plasmafacing components of the HT-7U superconducting tokamak device in China[J]. New CarbonMaterials,2001,16(3):64-68.
    [5] Developments and trends in thermal management technologies–a mission to the USA[R].DTI Global Watch Mission Report,2006.
    [6]高晓晴,郭全贵,刘朗,宋进仁.高导热炭材料的研究进展[J].功能材料,2006,37(2):173-177.
    [7]邱海鹏,刘朗.高导热炭基功能材料[J].新型炭材料,2002,17(4):80.
    [8] Klemens P G, Pedraza D F. Thermal conductivity of graphite in the basal plane[J]. Carbon,1994,32(4):735-741.
    [9] Klett J W. Heat transfer in carbon/carbon composite materials[D]. PhD. Dissertation,Clemson University, Clemson,1994.
    [10]郭全贵,刘朗,翟更太,等.高导热材料的发展现状及应用[C].卫星热控制技术研讨会论文集,2003:267-272.
    [11] Zweben C. Ultrahigh thermal conductivity packaging materials[C].21stIEEESEMI-THERM Symposium.2005:1-7.
    [12]杨尚林,张宇,桂太龙,等.材料物理导论[M].哈尔滨工业大学出版社,1999:224.
    [13]贺福,杨永岗.超级导热型沥青基碳纤维[J].高科技纤维与应用,2003,28(5):27-31.
    [14] Fitzer E. The future of carbon-carbon composites[J]. Carbon,1987,25(2):163-190.
    [15] Klein C A. Electrical properties of pyrolytic graphites[J]. Reviews of Modern Physics,1962,34(1):56-79.
    [16] Monthioux M, Soutric F, Serin V. Recurrent correlation between the electron energy lossspectra and mechanical properties for carbon fibers[J]. Carbon,1997,35(10-11):1660-1664.
    [17] Issi J P. Thermal and electrical properties of carbons relationship to structure. Design andcontrol of structure of advanced carbon materials for enhanced performance[M]. KluwerAchdemic Publishers, Dordrecht,1998:70-75.
    [18]日本炭素材料学会编,中国金属学会炭素材料专业委员会编译.新炭素材料入门[M].1999:46-47.
    [19]奚同庚.无机材料热物性学[M].上海:上海科学技术出版社,1981:18.
    [20] Bertram A, Beasley K, Delatorre W. An overview of navy composite developments forthermal management[J]. Naval Engineers Journal,1992:276-285.
    [21] Kude Y, Sohda Y. Thermal management of carbon-carbon composites by functionallygraded fiber arrangement technique[J]. Functionally Graded Materials,1996:239-244.
    [22] Issi J. P, Nysten B. Electrical and thermal transport properties in carbon fibers. CarbonFibers[M]. Marcel Dekker, Inc. New York,1998:401-404.
    [23] Adams P M, Katzman H A, Rellick G S, et al. Characterization of high thermal conductivitymesophase pitch fibers and a self-reinforced graphite panel[J]. Carbon,1998,36(3):233-245.
    [24] Reynolds W N. Physics properties of graphite[M]. USA, Elservier,1968.
    [25] Mason B A. The origin of reduced chemical erosion of graphite based materials induced byboron doping[J]. Journal of Nuclear Materials,1995,220-222:767-770.
    [26] White J L, Koyama K. Graphitic materials hot-worked with a dispersed liquid carbide:thermal and electrical conductivity[J]. Journal of the American Ceramic Society,1968,51(7):394-398.
    [27] Zweben C. Metal-matrix composites for electronic packaging[J]. Journal of Microscopy,1992,168:15-23.
    [28] Fleming, Thomas F, Riley, William C. Applications for ultra-high thermal conductivitygraphite fibers[J]. High Heat Flux Engineering II,1997:136-147.
    [29] Mochida I, Korai Y, Ku C H, et al. Chemistry of synthesis, structure, preparation andapplication of aromatic-derived mesophase pitch[J]. Carbon,2000,38(2):305-328.
    [30] Lavin J G, Boyington D R, Lahijani J, et al. The correlation of thermal conductivity withelectrical resistivity in mesophase pitch-based carbon fiber[J]. Carbon,1993,31(6):1001-1002.
    [31] Zhang X, Fujiwara S, Fujii M. Measurement of thermal conductivity and electricalresistivity of a single carbon fiber[J]. International Journal of Thermophysics,2000,21(4):965-980.
    [32] Hiroshi H, Masumi H, Tetsuo B. Carbon fiber composite sheet, use thereof as a heatconductor and pitch-based carbon fiber web sheet for use in the same[P]. United States PatentApplication20090061193.
    [33] Hiroshi H, Tetsuo B, Masumi H. Pitch-based carbon fiber web[P]. European PatentApplication2180094.
    [34] Masumi H, Hiroshi H, Tetsuo B. Pitch-based carbon fiber, web and resin molded productcontaing them[P]. United States Patent Application20100068496.
    [35] Gallego N C, Edie D D, Nysten B. Thermal conductivity of ribbon-shaped carbon fibers[J].Carbon,2000,38(7):1003-l010.
    [36]马兆昆.中间相沥基纤维自烧结材料制备和导热性能研究[D].中国科学院研究生院博士学位论文,2006.
    [37] Kazuhiro B, Yumi A, Nobuaki S. Thermal conductivity of diamond films[J]. JournalApplied Physics,1991,69(10):7313-7315.
    [38] Ho H P, Lo K C, Tjong S C, et al. Measurement of thermal conductivity in diamond filmsusing a simple scanning thermocouple technique[J]. Diamond and Related Materials,2000,9(7):1312-1319.
    [39] Wolter S D, Borca-Tasciuc D A, Chen G, et al. Thermal conductivity of epitaxially textureddiamond films[J]. Diamond and Related Materials,2003,12:61-64.
    [40]满卫东.金刚石薄膜[J].新型炭材料,2002,17(2):77.
