用户名: 密码: 验证码:
FRP加固混凝土结构受力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强复合材料FRP (Fiber Reinforced Polymer/Plastic)以其强度高(有的高于3000MPa)、重量轻(约为钢材的1/5)、易于施工、耐腐蚀性好等优点被广泛用于土木工程中结构补强加固材料。目前国内外对FRP布材加固结构的徐变性能、疲劳性能的研究较少,且FRP布材加固结构的受力性能和计算方法有待更全面和系统的研究。
     本文对FRP布材加固结构的抗弯性能、徐变性能、疲劳性能进行了较为系统的研究。主要的研究内容如下:
     (1)对8根FRP布加固钢筋混凝土简支梁的抗弯性能进行了研究,研究了不同加固材料(CFRP、GFRP、CFRP/GFRP混杂等三种不同加固材料)和不同加固历程(无加载进行加固、加载至50%极限荷载时进行加固、加载至50%极限荷载后卸载到25%极限荷载进行加固三种应力水平)时,FRP加固梁的受力特性。试验结果表明:FRP材料性能的发挥程度和加固梁的承载能力主要是由FRP加固梁的破坏模式决定;CFRP、CFRP/GFRP、GFRP对加固梁承载力提高能力依次从高到低,但CFRP/GFRP混杂加固性价比最高且延性较好;FRP布能有效约束加固梁的裂缝开展,裂缝宽度窄,间距小。加固时梁持荷越大,裂缝宽度和间距越大。
     (2)对10根不同表面处理方式(表面涂胶、粘贴CFRP、自然表面)处理的混凝土柱徐变性能进行了试验研究,结果表明:粘贴CFRP加固混凝土柱与表面涂胶混凝土柱的徐变规律基本一致,分别比自然表面混凝土柱徐变小29.0%和26.9%。
     (3)对12根CFRP布加固梁的徐变试验研究结果表明:粘贴CFRP布可以减小加固梁的徐变挠度,CFRP布自身徐变对加固梁长期变形的影响可忽略不计;卸载比例越大时,CFRP布加固梁的长期变形也越小;相同应力比时,经历徐变过程加固梁的加载龄期越早,则其挠度越大;与普通混凝土梁相比,两者的长期变形都是前期发展较快,后期发展较缓且基本趋于稳定;持荷100天时梁的徐变挠度为650天时的60.0%~72.8%。且CFRP布加固梁的徐变挠度比普通梁的徐变挠度减少6%~16.5%。
     (4)对8根CFRP布加固梁徐变后的疲劳性能进行了试验研究,结果表明:经历徐变过程加固梁在疲劳后的静力性能优于经历徐变过程的未加固梁;CFRP布加固后梁的抗裂性能也得到极大的提高,加固梁的疲劳抗裂性有了较大的改善;经历徐变过程加固梁疲劳后的受力变形性能优于未加固梁,承载力为未加固梁的1.35倍。CFRP布加固梁在徐变后仍然具有良好的抗疲劳性能。
     (5)推导了FRP加固钢筋混凝土梁正截面极限承载力和正常使用极限状态裂缝和挠度计算公式,计算结果与试验值吻合较好。
     (6)在计算CFRP/GFRP混杂加固梁的承载力时,可将CFRP/GFRP截面等效为纯CFRP截面来进行计算,试验结果表明这种方法可行。
     (7)推导了采用按龄期调整有效弹性模量法计算CFRP布加固梁长期变形的计算公式,计算结果与实测结果吻合良好。
     (8)提出的正截面疲劳性能计算方法可较准确的预测经历徐变过程加固梁的疲劳性能。
     (9)对试验梁进行了非线性全过程分析,在此基础上,利用提出的分析方法对模型梁的受力特性进行了比较详细的参数分析研究。
The new materials of Fiber Reinforced Plastic (FRP) has good prospects in civil engineering due to the excellent properties of high tensile strength(about3000MPa), lightweight(about1/8of steel's weight), easy installation and nocorrosion. At present, the researchs about creep behavior and fatigue performance of concrete structures strength by FRP sheets, and behavior of concrete beams prestressed with external tendons is limited
     An experimental study and the corresponding theory analysis are conducted to investigate the behavior of concrete structures strength with FRP sheet. This dissertation involves the following work:
     (1) the behaviors of8RC beams strengthened with externally bonded FRP sheets have been studied. The primary parameters are different stregthed FRP materials (CFRP、GFRP、CFRP/GFRP) and different initial stress levels(zero applied load,50%ultimate load and25%ultimate load unloaded from50%ultimate load). The experimental results show that behavior of FRP and beams depend on the carcking patterns. The rising ratio of ultimate bear capacity for these FRP sheets is FRP、 CFRP/GFRP、GFRP, respectively, and the dunctily of beams sterenghed with CFRP/GFRP is the best. The beams strengthed with FRP sheets have an excellent behavior in rack distribution.
