用户名: 密码: 验证码:
基于超级电容的电梯节能控制技术与能效评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电梯作为高耗能特种设备,节能潜力巨大。目前,国内电梯节能技术以及电梯能效评价方法研究总体处于起步阶段,尚未出台相关国家标准,若照搬国外电梯能耗评价方法对国内电梯开展分等级的能效评价,将得出不合实际的结论;考虑碳排放和贸易保护措施,我国电梯产业发展将受制约。围绕这一课题,本文对基于超级电容的电梯节能技术和能效评价方法进行深入研究,以促进我国电梯节能技术发展,提高电梯节能降耗水平,为电梯能耗审查和监督管理提供技术支撑。
     首先采用基于FFT的谐波检测方法,对目前国内在用的12台典型曳引电梯分别在有、无能量反馈情况下进行电压和电流谐波的检测,比较分析了电梯反馈能量的谐波特点以及能量反馈装置对电能质量的影响。研究结果表明,电梯反馈能量会对电网谐波产生不可忽视的影响,应加强电梯能量反馈装置的质量控制和监管,减少谐波污染。
     其次,确立超级电容节能型电梯的组成结构,在静态条件下分别建立超级电容debye polarization cell模型,transmission line模型,集总参数电路模型等超级电容等效电路模型,并在此基础上,建立超级电容储能系统的数学模型;对双向DC/DC电路的控制策略展开研究,确立双向DC/DC电路的两种工作模式,采用上下桥臂独立控制方式,设计PI控制器进行仿真分析,模拟电梯运行过程中能量流动状态。
     再次,详细推导分析轻载上行/重载下行、轻载上行/轻载下行、重载上行/轻载下行和重载上行/重载下行四种典型工况下功率流状况,结合转矩曲线分析出电梯上行和下行过程中每一个启停和恒速运行阶段的电梯工作状态(电动耗能状态或再生发电状态),根据推导结果证明一个参考行程下电梯最大再生能量与电梯额定载荷从顶层运行底层的势能相等,并据此给出超级电容参数设计的步骤和方法。
     最后,将电梯曳引系统的动力学模型和永磁同步电机的电磁学模型相结合,建立机电耦合的永磁同步电机驱动的曳引电梯的运行能耗计算模型,通过大量实验数据与理论模型的计算结果进行比较,验证能耗计算模型可靠性;以该能耗计算模型和大量实测及调查数据为基础,参考国内外现有的电梯能效评价标准,针对其中的缺陷和不足,确定了电梯使用类型分类、待机能效评价和运行能效评价中的相关参数,提出一套适合中国国情的电梯能效评价程序和方法。
As a kind of high energy consumption special equipment, elevator has a hugeenergy saving potential. At present, the domestic elevator energy-saving technologiesand energy efficiency evaluation methods are currently in their infancy, and there areno relevant national standards. The unrealistic conclusions will be drawn out, ifcarrying out the domestic elevator graded energy efficiency evaluations using foreignstandards. Considering carbon emissions and trade protection measures, thedevelopment of our elevator industry will be restricted. Based on the backgroundabove, the technology of elevator energy conservation based on ultracapacitor and thenew method of energy efficiency evaluation are studied in this paper, aiming atproviding technical support for supervision and management of the elevator energyconsumption as well as promoting our country's elevator energy saving technologydevelopment and elevator energy saving level.
     Firstly, a harmonic detection method based on FFT is adopted to detect thevoltage and current harmonics of the typical traction elevators with the energyfeedback device or not respectively. Then the harmonic characteristic of elevatorfeedback energy and the influence of the energy feedback device are analyzed bycomparing the measurement data. The results show that the bad effect of feedbackenergy can not be neglected. To reduce the harmonic pollution, the quality control andsupervision of the feedback device should be strengthened.
     Secondly, the elevator structure with ultracapacitor energy storage system isproposed and designed and the equivalent circuit models of ultracapacitor are built,such as debye polarization cell, transmission line model, lumped circuit model and soon. And on this basis, the ultracapacitor energy storage system is modeled. Twoworking modes for bidirectional DC/DC circuit are established and independentcontrol between upper and lower bridge arm is adopted. The PI controller is designedfor simulation to simulate the states of energy flow during elevator runtime.