    [41]金曾孙,姜志刚,白亦真,等.直流热阴极PCVD法制备金刚石厚膜[J].新型炭材料,2002,17(2):9-12.
    [42]满卫东,汪建华,王传新,马志斌.金刚石薄膜的性质、制备及应用[J].新型炭材料,2002,17(1):62-70.
    [43]武井,武·河岛千寻.新碳素材料[M].梁济博译.兰州:兰州新华印刷厂,1981:311.
    [44] Inagaki M. New carbons control of structure and functions[M]. Japan: Aichi Institute ofTechnology Department of Applied Chemistry,2000:36.
    [45]“PGS” Graphite Sheets[N]. Panasonic,2008, EC178-EC181.
    [46] Hishiyama Y, Yoshida A,Kaburagi Y. Graphite films prepared from carbonized polyimidefilms[J]. Carbon,1992,30(3):333-337.
    [47] Murakami M, Nishiki N, Knakamura K, et al. High-quality and highly oriented graphiteblock from polycondensation polymer films[J]. Carbon,1992,30(2):255-262.
    [48] Hishiyama Y, Nakamura M, Nagata Y, et al. Graphitization behavior of carbon film preparedfrom high modulus polyimide film: synthesis of high-quality graphite film[J]. Carbon,1994,32(4):645-650.
    [49] Kaburagi Y, Hishiyama Y. Highly crystallized graphite films prepared by high-temperatureheat treatment from carbonized aromatic polyimide films[J]. Carbon,1995,33(6):773-777.
    [50]李海英,高晓晴,张国兵,等.聚酰亚胺薄膜制备高定向石墨材料的研究[J].功能材料,2006,1(37):106-108.
    [51] Rubel M, Almqvist N, Wienhold P, et al. Behaviour of Si and Ti doped carbon compositesunder exposure to the deuterium plasma[J]. Journal of nuclear materials,1998,(258-263):787-792.
    [52] Garcia-Rosales C, Balden M. Chemical erosion of doped graphites for fusion devices[J].Journal of Nuclear Materials,2001,290-293:173-179.
    [53] Zhang G J, Guo Q G, Liu Z J, et al. Effects of dopants on properties and microstructure ofdoped graphite[J]. Journal of Nuclear Materials,2002,110:187-192.
    [54] Hu X B, Cheng G, Zhao BY, et al. Catalytic effect of dopants on microstructure andperformance of MCMB-derived carbon laminations[J]. Carbon,2004,42(2):293-300.
    [55] Burtseva T, Barabash V, Mazul I, et al. Performance of the Ti doped graphite RG-Ti-91atthe divertor of the Tokamak ASDEX upgrade[J]. Journal of Nuclear Materials,1997,241-243:716-721.
    [56] Qiu H P, Song Y Z, Liu L, et al. Thermal conductivity and microstructure of Ti-dopedgraphite[J]. Carbon,2003,41(5):973-978.
    [57] Liu Z J, Guo Q G, Shi J L, et al. Preparation of doped graphite with high thermalconductivity by a liquid mixing process[J]. Carbon,2007,45(9):1914-1916.
    [58] Liu Z J, Guo Q G, Shi J L, et al. Graphite blocks with high thermal conductivity derivedfrom natural graphite flake[J]. Carbon,2008,46(3):414-421.
    [59] http://www.sxicc.cas.cn/kycg/cgzh/xincailiao/200908/t20090811_2364586.html.
    [60]魏兴海,刘朗,张金喜,等.影响柔性石墨纸面向导热性能的因素[C].第十届全国新型炭材料学术研讨会论文集,2011:237-242.
    [61] Novoselov K S, Geim A A, Morozov S V, et al. Electric field effect in atomically thincarbon films[J]. Science,2004,306(5696):666-669.
    [62] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials,2007,6:83-191.
    [63] Geim A K. Graphene: status and prospects[J]. Science,2009,324,1530-1534.
    [64] Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene[J].Carbon,2010,48(8):2127-2150.
    [65] Balandin A A, Ghosh S, Wen Z B, et al. Superior thermal conductivity of single-layergraphene[J]. Nano Letters,2008,8(3):902-907.
    [66] Ghosh S, Calizo I, Teweldebrhan D, et al. Extremely high thermal conductivity of graphene:Prospects for thermal management applications in nanoelectronic circuits[J]. Applied PhysicsLetters,2008,92:151911-151913.
    [67] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J].Nature,2006,442(20):282-286.
    [68]陈成猛,杨永岗,温月芳,等.有序石墨烯导电炭薄膜的制备[J].新型炭材料,2008,23(4):345-350.
    [69] Klett J, Hardy R, Romine E, et al. High thermal conductivity, mesophase pitch-derivedcarbon foams: effect of precursor on structure and properties[J]. Carbon,2000,38:953-973.
    [70] Kellet, James W. Pitch-based carbon foam and composites[P]. US Patent6663842,2003.
    [71] Gallego N C, Klett J W. Carbon foams for thermal management[J]. Carbon,2003,41:1461-1466.
    [72]高晓晴.高导热炭/炭复合材料的制备及其性能和结构的研究[D].中国科学院研究生院博士学位论文,2005.
    [73] http://www.cytec.com/engineered-materials/thornel-pan.htm.
    [74] Hideyuki OHNO. High performance pitch based carbon fibers and their application[C].Verbundwerkstoffe:17Symposium Verbundwerkstoffe und Werkstoffverbunde,2009:265-269.
    [75]陈秀,胡浩权,郭树才.气相生长炭纤维[J].新型碳材料,1997,12(1):15-18
    [76] Li Y Y, Bae S D, Sakoda A, et al. Formation of vapor grown carbon fibers with sulfuriccatalyst precursors and nitrogen as carrier gas[J]. Carbon,2001,39(1):91-100.
