用户名: 密码: 验证码:
现浇石膏外墙多高层钢网格盒式节能住宅结构体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出了一种新型钢结构住宅体系——现浇石膏外墙钢网格盒式结构,可适用于多、高层住宅结构。它符合我国转变经济增长方式的基本国情,解决了多年制约我国钢结构住宅发展的问题。它将结构性能、建筑功能、节能环保以及工业废料再利用有机的整合起来,是一种一举多得的建筑结构体系,有着很大的推广和发展前景。
     开篇总结了现有住宅钢结构体系发展现状及其不足,介绍了钢网格盒式结构体系的主要构成子体系和构造方式。随后,提出了目前面临的一系列研究问题:子体系的基本力学性能、型钢与石膏的粘结性能及机理、结构影响系数取值以及该体系的综合技术性能分析。
     介绍水平子体系——钢空腹夹层板网格结构的构造特点;采用连续化分析建立其基本力学方程,给出四边简支条件下的解析解;提出该体系的实用分析方法;针对同一算例,对比研究连续化分析、有限元分析以及实用分析方法的结果,证明连续化分析方法的精确性以及实用分析方法在工程实践中的安全度和可行性。
     采用框架作用的力学机理解释竖向子体系——钢网格式框架墙如何提高抗侧刚度;采用D值法和柔度法分析钢网格式框架墙的剪切变形,采用隔离体法分析其整体弯曲变形;与有限元分析结果对比证明:D值法结果偏小,工程实践中宜采用柔度法,且整体弯曲变形较明显。采用模态静力推覆方法对比分析了该体系与普通框架结构的抗震性能,结果显示该体系抗侧刚度好,抗震性能优越。
     通过18根型钢石膏组合试件基于正交分析法的推出试验,研究了石膏与型钢之间的粘结性能,分析了石膏强度、保护层厚度及型钢锚固长度对其的影响,拟合型钢石膏粘结强度计算公式并给出型钢石膏粘结滑移本构模型。
     阐述本文研究现浇石膏外墙钢网格盒式结构的结构影响系数的思路及具体步骤。采用该体系建立了6个不同层数和跨度的算例,分别计算其结构影响系数。结果显示多层钢网格盒式结构体系的结构影响系数可取3。
     对一15层住宅结构,分别采用型钢网格盒式结构和普通框架-剪力墙结构设计,对比分析他们的周期、位移响应、内力分配以及综合技术性能。结果显示工业石膏外墙钢网格盒式结构体系在多个指标上具有一定的优势。
A new structural system of steel dwelling houses applied in multiple and high-riseresidence building is proposed, called steel grid box-like structure with gypsum wallcast-in-place (SGBSG). It conforms to our country situation of changing economicmode, and solves the problems restricting steel house development for years. Thissystem has a lot of promotion and development prospects for multi advantages suchas good structural properties, powerful architectural function, energy conservation,environmental protection and circulation of industrial wastes.
     In the beginning, the development status and the advantages and disadvantages ofthe residence with steel structure are summarized, and the sub-systems andconstruction styles of SGBSG are introduced. And then, a series of research topics areput forward including: the basic mechanical properties of sub-system, bondperformance and slip mechanism between steel grid frame and gypsum, value ofstructural influencing coefficient and combined technical performance.
     The construction features of Steel Vierendeel grid slab structure (SVGSS), whichis the horizontal sub-system of SGBSG is introduced. Based on the principle ofcontinuous analysis, the basic mechanical equation in consideration of sheardeformation is established and the analytic solution is gotten under boundarycondition simply supported on four sides. Practical analysis method and its calculationkeys are presented for the design of SVGSS. According to a calculation example, acomparative research of results of continuous analysis, FEM analysis and practicalanalysis proves that the continuous analysis has good accuracy and the practicalanalysis method has high safety and good feasibility used in actual engineering.