     Thirdly, the power flow status in the four typical working conditions namely lightloading up/heavy loading down, light loading up/light loading down, high loading up/light loading down, and high loading up/heavy loading down is deduced and analyzedin detail. The working states of elevator (electro motion state energy consumption or generating state) are obtained in every start-stop and constant speed stage of the upand down process based on the torque curve. According to the results deduced above,the maximum regenerative energy of the elevator per reference stroke is proved to beequal to the potential energy when the elevator running from the top floor to thebottom floor with rated load. Based on theory above, the designing steps andparameters selecting methods of ultracapacitor are given.
     Finally, the energy consumption calculation model of elevator traction system isestablished by combining the dynamical model of elevator system andelectromagnetism model of Permanent Magnet Synchronous Motor (PMSM) together.Then the reliability of the model is verified by comparing the experimental data withthe calculation results. To solve the defects of foreign standards, the typeclassification of elevators and related parameters of energy efficiency evaluation areconfirmed based on the energy consumption calculation model and large quantities ofmeasured and survey data. Taking national conditions into account, a set of elevatorenergy efficiency evaluation procedures and methods is proposed.
引文
[1]中华人民共和国节约能源法,中华人民共和国第十届全国人民代表大会常务委员会第三十次会议,2008-4-1.
    [2]李一力,张辉,陈超,不同类型大型公建电能消耗的特性比较,建筑电气,2010,29(1):32~38.
    [3]李一力,中国建筑电气节能的现状及发展趋势,清华大学建筑节能中心.
    [4]侯宝佳,特殊电梯产品发展与未来展望,中国电梯,2012,(23)5:9~10.
    [5]本书编写组,中华人民共和国国民经济和社会发展第十二个五年规划纲要,北京:人民出版社,2011.
    [6]国务院,特种设备安全监察条例,2009-5-1,
    [7] Lifts Energy Efficiency, in VDI4707part1: Germany,2009.
    [8] Electricity in Building, in SIA standard380/4: Switzerland.
    [9] U.S. Department of Energy and Environmental Protection Agency, EnergyStar: USA.
    [10] International Organization for Standardization, Energy performance of lifts,escalators and moving walks—Part1Energy and conformance,TC178/WG10,2010.11.1.
    [11] Contractor:ISR-University of Coimbra(Portugal).2010.
    [12]钟海云,新型能源器件——超级电容器研究发展最新动态,电源技术,2001,25(5):367~370.
    [13]马仁志,应用于超级电容器的碳纳米管电极的几个特点,清华大学学报(自然科学版),2000,40(8):7~10.
    [14]马仁志,基于碳纳米管的超级电容器,中国科学E辑:技术科学,2000,30(2):112~116.
    [15]章仁毅,基于碳纳米管的超级电容器研究进展,应用化学,2011,28(5):489~499.
    [16]邓梅根,基于碳纳米管-聚苯胺纳米复合物的超级电容器研究,化学学报,2005,63(12):1127~1130+1035.
    [17] Cegnar, E.J., A purely ultracapacitor energy storage system hybrid electricvehicles utilizing a based DC-DC boost converter, in Applied PowerElectronics Conference and Exposition,2004. APEC '04. Nineteenth AnnualIEEE.2004.
    [18]翟楠松,超级电容国内外研究及应用现状,中国仪器仪表学会第九届青年学术会议2007:中国安徽黄山,2007:1~4.
    [19]任炼文,熊佳,电动公交车用超级电容器的研究,电池工业,,2006,11(4):237~240+247.
    [20]许检红,超级电容器在电动汽车上应用的研究进展,电池工业,2008,13(5):344~348.
    [21] Gao, W., Performance comparison of a fuel cell-battery hybrid powertrain anda fuel cell-ultracapacitor hybrid powertrain, in Vehicular Technology, IEEETransactions on,2005.846~855.
    [22] Burke, A.F. Application of ultracapacitors in electric vehicle propulsionsystems. in Power Sources Symposium,1990., Proceedings of the34thInternational,1990.