    [77] Heremans J, Beetz C P. Thermal conductivity and thermopower of vapor-grown graphitefibers[J]. Physical Review B,1985,32(4):1981-1988.
    [78] Heremans J. Electrical conductivity of vapor-grown carbon fibers[J]. Carbon,1985,23(4):431-436.
    [79] Endo M, Kim Y A, Hayashi T, et al. Vapor-grown carbon fibers (VGCFs) basic propertiesand their battery applications[J]. Carbon,2001,39:1287-1297.
    [80] Nysten B, Issi J P. Composites based on thermally hyperconductive carbon fibres[J].Composites,1990,21(4):339-343.
    [81] Chen Y M, Ting J M. Ultra high thermal conductivity polymer composites[J]. Carbon,2002,40(3):359-362.
    [82] Ting J M, Lake M L. Vapor-grown carbon-fiber reinforced carbon composites[J]. Carbon,1995,33(5):663-667.
    [83] Ting J M, Lake M L, Dufrfy D R. Composites based on thermally hyper-conductive carbonfiber[J]. Journal of Materials Research,1995,10(6):1478-1484.
    [84] Che J W, Cagin T, Goddard W A. Thermal conductivity of carbon nanotubes[J].Nanotechnology,2000,11(2):65-69.
    [85] Berber S, Kwon Y K, Tománek D. Unusually high thermal conductivity of carbonnanotubes[J]. Physical Review Letters,2000,84(20):4613-4616.
    [86] Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individualmultiwalled nanotubes[J]. Physical Review Letters,2001,87(21):2155021-2155024.
    [87] Gao X Q, Liu L, Guo Q G, et al. Fabrication and mechanical/conductive properties ofmulti-walled carbon nanotube (MWNT) reinforced carbon matrix composites[J]. MaterialsLetters,2005,59(24-25):3062-3065.
    [88]李志,巩前明,王野,等.ACNT/C纳米复合材料导热性能及其机理的初步研究[J].高等学校化学学报,2006,27(10):1819-1822.
    [89]周建伟,廖寄乔,王占锋.原位生长碳纳米管对炭/炭复合材料导热性能的影响[J].中国有色金属学报,2008,18(3):383-387.
    [90] Jakubinek M B, White M A, Li G, et al. Thermal and electrical conductivity of tall,vertically aligned carbon nanotube arrays[J]. Carbon,2010,48(13):3947-3952.
    [91] Jakubinek M B, Johnson M B, White M A, et al. Thermal and electrical conductivity ofarray-spun multi-walled carbon nanotube yarns[J]. Carbon,2012,50(1):244-248.
    [92] Otani S. On the carbon fiber from the molten pyrolysis products[J]. Carbon,1965,3(1):31-38.
    [93] Singer L S. The mesophase and high modulus carbon fibers form pitch[J]. Carbon,1978,16(6):409-415.
    [94] Traceski F T. Assessing industrial capabilities for carbon fiber production[R]. AcquisitionReview Quarterly, Spring,1999:179-194.
    [95] Lu S, Blanco C, Appleyard S, et al. Texture studies of carbon and graphite tapes by XRDtexture goniometry[J]. Journal of Materials Science,2002,37(24):5283-5290.
    [96] Robinson K E, Edie D D. Microstructure and texture of pitch-based ribbon fibers forthermal management[J]. Carbon,1996,34(1):13-36.
    [97] Edie D D. The effect of processing on the structure and properties of carbon fibers[J].Carbon,1998,36(4):345-362.
    [98] Paiva M C, Bernardo C A, Nardin M. Mechanical surface and interfacial characterization ofpitch and PAN-based carbon fibres[J]. Carbon,2000,38(9):1323-1337.
    [99] Edie D D. Pitch and mesophase fibers. Carbon Fibers Filaments and Composites[M].Kluwer Academic Publishers, Dordrecht, Netherlands,1990:45.
    [100] Edie D D, Fox N K, Barnett B C, et al. Melt-spun non-circular carbon fibers[J]. Carbon,1986,24(4):477-482.
    [101] Edie D D, Robinson K E, Fleurot O, et al. High thermal conductivity ribbon fibers fromnaphthalene-based mesophase[J]. Carbon,1994,32(6):1045-1054.
    [102] Endo M. Structure of mesophase pitch-based carbon fibres[J]. Journal of Materials Science,1988,23(2):598-605.
    [103] Edie D D, Stoner E G. Effect of microstructure and shape on carbon fiber properties.Carbon Carbon Materials and Composites[M]. Noyes Publishing.1993:50.
    [104] Blanco C, Appleyard S P, Rand B. Study of carbon fibres and carbon–carbon compositesby scanning thermal microscopy[J]. Journal of Microscopy,2002,205(1):21-32.
    [105] Gerald J D F, Pennock G M, Taylor G H. Domain structure in MP (mesophase pitch)-basedfibers[J]. Carbon,1991,29(2):139-164.
    [106] Snead L L, Burchell T D. Thermal conductivity degradation of graphites due to neutronirradiation at low temperature[J]. Journal of Nuclear materials,1995,224:222-229.
    [107] Bonal J P, Wu C H. Neutron irradiation effects on the thermal conductivity anddimensional stability of carbon fiber composites at divertor conditions[J]. Journal of Nuclearmaterials,1996,228:155-161.
    [108] Araki M, Kube Y, Sato K, et al. Fusion Technology,1996[R]. Elsevier, Amsterdam,1997:359-362.
    [109] Golecki I, Xue L, Leung R, et al. Properties of high thermal conductivity carbon-carboncomposites for thermal management applications[C]. High-Temperature Electronic Materials,Devices and Sensors Conference, San Diego. CA, IEEE,1998:190-195.
    [110] Bowers D A, Davis J W, Dinwiddie R B. Development of1-D carbon composites forplasma-facing components[J]. Journal of Nuclear materials,1994,212-215:1163-1167.