     The reason of lateral stiffness improvement of steel grid frame wall (SGFW),which is the vertical sub-system of SGBSG, is studied by using the structuralmechanics theory of framework effect. D-value method and flexibility method arerespectively used to calculate the shear deformation of SGFW. The flexuraldeformations are obtained with Isolation-unit Method. The results comparison withFEM analysis shows that the results of D-value method are relatively small, the actualengineering should use flexibility method, and the flexural deformation is obvious.With Pushover method, the seismic property of SGFW and steel frame are studied,and the results show that the lateral stiffness and seismic property of SGFW are better than steel frame.
     In order to determine the relations between the three main bond-anchoring factorsincluding gypsum strength, gypsum cover thickness and steel embedment length andthe bond strength, and establish the bond-slip constitutive relations,18standardpush-out test specimens were designed. The whole push-out test processes were fullyobserved. The first cracking and cracking development and the final failure modewere carefully observed. Based on the summary of the characteristics of load-slipcurves and bond stress-slip curves, the bond-strength calculation formulas andbond-slip Constitutive Model are determined.
     The necessity of study on structural influencing coefficient in the current seismicdesign methods is explained. The idea and method of research on the structuralinfluencing coefficient of SGBSG are introduced. Using this system,6models ofdifferent stories and different span are built to calculate the structural influencingcoefficient. The results show that the value of structural influencing coefficient ofSGBSG is3, which is bigger than the regulation value2.86in the current seismicdesign code of our Country.
     According to a high-rise residence with15stories, two different models are builtby respectively using SGBSG and steel frame-shear wall. The study of period,displacement, internal force distribution and combined technical performance areconducted between these two models. The results show that SGBSG has someadvantages in several indexes.
引文
[1]建设部编,中国建筑技术政策(1996-2010精装),北京:中国城市出版社,1998
    [2]建设部住宅产业化促进中心,钢结构住宅设计与施工技术,北京:中国建筑工业出版社,2005
    [3]王元清,石永久,陈宏等,现代轻钢结构建筑及其在我国的应用,建筑结构学报,2002,23(1):2-8
    [4]刘锡良,国外钢结构应用概况,工业建筑,2001(增刊)
    [5]Burst rand Halite-Gauge Steel Framing Leads the Way to an Increased Productivity for Residence Housing. J. Constr.Steel Research,1998,46(1-3):209
    [6]住建部及财政部,《关于加快推动我国绿色建筑发展的实施意见》,财建[2012]167号文件
    [7]崔鸿超,高层建筑钢结构在我国的发展,建筑结构学报,1997(1):60-71