     (2) Long-term test on10concrete columns were tested. The primary parameters are three different surface treatment of coat free, epoxy coated and CFRP sheet wrapped. The results showed that the creep coefficients in CFRP-confined concrete columns and in epoxy-coated concrete columns are almost same, but the creep coefficients values are about29.0%、26.9%higher to normal concrete columns.
     (3) Long-term test on12concrete beams were tested. The results showed that thelong-term deformation can desrease due to the effect of CFRP sheet. The higher unload values can decrease the long term deformation of beams. When beams are of the same ratio values of stress to strenght, the long-term deformation of beams with the14th day load time is higher than that of28th day load time. The long-term deformation of beams with100days creep time ia about60.0%~72.8%of that of650days creep time. The long-term deformation of beams strenghted with CFRP sheet are6%~16.5%of that normal conrete beams.
     (4) Fatigue tests of8strengthened beams which had/had not crept were completed. The behavior of crept beams with stregthed with FRP sheet after fatigue is better than that crept beams without stregthed with FRP sheet after fatigue. The beams strengthed with CFRP sheets have an excellent behavior in rack distribution. The ultimate capacity of beams with stregthed with FRP sheet is1.35times of that beams without stregthed with FRP sheet. It is shown that the reinforced concrete beams strengthened with carbon fiber sheets have better fatigue behavior.
     (5) The calculating formula for the flexural ultimate capacity, and searviceability of RC beams strengthened with externally bonded FRP sheets have been developed, which verifies that the computed values are precise.
     (6) The computed method of load capacity for beams strenghted CFRP/GFRP sheet were similar with that of beams strenghted CFRP sheet. And it is verified that the predicted results from the model presented are in good agreement with the test ones.
     (7) The computed method of long-term deformation for beams strenghted with CFRP sheet according to the effect modulas is develpoed. And it is verified that the predicted results from the model presented are in good agreement with the test ones.
     (8) The full analysis of fatigue is presented based on the residual strain、fatigue elastic and fatigue strength degradation, which verifies that the computed values are precise.
     (9) The numerical analysis based on the nonlinearly program is presented. And the program analysis of behavior of concrete structures strength by FRP are studied.
引文
[1]卓尚木,季直仓,卓昌志.钢筋混凝土结构事故分析与加固.北京:中国建筑工业出版社,993,2-3
    [2]曹双寅,邱洪兴,王恒华.结构可靠性鉴定与加固技术.北京:中国水电出版社,2001,16-21
    [3]赵彤,谢剑.碳纤维布补强加固混凝土结构新技术.天津:天津大学出版社,2001,3-4
    [4]王文炜.FRP加固混凝土结构技术及应用.北京:中国建筑工艺出版社,2007,1-35
    [5]American Concrete Institute440. State-of-the-Art Report on Fiber Reinforced Plastic (FRP) Reinforcement for Concrete Structures Structures (ACI440R-96). Michigan:Farmingtons Hills,1996,1-25
    [6]Japan Society of Civil Engineers.Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials, Research Committee on Continuous Fiber Reinforcing Materials. Tokyo:Japan Society for Civil Engineers,1997,1-83