    [111] Barr J B, Hecht D H, Levan C D. High thermal conductivity panels from mesophase pitchfibers[C]. Extended Abstracts of the22thBiennial Conf. on Carbon,1995:32-33.
    [112]马兆昆,刘朗,刘杰.中间相沥青纤维制备高导热炭材料的研究[J].无机材料学报,2006,21(5):1167-1172.
    [113] Ma Z K, Shi J L, Song Y, et al. Carbon with high thermal conductivity, prepared fromribbon-shaped mesosphase pitch-based fibers[J]. Carbon,2006,44(7):1298-1352.
    [114] Mochida I, Yoon S H, Korai Y. Control of transversal texture in circular mesophasepitch-based carbon fibre using noncircular spinning nozzles[J]. Journal of Materials Science,1993,28(9):2331-2336.
    [115] Edie D D, Fain C C, Robinson K E, et al. Ribbon-shape carbon fibers for thermalmanagement[J]. Carbon,1993,31(6):941-949.
    [116] Gallego N C, Edie D D. Structure-property relationships for high thermal conductivitycarbon fibers[J]. Composites: Part A,2001,32(8):1031-1038.
    [117]王成扬,李明伟,郑嘉明,稻垣道夫.不同形状中间相沥青炭纤维的横断面结构[J].材料研究学报,2000,14(4):431-437.
    [118] Gallego N C, Edie D D, Nysten B, et al. The thermal conductivity of ribbon-shaped carbonfibers[J]. Carbon,2000,38(7):1003-1010.
    [119] Buckley J D, Edie D D. Carbon Carbon Materials and Composites[M]. Noyes Publishing,1993:3.
    [120] Marsh H. Carbon mesophase. Encyclopedia of Materials: Science and Technology[M].Elsevier Science Ltd.2001:926-932.
    [121] Mchugh J J, Edie D D. The orientation of mesophase pitch during fully developed channelflow[J]. Carbon,1996,34(11):1315-1322.
    [122] Cato A D, Edie D D. Flow behavior of mesophase pitch[J]. Carbon,2003,41(7):1411-1417.
    [123] Kundu S, Ogale A A. Rheostructural studies on a synthetic mesophase pitch duringtransient shear flow[J]. Carbon,2006,44(11):2224-2235.
    [124] Knight D S, White W B. Characterization of diamond films by Raman spectroscopy[J].Journal of Materials Research,1989,4(2):385-393.
    [125] Takahashi H, Kuroda H, Akamatu H. Correlation between stacking order and crystallitedimensions in carbons[J]. Carbon,1965,2(4):432-433.
    [126] Kelly B T. Physics of graphite[M]. London: Butterworth,1981:21-23.
    [127]李崇俊,马伯信,霍肖旭.炭/炭复合材料石墨化度的表征(I)[J].新型炭材料,1999,14(1):19-25.
    [128]钱崇梁,周桂芝,黄启忠.XRD测定炭素材料的石墨化度[J].中南工业大学学报,2001,32(3):285-288.
    [129]邱海鹏,宋永忠,郭全贵,等.高导热炭纤维及其炭基复合材料[J].功能材料,2002,33(5):473-476.
    [130] Yoon S-H, Korai Y, Mochida I. Pleat structure of the mesophase pitch-based carbonfiber[J]. Carbon,1994,32(6):1182-1186.
    [131] Mochida I, Yoon S-H, Takano N, et al. Microstructure of mesophase pitch-based carbonfiber and its control[J]. Carbon,1996,34(8):941-956.
    [132] Lu S L, Blanco C, Rand B. Large diameter carbon fibres from mesophase pitch[J]. Carbon,2002,40(12):2109-2116.
    [133] Hamada T, Furuyama M, Sajiki Y, et al. Preferred orientation of pitch precursor fibers[J].Journal of Materials Research,1990,5(6):1271-1280.
    [134] Blanco C, Lu S L, Appleyard S P, Rand B. The stabilisation of carbon fibres studied bymicro-thermal analysis[J]. Carbon,2003,41(1):165-171.
    [135] Mochida I, Yoon SH, Korai Y. Mesoscopic Structure and properties of liquid crystallinemesophase pitch and its transformation into carbon fiber[J]. The Chemical Record,2002,2(2):81-101.
    [136] Charles Q Y, John R S. Infrared spectroscopy studies of the petroleum pitch carbon fibre: I.The raw materials, the stabilisation, and carbonisation processes[J]. Carbon,1993,31(3):451-459.
    [137] Drbohlav J, Stevenson W T K. The oxidative stabilization and carbonization of a syntheticmesophase pitch, part I: The oxidative stabilization process[J]. Carbon,1995,33(5):693-711.
    [138] Wazir A H, Kakakhel L. Preparation and characterization of pitch-based carbon fibers[J].New Carbon Materials,2009,24(1):83-88.
    [139] Lavin J G. Chemical reactions in the stabilization of mesophase pitch-based carbon fiber[J].Carbon,1992,30(3):351-357.
    [140] Kowbel W, Wapner P G, Wright M A. A study of the oxidation of mesophase[J]. Journalof Physics and Chemical Solids,1998,49(11):1279-1285.
    [141] Marsh H, Menendez R. Carbons from pyrolysis of pitches, coals, and their blends[J]. FuelProcess Technology,1988,20(1-3):269-296.
    [142] Huttinger K J. Discontinuities of the electrical resistivity and of young's modulus of pitchbonded green carbon artifacts in the HTT range400–500°C[J]. Carbon,1971,9(6):809-810.
    [143] Dutta A K. Electrical conductivity of single crystals of graphite[J]. Physical Review,1953,90(2):187-192.
    [144]卫锦先.碳纤维导热性的测试研究[J].宇航学报,1988,1:49-55
    [145]王照亮,唐大伟,郑兴华,等.3ω法测量单根碳纤维导热系数和热容[J].工程热物理学报,2007,28(3):490-492.