    [8]高光虎,多高层轻型钢结构住宅设计,建筑结构,2001,8:16-20
    [9]刘歌青,石永久,王元清等,纯框架体系在多层轻钢住宅中的应用研究,工业建筑,2002,32(12):64-66
    [10]Huzzard Robert K.&Larson Jay W. Economical steel-framed high-rise residence buildings, Steel Construction,1988,22(4):2-9
    [11]黄怡,王元清,陈宏等,多层轻钢框架结构的抗震性能分析,工业建筑,2006,36(12):73-75
    [12]Hayashi M.&Yoshinaga K. An Experimental Study of Practical Application of Composite Structures of a Frame and an Earthquake-Resistant Wall1. Synopses of the Conference of Architecture Institute of Japan, AIJ, Tokyo, Japan,1985.1335-1336
    [13]Makino M. Design of Framed Steel Structures with in filled Reinforced Concrete Walls. Composite and Mixed Construction, Roeder, C. W.(ed.), ASCE, New York,1984.279-287
    [14]戴绍斌,黄俊,钢框架-核心筒钢结构住宅的抗震概念设计,武汉理工大学学报,2003,25(11):50-56
    [15]钱稼如,偏心支撑钢框架设计——美国蓝皮书介绍,建筑结构,1988(6):57-58
    [16]钱稼如,陈茂盛,张天申等,偏心支撑钢框架拟动力地震反应试验研究,建筑结构,1992(1):15-18
    [17]申林,顾强,苏明周,高层结构钢支撑循环性能的研究和现状,西安建筑科技大学学报,2000(3):213-219
    [18]Kim Seung Eock&Chen WaiFah. Practical advanced analysis for braced steel frame design, Journal of structural engineering,1996,122(11):1266-1274
    [19]李黎明,矩形钢管混凝土柱力学性能研究:[博士学位论文],天津;天津大学,2007
    [20]张亮,钢结构住宅体系研究:[硕士学位论文],天津;天津大学,2008
    [21]邹晶,李元齐,钢结构住宅体系在我国的发展现状及存在问题,住宅体系,2007,22(7):10-16
    [22]刘晓,沈祖炎,多层钢结构住宅综合经济指标分析,工业建筑,2003(增)
    [23]颜洪亮,马林,墙体改革与轻钢住宅体系的发展,住宅科技,2001(8)39-40
    [24]方强,钢结构防火设计和保护,钢结构,2002,(4):43-56
    [25]中华人民共和国建设部,GB50016-2006,建筑防火设计规范,北京:中国计划出版社,2006-12-01
    [26]杨伯忠,周昱,陈鑫,钢结构防火涂料应用中存在的几个问题,消防技术与产品信息,2006,(1):25-27
    [27]中华人民共和国国家质量监督检验检疫总局,GB14907-2002,钢结构防火涂料,北京:中国标准出版社,2002-07-01
    [28]中华人民共和国建设部,GB50205-2001,钢结构工程施工质量验收规范,北京:中国计划出版社,2002-01-10
    [29]谷岩,纤维石膏速成板—钢筋混凝土组合构件受力性能试验研究与有限元分析:[博士学位论文],天津;天津大学,2007
    [30]岳建伟,灌芯纤维石膏墙板结构的计算模型及受力性能分析[博士学位论文],天津;天津大学,2005
    [31]黄首赟,石膏成型的两种新型环保墙体—速成墙的构造与力学特点比较,贵州工业大学学报(自然科学版),2006,35(4):81-86
    [32]马克俭等,磷石膏在大开间灵活划分居室住宅建筑研究与应用研究报告,2007
    [33]马克俭,张华刚,郑涛,新型建筑空间网格结构理论与实践,北京:人民交通出版社,2006
    [34]马克俭,李莉,张华刚等,大跨度建筑物屋盖与楼盖的建筑方法及其双重网格结构,中国专利:03135370.3,2003
    [35]马克俭,张华刚,郑涛等,钢砼外挂磷石膏防火板组合空腹大板楼盖及其制作方法,中国专利:200610200188.X,2006
    [36]马克俭,高国富,张华刚等,以磷石膏为墙体材料的钢筋砼下刚上柔弯剪型墙体结构及制作方法,中国专利:200810305456.3,2009
    [37]马克俭,高国富,张华刚等,磷石膏为墙体材料的钢筋砼结构体系现场浇制施工方法,中国专利:200810305454.4,2009
    [38]马克俭,高国富,张华刚等,以磷石膏为墙体材料的钢筋砼网格式框架结构及制作方法,中国专利:200810305455.9,2009
    [39]马克俭,张华刚,何浩明等,一种石膏—混凝土混合结构节能住宅建筑及制作方法,中国专利:200910305790.3,2010
    [40]马克俭,张华刚,周观根等,钢结构石膏墙体大开间节能住宅建筑及现场分层分段制作方法,中国专利:200910305789.0,2009
    [41]马克俭等,空间网格式框架结构在多、高层大开间灵活划分房间石膏节能建筑中的研究与应用综述,空间结构,2009,3(15):66-84
    [42]Federal Emergency Management Agency, Guidelines and Commentary for the Seismic Rehabilitation of Buildings, FEMA274,1998:24-28