    [7]ACI Committee 440. Guide for Test Methods for Fiber Reinforced Polymers (FRP) for Reinforcing and Strengthening Concrete Structures,(ACI 440.3R-04). Michigan:Farmingtons Hills,2004,1-86
    [8]Canadian Standards Association. Canadian Highway Bridge Design Code (S6-96). Toronto:Canadian Standards Association,1996,60-94
    [9]Canadian Standards Association. Canadian Highway Bridge Design Code (S6-00). Toronto:Canadian Standards Association,2000,73-110
    [10]Canadian Standards Association. Design and Construction of Building Components with Fiber Reinforced Polymers (S806-00). Toronto:Canadian Standards Association,2000,1-120
    [11]中国工程建设标准化协会.《碳纤维片材加固混凝土结构技术规程》(CECS146:2003)北京:中国计划出版社,2003,1-78
    [12]吴刚.FRP加固钢筋混凝土结构的试验研究与理论分析:[东南大学博士论文].南京:东南大学土木工程学院,2002,1-5
    [13]熊光晶,姜浩,黄冀卓.混杂纤维布加固混凝土梁的试验研究.土木工程学报,2001,34(4):62-66
    [14]邓宗才.碳纤维布增强钢筋混凝土梁抗弯力学性能研究.中国公路学报,2001,14(2):45-51
    [15]彭刚,刘立新,李险峰.预应力碳纤维布加固钢筋混凝土梁受剪性能试验研究.河南科学,2005,23(3):407-410
    [16]Tom Norris,Hamid Saadatmanesh,Mohammad R. Ehsani. Shear and Flexural Strengthening of R/C Beams with Carbon Fiber Sheets. Journal of Structural Engineering,1997,123(7):903-911
    [17]Hamid Rahimi, Allan Hutchinson.Concrete beams strengthened with externally bonded FRP Plates. Journal of Composites for Construction,2001, 5(1):44-56
    [18]Meier U., Deuring M., Meier H., Schwegler G., CFRP bonded sheets, A. Nanni (Ed.), Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures:Properties and Applications Elsevier Science,1993,1-26
    [19]Mirmiran, A., Shahawy, M. Behavior of Concrete Columns Confined by fiber Composites. Journal of Structural Engineering,1997,123(5):583-590
    [20]Malek A. M., Saadatmanesh H.,. Ehsani M. R. Prediction of Failure Load of R/C Beams Strengthened with FRP Plate Due to Stress Concentration at the Plate End. ACI Structural Journal,1998,95(2):142-153
    [21]Amir Z. Fam, Sami H. Rizkalla. Confinement Model for Axially Loaded Concrete Confined by Circular Fiber-Reinforced Polymer Tubes. ACI Structural Journal,2001,98(4):451-460
    [22]肖岩,吴徽,陈宝春.碳纤维套箍约束混凝土的应力-应变关系.工程力学,2002,19(2):154-159
    [23]吴刚,吕志涛.纤维增强复合材料(FRP)约束混凝土矩形柱应力-应变关系的研究.建筑结构学报,2004,25(3):99-106
    [24]Shamim A. Sheikh, Oguzhan Bayrak. Seismic Behaviour of FRP-Retrofitted Concrete Columns. Journal of Structural Engineering,2002,124(9):1025-1031
    [25]陶忠,于清.FRP约束混凝土柱徐变特性的理论分析.工业建筑,2001,31(4):12-16
    [26]Chen J. F., Teng J. G. Anchorage Strength Models for FRP and Steel Plates Bonded to Concrete. Journal of Structural Engineering,2001,127(7):784-791
    [27]Toutanji H., Deng Y., Zhang Y., Jia M. and Balaguru P. Cyclic behavior of RC beams strengthened with Carbon Fiber Sheets bonded by Inorganic Matrix. Proceedings, Mechanics of Composites Materials(MCM),2002,12 (2):25-35
    [28]叶华文,Konig C., Thomas U,强士中.预应力CFRP板加固钢板受拉疲劳性 能试验研究.西南交通大学学报.2009,25(3):376-380
    [29]Thanasis C.Triantafillou.Strengthening of Masonry Structures Using Epoxy-Bonded FRP Laminates. Journal of Composites for Construction,2000,2(2) 96-104
    [30]Christopher K. Y. Leung. Delamination Failure in Concrete Beams Retrofitted with a Bonded Plate. Journal of Materials in Civil Engineering, 2001,13(2):106-133.