    [146]王建立,马维刚,张兴.测量单根纤维热导率的新方法[J].工程热物理学报,2008,29(6):991-994.
    [147]马兆昆,宋进仁,郭全贵,等.中间相沥青不熔化纤维自烧结制备高传导性炭材料研究[J].新型炭材料,2005,20(3):223-228.
    [148]马兆昆,史景利,刘朗,等.中间相沥青纤维制备高导热炭材料的研究[J].无机材料学报,2006,21(5):1167-1172.
    [149] Ma Z K, Liu L, Lian F, et al. Three-dimensional thermal conductive behavior of graphitematerials sintered from ribbon mesophase pitch-based fibers[J]. Materials Letters,2012,66(1):99-101.
    [150]马兆昆,史景利,刘朗.带形中间相沥青纤维的制备与不熔化研究[J].炭素,2005,1:27-30.
    [151]马兆昆,刘朗,刘杰.纺丝工艺对带形中间相沥青基石墨纤维取向结构及热导率的影响[J].无机材料学报,2010,25(9):989-993.
    [152] Chen G H, Wang H Q, Zhao W F. Fabrication of highly ordered polymer/graphite flakecomposite with eminent anisotropic electrical property[J]. Polymer Advanced Technology,2008,19(8):1113-1117.
    [153] Cao A Y, Xu C L, Liang J, et al. X-ray diffraction characterization on the alignment degreeof carbon nanotubes[J]. Chemical Physics Letters,2001,344(1-2):13-17.
    [154] Norley J. The role of natural graphite in electronics cooling[J]. Electronics Cooling,2001,7:50-51.
    [155] Shindé S L, Goela J S. High thermal conductivity materials[M]. New York NY, Springer.2006:29-33.
    [156]赵建国,李克智,李贺军,等.碳/碳复合材料导热性能的研究[J].航空学报,2005,26(4):501-504.
    [157]于澍,刘根山,李溪滨,等.碳/碳复合材料导热系数影响因素的研究[J].稀有金属材料与工程,2003,32(3):213-215.
    [158] Manocha LM, Warrier A, Manocha S, et al. Thermophysical properties of densified pitchbased carbon/carbon materials–I. Unidirectional composites[J]. Carbon,2006,44(3):480-487.
    [159] Oberlin A. Carbonization and Graphitization[J]. Carbon,1984,22(6):521-541.
    [160]蒋文忠.炭素工艺学[M].治金工业出版社,2009:423
    [161]谢有赞.炭石墨材料工艺[M].湖南大学出版社,1988:24-57
    [162] Pierson H O. Handbook of carbon, diamond and fullerenes: properties, processing andapplications[M]. Park Ridge New Jersey: Noyes.1993:50-67.
    [163] Kuga Y, Shirahige M, Fujimoto T, et al. Production of natural graphite particles with highelectrical conductivity by grinding in alcoholic vapors[J]. Carbon,2004,42(2):293-300.
    [164] Zhang H L, Liu S H, Li F, et al. Electrochemical performance of pyrolytic carbon-coatednatural graphite spheres[J]. Carbon,2006,44(11):2212-2218.
    [165] Wang H Y, Yoshio M. Electrochemical performance of raw natural graphite flakes as ananode material for lithium-ion batteries at the elevated temperature[J]. Materials Chemistry andPhysics,2003,79(1):76-80.
    [166] Zou L, Kang F Y, Zheng Y P, Shen W C. Modified natural flake graphite with high cycleperformance as anode material in lithium ion batteries[J]. Electrochimica Acta,2009,54(15):3920-3934.
    [167] Bonnissel M, Luo L, Tondeur D. Compacted exfoliated natural graphite as heat conductionmedium[J]. Carbon,2001,39(14):2151-2161.
    [168] Qiu H P, Han L H, Liu L. Properties and microstructure of graphitized ZrC/C or SiC/Ccomposites[J]. Carbon,2005,43(5):1021-1025.
    [169] Prieto R, Molina J M, Narcisoa J, Louis E. Fabrication and properties of graphiteflakes/metal composites for thermal management applications[J]. Scripta Materialia,2008,59(1):11-14.
    [170] Geng Y, Wang S J, Kim J K. Preparation of graphite nanoplatelets and graphene sheets[J].Journal of Colloid and Interface Science,2009,336(2):592-598.
    [171] Veca L M, Meziani M J, Wang W, et al. Carbon nanosheets for polymeric nanocompositeswith high thermal conductivity[J]. Advanced Materials,2009,21(20):2088-2092.
    [172] Liu Z J, Guo Q G, Liu L, et al. Influence of filler type on the performance andmicrostructure of a carbon/graphite material[J]. New Carbon Materials,2010,25(4):313-316.
    [173] Bacon G E. A method for determining the degree of orientation of graphite[J]. Journal ofApplied Chemistry,1956,6:477-481.
    [174] Tassone G. Bacon anisotropy factor measurements on PyC by X-ray diffractometry[J].Carbon,1970,8(3):387-388.
    [175] Seehra M S, Pavlovic A S, Babu V S, et al. Measurements and control of anisotropy in tencoal-based graphites[J]. Carbon,1994,32(3):431-435.
    [176] Fujimoto H. Theoretical X-ray scattering intensity of carbons with turbostratic stackingand AB stacking structures[J]. Carbon,2003,41(8):1585-1592.
    [177] Yuan G M, Li X K, Dong Z J, et al. Graphite blocks with preferred orientation and highthermal conductivity[J]. Carbon,2012,50(1):175-182.
    [178] Ergun S, Schehl R R. Preferred orientation in pyrolytic carbons and polymers[J]. Journalof Applied Crystallography,1972,5:408-411.
    [179]高树本,侯芸.碳素材料择优取向度BAF的测定[J].宇航材料工艺,1982,3:1-7.