    [43]Scott Lawson R. Nonlinear Static Pushover Analysis:Why, When, and How?5th U. S. National Conference on Earth-quake Engineering,1994:58-66
    [44]Helmut Krawinkler. Pros and Cons of a Pushover Analysis of Seismic Performance Evaluation. Engineering Structures,1998:20-32
    [45]Peter Fajfar. Simple Pushover Analysis of Buildings Structures.11th World Conference on Earthquake Engineering,1996:36-45
    [46]Kaspar Peter. Application of the Capacity Spectrum Method to R.C. Buildings with Bearing walls.12th World Conference0on Earthquake Engineering, Paper No.0609,2000:546-555
    [47]Trevor E Kelly. Analysis Procedures for Performance Based Design.12th World Conference on Earthquake Engineering, Paper No.2400,2000:1129-1137
    [48]H S Lew. Evaluation of Analysis Procedures for Performance Based Seismic Design of Buildings.12th World Conference on Earthquake Engineering, Paper No.1005,2000:789-797
    [49]钱稼茹,罗文斌,静力弹塑性分析:基于性能/位移抗震设计分析工具,建筑结构,2000,30(6):23-26
    [50]叶燎原,潘文,结构静力弹塑性分析(push-over)的原理和计算实例,建筑结构学报,2000,21(1):37-43
    [51]李昱,叶燎原,push-over分析法及其与非线性动力分析法的对比,世界地震工程,1999,15(2):34-39
    [52]Moghadam A S. Pushover Analysis for A Symmetric and Set-back Multi-Story Buildings.12th World Conference on Earthquake Engineering, Paper No.1093,2000:2076-2086
    [53]Misael Requena. Evaluation of a Simplified Method for the Determination of the Nonlinear Seismic Response of RC Frames.12th World Conference on Earthquake Engineering, Paper No.2109,2000:1325-1333
    [54]Sangdae Kim. Seismic Evaluation of High-rise Buildings by Modified Dynamic Inelastic Analysis Methods.12th World Conference on Earthquake Engineering, Paper No.2320,2000:1984-1993
    [55]R IDDEL R, NEWMARKNM. Statistical analysis of the response of nonlinear systems subjected to earthquakes. Structural Research Series No.468, Dept of CivEngrg Urbana-Champaign:University of Illinois,1979
    [56]ELGHADAMSI FM, MOHRAZB. Inelastic Earthquake Spectra Earthquake. Engineering and Structural Dynamics.1984,15(1):91-104
    [57]NASSAR A A, KRAW INKLER H. Seismic demands for SDOF and MDOF systems. Report No.95. Stanford:The John A. Blume Earthquake Engineering Center, Stanford University,1991:12-45
    [58]MARANDA E. Site-dependent strength reduction factors. Journal of Structural Engineering.1993,11(12):3503-3519
    [59]Eduardo Miranda, BETERO V V. Evaluation of strength reduction factors for earthquake-resistant designs. Earthquake Spectra.1994,10(2):357-379
    [60]Vidiet, Fajfar P, Fisehinger M. Consistent inelastic designs Pectra: strength and displacement. Earthquake Engineering and Structure Dynamics,1994,23(5):507-521