    [31]Rabinovitch O., Frostig Y.. High-Order Approach for the Control of Edge Stresses in RC Beams Strengthened with FRP Strips. Journal of Structural Engineering,2001,127(7):799-809
    [32]陆新征,叶列平,壮江波.FRP加固混凝土梁抗剪剥离破坏设计公式综述.工业建筑,2004,34(370):30-36
    [33]吴刚,吕志涛.外贴FRP加固混凝土梁粘结破坏机理的试验研究.工业建筑,2004,34(370):83-88
    [34]Wendel M. S. Significance of Midspan Debonding Failure in FRP-Plated Concrete Beams. Journal of Structural Engineering,2001,127(7):792-798
    [35]Chen J. F., Teng J. G. Anchorage Strength Models for FRP and Steel Plates Bonded to Concrete. Journal of Structural Engineering,2001,127(7):784-791
    [36]Laura D. L., Brian M., Nanni A.. Bond of Fiber-Reinforced Polymer Laminates to Concrete. ACI Structural Journal,2001,98(3):256-264
    [37]Meier U. Carbon Fiber-Reinforced Polymers:Modern Materials in Bridge Engineering. Structural Engineering International,1992,25:12-23
    [38]Z. Wu, K. Iwashit. Fatigue performance o f RC beams strengthened with externally pre-stressed PBO fiber sheets. FRPRCS-6,2003:885-894
    [39]Inoue S. Fatigue strength and deformation characteristics of reinforced concrete beams strengthened with carbon fiber-reinforced plastic plate. Transactions of the Japan Concrete Institute,1995(17):149-156
    [40]Inoue S. Deformation characteristics, static and fatigue strengths of reinforced concrete beams strengthened with carbon fiber-reinforced plastic plate. Transactions of the Japan Concrete Institute,1996(18):143-150
    [41]Papakonstantinous C. G., Balaguru P. N. and Petrou M. F. Analysis of reinforced concrete beams strengthened with composites subjected to fatigue loading. Concrete:Material Science to Application, ACI SP-206,2002:41-60
    [42]Ferrier E. and Hamelin P. Evolution of bending stiffness of RC beam strengthened by FRP under fatigue loading. Advanced Composite Materials in Bridges an Structures, CSCE,2000,735-742
    [43]Capozucca R., Cerri M. Static and dynamic behavior of RC beam model strengthened by CFRP-sheet. Construction and Building Materials,2002(16): 91-99
    [44]刘沐宇,李开兵,张学民等.碳纤维布加固损伤混凝土梁的疲劳性能试验.武汉理工大学学报,2004,26(4):52-55
    [45]Capozucca R., Cerri M. Static and dynamic behavior of RC beam model strengthened by CFRP-sheet. Construction and Building Materials,2002(16): 91-99
    [46]Toutanji H., Deng Y., Zhang Y., Jia M. and Balaguru P. Cyclic behavior of RC beams strengthened with Carbon Fiber Sheets bonded by Inorganic Matrix. Proceedings, Mechanics of Composites Materials(MCM),2002.12:25-38
    [47]Abdel Wahab EI-Ghandour, Kypros Poilakoutas, Peter Waldron. Punching Shear Behavior of Fiber Reinforced Polymers Reinforced Concrete Flat Slabs: Experimental Study. Journal of Composites for Construction,2003,7(3): 258-265
    [48]曾宪桃.粘贴玻璃钢板加固混凝土梁动静行为研究及其徐变特性分析:[西南交通大学博士论文].成都:西南交大土木工程学院,1998,118-134
    [49]Thanasis C. Triantafillou. Strengthening of Masonry Structures Using Epoxy-Bonded FRP Laminates. Journal of Composites for Construction, 2000,2(2):96-104
    [50]武萍,于峰.FRP加固木结构研究综述.低温建筑技术.2009,31(12):36-38.