    [180]刘占军,郭全贵,史景利,刘朗.制备工艺条件对炭基复合材料热导率和结构的影响[C].第21届炭石墨材料学术会论文集,2008:134-142.
    [181]蒋文忠.炭素工艺学[M].治金工业出版社,2009:13.
    [182] Dumont M, Dourges M A, Bourrat X, et al. Carbonization behaviour of modified syntheticmesophase pitches[J]. Carbon,2005,43(11):2277-2284.
    [183] http://www.5181717.com/product_info/20108/2600.htm.
    [184] http://en.wikipedia.org/wiki/Thermal_diffusivity
    [185]奚同庚.无机材料热物性学[M].上海:上海科学技术出版社,1981:203.
    [186] http://baike.gqsoso.com/edition-view-20791-1.
    [187] Ohlhorst C W, Vaughn W L, Ransone P O, Tsou H T. Thermal conductivity database ofvarious structural carbon-carbon composite materials[R]. NASA Technical Memorandum4787,1997.
    [188]蒋文忠.炭素工艺学[M].治金工业出版社,2009:420.
    [189]奚同庚.无机材料热物性学[M].上海:上海科学技术出版社,1981:92-121.
    [190] Picard S, Burns D T, Roger P. Determination of the specific heat capacity of a graphitesample using absolute and differential methods[J]. Metrologia,2007,44(5):294-302.
    [191] http://www.azom.com/article.aspx?ArticleID=1630.
    [192] http://en.wikipedia.org/wiki/Heat_capacity.
    [193] Hummel R E. Thermal properties of materials. Understanding materials science: history,properties, application[M]. New York NY, Springer.2004:273.
    [194]赵建国,李克智,李贺军,等.C/C复合材料比热容和热扩散率的研究[J].宇航材料工艺,2005,6:41-43.
    [195] Horr N E, Bourgerett E C, Oberlin A. Mesophase powders (carbonization andgraphitization)[J]. Carbon,1994,32(6):1035-1044.
    [196] Chung D D L. Materials for thermal conduction[J]. Applied Thermal Engineering,2001,21(16):1593-1605.
    [197] Laskar J M, Bagavathiappan S, Sardar M, et al. Measurement of thermal diffusivity ofsolids using infrared thermography[J]. Materials Letters,2008,62(17-18):2740-2742.
    [198]刘占军.炭基面对等离子体材料的制备及其结构和性能研究[D].中国科学院研究生院博士学位论文,2008.
    [199] Klemens P G. Theory of the A-plane thermal conductivity of graphite[J]. Journal of WideBandgap Materials,2000,7(4):332-339.
    [200] Karthik R, Nagarajan R H, Raja B, Damodharan P. Thermal conductivity of CuO–DI waternanofluids using3-ω measurement technique in a suspended micro-wire[J]. ExperimentalThermal and Fluid Science,2012,40:1-9.
    [201] http://en.wikipedia.org/wiki/Thermal_diffusivity.
    [202] Vecchio D D, Russell D, Taborek P. Measurement of thermal diffusivity of small, highconductivity samples using a phase sensitive technique[J]. Review of Scientific Instruments,1995,66(6):3601-3605.
    [203]吴清仁,刘振群.无机功能材料热物理[M].华南理工大学出版社,2003:176.
    [204]蒋文忠.炭素工艺学[M].治金工业出版社,2009:132.
    [205]张福勤,黄启忠,黄伯云,等.炭/炭复合材料石墨化度与导电性能的关系[J].新型炭材料,2001,16(2):45-48.
    [206] Oya A, Otani S. Catalytic graphitization of carbon by various metals[J]. Carbon,1979,17(2):131-137.
    [207]邱海鹏,郭全贵,宋永忠,等.石墨材料导热性能与微晶参数关系的研究[J].新型炭材料,2002,17(1):37-40.
    [208]张福勤,黄伯云,黄启忠,等.炭布叠层/热解炭复合材料导热系数与石墨化度的关系[J].功能材料,2003,34(4):464-466.
    [209]张福勤,黄伯云,黄启忠,熊翔.炭纤维针刺整体毡/热解炭复合材料导热系数与石墨化度的关系[J].矿冶工程,2003,23(3):57-58.
    [210]张福勤,黄伯云,黄启忠,熊翔.短炭纤维/树脂炭复合材料导热系数与石墨化度的关系[J].材料工程,2003,9:18-21.
    [211]赵建国,李克智,李贺军,等.碳/碳复合材料导热性能的研究[J].航空学报,2005,26(4):501-504.
    [212] Savage G. Carbon-carbon composites[M]. London: Chapman&Hall,1993.
    [213]奚同庚.无机材料热物性学[M].上海:上海科学技术出版社,1981:32-34
    [214]李圣华.炭和石墨制品(上册)[M].北京:冶金工业出版社,1983:36-40
    [215] Nysten B, Issi J P, Barton R, D, et al. Determination of lattice defects in carbon fibers bymeans of thermal-conductivity measurements[J]. Physical Review B,1991,44(5):2142-2148.
    [216] Appleyare S P, Zhang E, Rand B, et al. Control of thermal properties of C/C composites byoptimisation of structure[C]. Carbon conference,1999.
    [217] Springer G S, Tsai S W. Thermal conductivities of unidirectional materials[J]. Journal ofComposite Materials,1967,1(2):166-173.
    [218] Pilling M W, Yates B, Black M A, Tattersall P. The thermal conductivity of carbonfibre-reinforced composites[J]. Journal of Materials Science,1979,14(6):1326-1338.
    [219] Hasselman D P H, Donaldson K Y, Thomas J R. Effective thermal-conductivity of uniaxialcomposite with cylindrically orthotropic carbon-fibers and interfacial thermal barrier[J]. Journalof Composite Materials,1993,27(6):637-644.