    [61]Lam N, Wilson J, Hutehinson G. The duetility reduction factor in the seismic design of buildings. Earthquake Engineering and Structural Dynamics,1998,27(7):749-761
    [62]ChaiY H, Fajfar P, Romstad K M. Formulation of duration dependent inelastic seismic design spectrum. Jounral of structural Engineering,1998,124(8):913-921
    [63]Ordaz M, Perez Rocha L E. Estimation of strength-reduction factors for elastoPlastic systems:a new approach. Earthquake Engineering and Structural Dynamics,1998,27(9):889-901
    [64]Lee L H Han S W. Determination of ductility factor considering different hysteretic models. Earthquake engineering and structural dynamics,1999,28(9):957-977
    [65]Borzi B, Elnashai A S. Refined force reduction factors for seismic design. Engineering structures,2000,22(10):1244-1260
    [66]Tiwari A K, GuPta V K. Sealing of ductility and damage based strength reduction factors for horizontal motions. Earthquake Engineering and Structure Dynamics,2000,29(7):969-987
    [67]Cuesta, Aschheim M A. Isoductile strengths and strength reduction factors of elasto-Plastic SDOF systems subjected to simple wave forms. Earthquake Engineering and Structural Dynamics,2001,30(7):1043-1059
    [68]卓卫东,范立础,结构抗震设计中的强度折减系数研究,地震工程与工程振动,2001,21(1):84-88
    [69]吕西林,周定松,考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱,地震工程与工程震动,2004,24(1):39-48
    [70]黄金桥,钢结构弹塑性动力学及抗震设计理论研究[博士学位论文],杭州;浙江大学,2005
    [71]翟长海,谢礼立,近场脉冲效应对强度折减系数的影响分析,土木工程学报,2006,39(7):15-19
    [72]龚胡广,基于性能的抗震设计方法及其在高层混合结构抗震评估中的应用[博士学位论文],长沙:湖南大学,2006
    [73]Denis M. and Paultre P. Ducility and overstrength in seismic design of reinforced conerete structures. Can. J. Civ. Eng.21.(1994)1049-1060
    [74]Sudhir K. Jain and Rahul Navin. Seismic overstrength in reinforced conerete frames. Journal of Structural Engineering,1995,111(3):580-585
    [75]M. A. Rahgozar and J. L. Humar. Accounting for overstrength inseismic design of steel structures. Can. J. Civ. Eng.25(1998):1-15
    [76]Tezcan S S, Uluca0. Redection of earthquake response of Plane frame building by viscoelastic dampers. Engineering Structures,2003,25(14):1755-1761
    [77]Mahmoud R M, Akbari R. Seismic behavior factor R for steel X-braced and Knee-braced RC buildings. Engineering Structures,2003,25(12):1505-1513
    [78]李成,徐柏荣,顾强,K型偏心支撑钢框架的结构影响系数研究,建筑结构,2007,10:43-45
    [79]王栉枫,何若全,V型中心支撑钢框架的结构影响系数,苏州科技学院学报(工程技术版),2007,20(2):1-5
    [80]翟长海,谢礼立,抗震规范应用强度折减系数的现状及分析,地震工程与工程震动,2006,26(2):1-7
    [81]林同炎,S.D.斯多台斯伯利,结构概念和体系(高立人等),北京:中国建筑工业出版社,1992,115-143
    [82]计学闰,王力,结构概念和体系,北京:高等教育出版社,2004
    [83]贵州省建设厅,DB22/48-2005,钢筋砼空腹夹层板楼盖结构技术规程,贵阳:2005-09-14
    [84]马克俭,张华刚,郑涛,新型建筑空间网格结构理论与实践,北京:人民交通出版社,2006
    [85]陈波,郑旭东,黄勇等,一种新型组合结构—组合式空腹板,贵州工业大学学报(自然科学版),2002,31(5):75-77