    [51]杨建中,熊光晶,严州等.高强玻璃纤维/碳纤维混杂复合材料加固混凝土梁的抗弯试验研究.土木工程学报,2004,37(7):18-22
    [52]熊光晶,姜浩,黄冀卓.混杂纤维布加固混凝土梁的试验研究.土木工程学报,2001,34(4):62-66
    [53]张坦贤,吕西林.玻璃纤维与钢板加固混凝土梁抗弯性能的研究与应用.工业建筑,2004,34(370):139-144
    [54]姜浩,熊光晶,纪梓斌等.碳纤维、玻璃纤维复合加固混凝土柱的抗压性能研究.汕头大学学报,2001,16(1):13-16
    [55]Grace N F, Abdel-Sayed G. Behavior of Carbon Fiber-Reinforced Prestressed Concrete Skew Bridge. ACI Structural Journal,2000,97(1):26-34
    [56]中华人民共和国建设部部颁标准.混凝土结构设计规范(GB50010-2002).北京:中国建筑工业出版社,2002,1-126
    [57]中国建筑科学研究院.混凝土结构设计.北京:中国建筑工业出版社.2003, 76-77
    [58]庄江波,叶列平.CFRP布加固钢筋混凝土梁的裂缝研究.工业建筑,2004,34(370):73-78
    [59]滕智明.钢筋混凝土基本构件.北京:清华大学出版社,1999,317-334
    [60]Hatt W K. Notes on the effect of time element in loading reinforced concrete beams. Proc.ASTM,1907,13(11):531-555
    [61]Bazant Z P. Prediction of concrete creep and shrinkage:past,present and future.Nuclear Engineering and Design,2001,203(3):27-38
    [62]Neville A. M. Properties of concrete. London:Pitman,1981,15-30
    [63]Pickett G. Shrinkage stresses in concrete. ACI Journal,1942,42(3):165-204, 361-398
    [64]周履,陈永春.收缩徐变.北京:中国铁道出版社,1994,30-54
    [65]胡狄.预应力混凝土桥梁徐变效应分析:[中南大学博士论文].长沙:中南大学土木与建筑工程学院,2003,1-15
    [66]惠荣炎,黄国兴,易若冰.混凝土的徐变.北京:中国铁道出版设,1988,60-85.
    [67]辛济平等译AASHTO,美国公路桥梁设计规范(1994).北京:人民交通出版社,1998,203-207
    [68]杨小兵.混凝土收缩徐变预测模型研究:[武汉大学硕士论文].武汉:武汉大学土木工程学院,2004,25-49
    [69]中华人民共和国交通标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)北京:人民交通出版设,2004
    [70]ACI Committee209.Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures(209R-92).Farmington Hills, Mich.:America Concrete Instistute,1992,1-352
    [71]CEB-FIP Model Code for Concrete Structures 1990.Comite Euro- international du Beton/Federation International de la Precon-strainte.Paris,1990,25-68
    [72]Nikolaos Plevris, Thanasis C Triantafillou.Time-dependent beahavior of RC members strengthened with FRP laminates.Journal of structural Engineering, 1994,120(3):1016-1041
    [73]Nikolaos Plevris, Thanasis C Triantafillou.Time-dependent beahavior of RC members strengthened with FRP laminates.Journal of structural Engineering, 1994,120(3):1016-1041
    [74]曾宪桃.粘贴玻璃钢板加固混凝土梁动静行为研究及其徐变特性分析:[西南交通大学博士论文].成都:西南交大土木工程学院,1998,118-134
    [75]Clarke G, Scholz H, Alexander M. New method to predict the creep deflection of cracked reinforced concrete flexural members. ACI Structural Journal,1988,85(12):95-101
    [76]吕海燕,戴公连,李德建.预应力混凝土梁在疲劳荷载作用下的变形.长沙交通学院学报,1998,16(1):24-28
    [77]Tom Norris, Hamid Saadatmanesh, Mohammad R. Ehsani. Shear and Flexural Strengthening of R/C Beams with Carbon Fiber Sheets. Journal of Structural Engineering,1997,123(7):903-911
    [78]曾志斌,李之榕.普通混凝土梁用钢筋的疲劳S-N曲线研究.土木工程学报,1999,32(5):10-14
    [79]宋玉普,赵顺波,王瑞敏等.钢筋混凝土疲劳性能的非线性有限单元法分析.海洋学报,1993,15(3):116-125
    [80]CEB-FIP模式规范(混凝土结构).CEB欧洲混凝土国际委员会,1990.中国建筑科学研究院结构所规范室译,1991,25-68
    [81]王瑞敏.混凝土结构的疲劳性能研究:[大连理工大学博士论文].大连:大连理工大学,1989,68-94
    [82]ACI Committee 215. Consideration for design of concrete structure subjected to fatigue loading. ACI Journal,1974,71(3):97-121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700