    [220] Tavam I H, Akinci H. Transverse thermal conductivity of fiber reinforced polymercomposites[J]. International Communications in Heat and Mass Transfer,2000,27(2):253-261.
    [221] Wetherhold R C, Wang J Z. Difficulties in the theories for predicting transverse thermalconductivity of continuous fiber composites[J]. Journal of Composite Materials,1994,28(15):1491-1498.
    [1] DTI Global Watch Mission Report “Developments and trends in thermal management technologies–a mission to the USA”,2006
    [2]邱海鹏,刘朗.高导热炭基功能材料.新型炭材料,2002,17,4
    [3] J. C. Bokros. Chemistry and physics of carbon[M], Marcel Dekker Inc. New York, Vol.5,1969
    [4]贺福,杨永岗.超级导热型沥青基碳纤维.高科技纤维与应用,2003,28(5):27-31
    [5]日本炭素材料学,中国金属学会炭素材料专业委员会.新炭素材料入门[M].中国:金属学会,1999
    [6] Kazuhiro B, Yumi A, Nobuaki S. Thermal conductivity of diamond films. J Appl Phys,1991,69(10):7313-7315
    [7] Leung K M, Cheung A C, Liu B C, et al. Measuring thermal conductivity of CVD diamond anddiamond-like films on silicon substrates by holographic interferometry. Diamond and RelatedMaterials,1999,8:1607-1610
    [8] Ho H P, Lo K C, Tjong S C, et al. Measurement of thermal conductivity in diamond films using asimple scanning thermocouple technique. Diamond and Related Materials,2000,9(7):1312-1319
    [9] Wolter S D, Borca-Tasciuc D A, Chen G, et al. Thermal conductivity of epitaxially textureddiamond films. Diamond and Related Materials,2003,12:61-64
    [10]满卫东.金刚石薄膜.新型炭材料,2002,17(2):77
    [11]金曾孙,姜志刚,白亦真,等.直流热阴极PCVD法制备金刚石厚膜.新型炭材料,2002,17(2):9-12
    [12]满卫东,汪建华,王传新,马志斌.金刚石薄膜的性质、制备及应用.新型炭材料,2002,17(1):62-70
    [13]武井,武·河岛千寻.新碳素材料[M].梁济博译.兰州:兰州新华印刷厂,1981:P311.
    [14] Inagaki M. New carbons control of structure and functions[M]. Japan: Aichi Institute ofTechnology Department of Applied Chemistry,2000: P36
    [15] Murakami M, Yoshimura S. Highly conductive pyropolymer and high-quality graphite frompolyoxadiazole. Synthetic Metals,1987,18(1-3):509-514
    [16] Hishiyama Y, Yoshida A,Kaburagi Y. Graphite films prepared from carbonized polyimide films.Carbon,1992,30(3):333-337
    [17] Murakami M, Nishiki N, Knakamura K, et al. High-quality and highly oriented graphite blockfrom polycondensation polymer films. Carbon,1992,30(2):255-262
    [18] Hishiyama Y, Nakamura M, Nagata Y, et al. Graphitization behavior of carbon film prepared fromhigh modulus polyimide film: Synthesis of high-quality graphite film. Carbon,1994,32(4):645-650
    [19] Kaburagi Y, Hishiyama Y. Highly crystallized graphite films prepared by high-temperature heattreatment from carbonized aromatic polyimide films. Carbon,1995,33(6):773-777
    [20]“PGS” Graphite Sheets, Panasonic,2008, EC178-EC181
    [21]李海英,高晓晴,张国兵,等.聚酰亚胺薄膜制备高定向石墨材料的研究.功能材料,2006,1,(37):106-108
    [22] Rubel M, Almqvist N, Wienhold P, et al. Behaviour of Si and Ti doped carbon composites underexposure to the deuterium plasma. Journal of nuclear materials,1998,(258-263):787-792
    [23] Garcia-Rosales C, Balden M. Chemical erosion of doped graphites for fusion devices. Journal ofNuclear Materials,2001,290-293:173-179
    [24] Zhang G J, Guo Q G, Liu Z J, et al. Effects of dopants on properties and microstructure of dopedgraphite. Journal of Nuclear Materials,2002,301:187-192
    [25] Hu X B, Cheng G, Zhao BY, et al. Catalytic effect of dopants on microstructure and performanceof MCMB-derived carbon laminations. Carbon,2004,42(2):293-300
    [26] Burtseva T, Barabash V, Mazul I, et al. Performance of the Ti doped graphite RG-Ti-91at thedivertor of the Tokamak ASDEX Upgrade. Journal of Nuclear Materials,1997,241-243:716-721
    [27] Qiu H P, Song Y Z, Liu L, et al. Thermal conductivity and microstructure of Ti-doped graphite.Carbon,2003,41:973-978
    [28] Liu Z J, Guo Q G, Shi J L, et al. Preparation of doped graphite with high thermal conductivity by aliquid mixing process. Carbon,2007,45:1914-1916
    [29] Liu Z J, Guo Q G, Shi J L, et al. Graphite blocks with high thermal conductivity derived fromnatural graphite flake. Carbon,2008,46:414-421
    [30]陈秀,胡浩权,郭树才.气相生长炭纤维.新型碳材料,1997,12(1):15-18
    [31] Li Y Y, Bae S D, Sakoda A, et al, Formation of vapor grown carbon fibers with sulfuric catalystprecursors and nitrogen as carrier gas. Carbon,2001,39(1):91-100.