    [86]张华刚,黄勇,马克俭,钢空腹夹层板在建筑楼盖改造中的应用,贵州工业大学学报(自然科学版),2003,32(4):83-87
    [87]白晓冬,黄勇,纪延安等,考虑组合空腹板架施工起拱的钢肋与钢管剪力键连接节点设计,贵州工业大学学报(自然科学版),2008,37(4):116-118
    [88]董石麟,夏亨熹,正交正放类网架结构的拟板(夹层板)分析法(上)、(下),建筑结构学报,1982(2)(3)
    [89]董石麟,马克俭等,组合网架结构与空腹网架结构,杭州:浙江大学出版社,1992
    [90]黄勇,马克俭,张华刚等,钢筋混凝土空腹夹层板楼盖体系的研究与应用,建筑结构学报,1997,18(6):55-63
    [91]黄勇,张华刚,空腹夹层板的拟夹层板分析法贵州工业大学学报(自然科学版),1997,26(4):73-82
    [92]黄勇,陈波等,空腹夹层板的构造及连续化分析方法,贵州工业大学学报(自然科学版),1997,26(4):66-72
    [93]寿楠椿,弹性薄板弯曲,北京:高等教育出版社,1985
    [94]黄炎,弹性薄板理论,长沙:国防科技大学出版社,1992
    [95]黄勇,安竹石,马克俭,组合空腹板板柱结构设计与研究,建筑结构学报,2002,23(5):63-66
    [96]魏艳辉,马克俭,张华刚,上、下弦反弯点处装配整体式钢空腹夹层板静力试验分析,贵州工业大学学报(自然科学版),2008,37(4):79-82
    [97]张华刚,胡岚,马克俭,空腹夹层板的静力性能分析及其实用计算方法,贵州工业大学学报(自然科学版),2006,35(3):82-87
    [98]魏艳辉,装配整体式钢空腹夹层板网格结构及钢-砼协同组式合空腹夹层板楼盖结构的研究与应用[硕士学位论文],贵阳;贵州大学,2009
    [99]王沫然,MATLAB与科学计算,北京:电子工业出版社,2003
    [100]马克俭,高国富,张华刚等,空间网格式框架结构在多、高层大开间灵活划分房间石膏节能建筑中的研究与应用综述,空间结构,2009,15(3):62-84
    [101]李汝庚,对D值法的一点改进,建筑结构,1994(7):20-28
    [102]梁启智梁平,框架柱的侧移刚度,华南理工大学学报,1995,23(1):91-99
    [103]张川,王伟,陈剑锋,水平侧力下D值法在底层不等高框架内力计算中的应用,世界地震工程,2002,18(4):116-122
    [104]龙驭球,包世华等,结构力学,北京:高等教育出版社,2006
    [105]Anil K. Chopra, Rakesh K. Goel, A modal pushover analysis procedure for estimating seismic demands for buildings, Earthquake Engineering Structural Dynamic.2002,31:561-582
    [106]中华人民共和国建设部,GB50017-2003,钢结构设计规范,北京:中国建筑工业出版社,2003-04-25
    [107]中华人民共和国建设部,JGJ99-98,高层民用建筑钢结构技术规程,北京:中国建筑工业出版社,1998-05-12
    [108]中华人民共和国建设部,GB50011-2001,建筑抗震设计规范,北京:中国建筑工业出版社,2001-07-20
    [109]Chopra A K, Goel R. A modal pushover analysis procedure to estimate seismic demands for buildings:theory and preliminary evaluation. Report No. PEER2001/03, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA,2001
    [110]夏心红,沈蒲生,龚胡广等,高层建筑模态抗震设计中的多模态静力推覆分析,湖南大学学报,2007,34(4):10-14
    [111]邓国专,型钢混凝土结构粘结滑移性能实验研究[硕士学位论文],西安:西安建筑科技大学,2004
    [112]Nilsson A H. Internal measurement of bond slip. Journal of ACI,1972(7):439-441
    [113]金芷生,朱万福,庞同和,钢筋与混凝土粘结性能试验研究,南京工学院学报,1985(2):73-85
    [114]杨勇,型钢混凝土粘结滑移基本理论与应用研究[博士学位论文],西安:西安建筑科技大学,2003
    [115]Charles C W. Bond Stress in Embedded Steel Shapes in concrete, Composite and Mixed Construction. Published by ASCE,1984
    [116]Bryson J O, Mathey R G. Surface Condition Effect on Bond Strength of Steel Beams in Concrete. Journal of ACI,1962,59(3):397-406
    [117]孙国良,工英杰,劲性砼柱端部轴力传递性能的试验研究与计算,建筑结构学报,1989(6):40-49
    [118]Hamdan M, Hunaiti Y. Factors effecting bond Strength in Composite Columns. Proceeding of the3rd International Conference on Steel conerete Composite Structures, Fukuoka, Japan.1991.213-218
    [119]Charles W R, Robert C. Shear Connector Requirements for Embedded Steel Sections. Journal of Structural Engineering ASCE,1999125(2):142-151