    [32] Heremans J, Beetz C P. Thermal conductivity and thermopower of vapor-grown graphite fibers.Physical Review B,1985,32(4):1981-1988
    [33] Heremans J. Electrical conductivity of vapor-grown carbon fibers. Carbon,1985,23(4):431-436
    [34] Endo M, Kim Y A, Hayashi T, et al. Vapor-grown carbon fibers (VGCFs) basic properties and theirbattery applications. Carbon,2001,39:1287-1297
    [35] Nysten B, Issi J P. Composites based on thermally hyperconductive carbon fibres. Composites,1990,21(4):339-343
    [36] Chen Y M, Ting J M. Ultra high thermal conductivity polymer composites. Carbon,2002,40(3):359-362
    [37] Ting J M, Lake M L. Vapor-grown carbon-fiber reinforced carbon composites. Carbon,1995,33(5):663-667
    [38] Ting J M, Lake M L, Dufrfy D R. Composites based on thermally hyper-conductive carbon fiber.Journal of Materials Research,1995,10(6):1478-1484
    [39] Otani S. On the carbon fiber from the molten pyrolysis products. Carbon,1965,3(1):31-38
    [40] Singer L S. The mesophase and high modulus carbon fibers form pitch. Carbon,1978,16(6):409-415
    [41] Traceski F T. Assessing industrial capabilities for carbon fiber production, Acquisition ReviewQuarterly, Spring,1999:179-194
    [42] Lu S, Blanco C, Appleyard S, et al. Texture studies of carbon and graphite tapes by XRD texturegoniometry[J]. Journal of Materials Science,2002,37:5283-5290
    [43] Robinson K E, Edie D D. Microstructure and texture of pitch-based ribbon fibers for thermalmanagement. Carbon,1996,34(1):13-36
    [44] Che J W, Cagin T, Goddard W A. Thermal conductivity of carbon nanotubes. Nanotechnology,2000,11:65-69
    [45] Berber S, Kwon Y K, Tománek D. Unusually high thermal conductivity of carbon nanotubes.Physical Review Letters,2000,84(20):4613-4616
    [46] Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwallednanotubes. Physical Review Letters,2001,87(21):2155021-2155024
    [47] Gao X Q, Liu L, Guo Q G, et al. Fabrication and mechanical/conductive properties of multi-walledcarbon nanotube (MWNT) reinforced carbon matrix composites. Materials Letters,2005,59(24-25):3062-3065
    [48]李志,巩前明,王野,等.ACNT/C纳米复合材料导热性能及其机理的初步研究.高等学校化学学报,2006,27(10):1819-1822
    [49]周建伟,廖寄乔,王占锋.原位生长碳纳米管对炭/炭复合材料导热性能的影响.中国有色金属学报,2008,18(3):383-387
    [50]王建立,熊国平,顾明,等.多壁碳纳米管/聚丙烯复合材料热导率研究.物理学报,2009,58(7):4536-4541
    [51]刘俊峰,袁华,杜波,等.碳纳米管/导热硅脂复合材料的导热性能.材料科学与工程学报,2009,27(2):271-273
    [52] Klett J, Hardy R, Romine E, et al, High-thermal-conductivity, mesophase-pitch-derived carbonfoams: effect of precursor on structure and properties. Carbon,2000,38:953-973
    [53] Kellet, James W. Pitch-based carbon foam and composites[P]. US Patent6663842,2003
    [54] Gallego N C, Klett J W, Carbon foams for thermal management, Carbon,2003,41:1461-1466.
    [55]要立中,付建新,牛志立,等.柔性石墨压延机[P].中国专利:94223974.1,1995
    [56] http://www.sxicc.cas.cn/kycg/cgzh/xincailiao/200908/t20090811_2364586.html
    [57] Geim A K, Novoselov K S. The rise of graphene. Nature Materials,2007,6:83-191
    [58] Geim A K. Graphene: Status and prospects. Science,2009,324,1530-1534
    [59] Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon,2010,48(8):2127-2150
    [60] Ghosh S, Calizo I, Teweldebrhan D, et al. Extremely high thermal conductivity of graphene:Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters,2008,92:151911-151913
    [61] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature,2006,442(20):282-286
    [62]杨永岗,陈成猛,温月芳,等.氧化石墨烯及其与聚合物的复合.新型炭材料,2008,23(3):193-200
    [63] Xiao M, Du X S, Meng Y Z, et al. The influence of thermal treatment conditions on the structuresand electrical conductivities of graphite oxide. New Carbon Materials,2004,19(2):92-96.
    [64]郭领军,李贺军,薛晖,等.短切炭纤维增强沥青基C/C复合材料的组织特征[J].新型炭材料,2004,19(2):92-96
    [65] Luo R Y. Friction performance of C/C composites prepared using rapid directional diffused CVIprocesses. Carbon,2002,40(8):1279-1285
    [66] Siron O, Chollon G, Tsuda H, et al. Microstructural and mechanical properties of filler-addedcoal-tar pitch-based C/C composites: the damage and fraction process in correction with AE wave formparameters. Carbon,2000,38(9):1369-1389
    [67] Adams P M, Katzman H A, Rellick G S, et al. Characterization of high thermal conductivitymesophase pitch fibers and a self-reinforced graphite panel. Carbon,1998,36(3):233-245
    [68] Barr J B, Hecht D H, Levan C D. High thermal conductivity panels from mesophase pitchfibers[C]. Extended Abstracts of the22thBiennial Conf. on Carbon,1995, P32-33
    [69] Klett J W, Edie D D. Flexible towpreg for the fabrication of high thermal conductivitycarbon/carbon composites. Carbon,1995,33(10):1485-1503.
    [70] Ma Z K, Shi J L, Song Y, et al. Carbon with high thermal conductivity, prepared fromribbon-shaped mesosphase pitch-based fibers. Carbon.2006,44:1298–1352
    [71] Lewis J S, Lackey W J, Vaidyaraman S. Model for prediction of matrix microstructure forcarbon/carbon composites prepared by forced flow-thermal gradient CVI. Carbon,1997,35(1):103-112
    [72] Probst K J, Besmann T M, Stinton D P, et al. Recent advances in forced-flow, thermal-gradientCVI for refractory composites. Surface and Coatings Technology,1999,120-121:250-258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700