    [120]李杰,李国强,地震工程学导论,北京:地震出版社,1994
    [121]胡幸贤,地震工程学,北京:地震出版社,1988
    [122]丰定国,王清敏,钱国芳等,工程结构抗震,北京:地震出版社,1995
    [123]王广军,抗震规范中结构影响系数C的应用及变迁,世界地震工程,1991,01:37-44
    [124]龚思礼,王广军,建筑抗震设计,北京:中国建筑工业出版社,1994
    [125]吕西林,周德源等,建筑结构抗震理论与实例,上海:同济大学出版社,1994
    [126]王亚勇,我国2000年工程抗震设计模式规范基本问题研究综述,建筑结构学报,2000(1):2-4
    [127]谢礼立,马玉宏,现代抗震设计理论的发展过程,国际地震动态,2003(10):1-7
    [128]龚思礼,工业与民用建筑抗震设计规范,工程抗震,1986,06:9-12
    [129]戴国莹,工业与民用建筑抗震设计规范,工程抗震,1989,03:15-19
    [130]中华人民共和国建设部,GB50011-2001,建筑抗震设计规范,北京:中国建筑工业出版社,2001
    [131]小谷俊介,日本基于性能结构抗震设计方法的发展,建筑结构,2000,30(6):3-9
    [132]National Earthquake Hazards Reduction Program Provisions for the Development of Seismic Regulations for the New Buildings,1997(NEHRP1997)
    [133]Uniform Building Code. International Conference of Building official, Whittier,1997:1234-1253
    [134]Eurocode8. Design Provisions for Earthquake Resistance of Structure. ENV1998-1, CEN, Brussels,1994:854-876
    [135]IAEE. Earthquake Resistant Regulations, A World List. International Association for Earthquake Engineering, Tokyo, Japan,1996:987-1024
    [136]中华人民共和国建设部,GBJ11-89,建筑抗震设计规范条文说明,北京:中国建筑工业出版社,1989
    [137]中华人民共和国建设部,GBJ11-89,建筑抗震设计规范,北京:中国建筑工业出版社,1989
    [138]中国工程建设标准化协会,CECS160:2004,建筑工程抗震性设计通则(试用),北京:中国计划出版社,2004-08-01
    [139]UANG CM. Establishing R (Rw) and Cd factors for building seismic provisions. Journal of Structural Engineering, ASCE1991,117(1)
    [140]李成,徐柏荣,顾强,抗弯钢框架结构影响系数研究,建筑结构,2007,37(10):43-45
    [141]吕西林,蒋欢军,结构地震作用和抗震概念设计,武汉:武汉理工大学出版社,2004
    [142]李成,多层抗弯钢框架的结构影响系数和位移放大系数[博士学位论文],西安:西安建筑科技大学,2008
    [143]Peter Fajfar, Tomaz Vidic. Consistent Inelastic Design Spectra: Hysteretic and Input Energy, Earthquake Engineering and Structural Dynamics,1994,23(5):523-537
    [144]翟长海,公茂盛,张茂花等,工程结构等延性地震抗力谱研究,地震工程与工程振动,2004,24(1):22-29
    [145]Eduado Miranda and V. Bertero. Evaluation of Strength Reduction Factors for Earthquake-Resistant Design. Earthquake Spectra,1994,10(2):123-131
    [146]Chen Dan. Ductility Spectra and Collapse Spectra for Earthquake Resistant Structures, Proc.7th European Conference on Earthquake Engineering,1982
    [147]周定松,吕西林,延性需求谱在基于性能的抗震设计中的应用,地震工程与工程振动,2004,24(1):30-38
    [148]Federal Emergency Management Agency. NEHRP Guidelines for the seismic rehabilitation of building. FEMA-273, Washington D. C.,1997.
    [149]Applied Technology Council,1994,1996. A critical review of current approaches to earthquake-resistant design (ATC-33,34,40), Redwood City, California; Applied Technology Council.
    [150]李国强,多高层钢结构设计,北京:中国建筑工业出版社,2004
    [151]陈富生等,高层建筑钢结构设计(第二版),北京:中国建筑工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700