    [23] Laldin, O., M. Moshirvaziri and O. Trescases, Optimal Power Flow for HybridUltracapacitor Systems in Light Electric Vehicles.2011IEEE ENERGYCONVERSION CONGRESS AND EXPOSITION (ECCE),2011.2916~2922.
    [24] Chen, B., et al., Design and Control of a Ultracapacitor Boosted Hybrid FuelCell Vehicle.2009IEEE VEHICLE POWER AND PROPULSIONCONFERENCE, VOLS1-3,2009.615~622.
    [25] Lu, S., A Unique Ultracapacitor Direct Integration Scheme in MultilevelMotor Drives for Large Vehicle Propulsion, in Vehicular Technology, IEEETransactions on.2007. p.1506~1515.
    [26] JM Miller, M.P., Power electronic interface for an ultracapacitor as the powerbuffer in a hybrid electric energy storage system, in Power system DesignEurope.2007.
    [27] Gao, L., R.A. Dougal and S. Liu, Power enhancement of an actively controlledbattery/ultracapacitor hybrid.2005. p.236~243.
    [28]张慧妍,韦统振,齐智平,超级电容器储能装置研究,电网技术,2006,30(8):92~96.
    [29] Barker, P.P. Ultracapacitors for use in power quality and distributed resourceapplications. in Power Engineering Society Summer Meeting,2002IEEE.2002. Chicago, IL, USA.
    [30] W. Lajnef, J.M.V.O., Characterization methods and modelling of ultracapacitorsfor use as peak power sources, in Journal of Power Sources,2007.553~560.
    [31]王鑫,超级电容器在微电网中的应用,电网与清洁能源,2009,25(6):18~22.
    [32]李霄,基于超级电容储能的风电场功率调节系统建模与控制,电力系统自动化,2009,33(9):86~90.
    [33]刘建斌,超级电容器在光伏发电系统中的应用,湖南工业大学学报,2009,23(5):55~59.
    [34]周昶,使用超级电容的太阳能路灯系统的仿真研究,照明工程学报,2010,21(3):76~81.
    [35] O. C. Onar, M.U.M.S., Modeling, control and simulation of an autonomouswind turbine/photovoltaic/fuel cell/ultra-capacitor hybrid power system, inJournal of Power Sources,2008.1273~1283.
    [36] M. Uzunoglu, M.S.A., Dynamic modeling, design and simulation of a PEMfuelcell/ultra-capacitor hybrid system for vehicular applications, in EnergyConversion and Management,2007.544~1553.
    [37] Henry A. Catherino, J.F.B.P., Hybrid power supplies: A capacitor-assistedbattery, in Journal of Power Sources,2006.965~970.
    [38] Miller, J.M.M.P., M. Everett and E.G. Strangas. Ultracapacitor Plus BatteryEnergy Storage System Sizing Methodology for HEV Power Split ElectronicCVT's. in Industrial Electronics,2005. ISIE2005. Proceedings of the IEEEInternational Symposium on.2005.
    [39]王会勤,碳材料和粘结剂对超级电容器性能的影响,电池工业,2007,12(4):251~253.
    [40]李琛,双电层超级电容器的矩阵式模型研究,电子元件与材料,2011,30(4):41-44.
    [41] Zhou, H. and A.M. Khambadkone, Hybrid modulation for dual-active-bridgebidirectional converter with extended power range for ultracapacitorapplication. Industry Applications, IEEE Transactions on,2009.45(4):1434~1442.
    [42] Bullard, G.L., et al., Operating principles of the ultracapacitor. Magnetics,IEEE Transactions on,1989,25(1).102~106.
    [43] Schupbach, R.M., et al. Design methodology of a combinedbattery-ultracapacitor energy storage unit for vehicle power management.2003.
    [44] Ort U Zar, M.E., et al., Voltage-source active power filter based on multilevelconverter and ultracapacitor DC link. Industrial Electronics, IEEETransactions on,2006,53(2).477~485.
    [45] El Brouji, H., et al., Parameters Evolution of an Ultracapacitor ImpedanceModel with Ageing During Power Cycling Tests.2008IEEE POWERELECTRONICS SPECIALISTS CONFERENCE, VOLS1-10,2008.4624~4629.
    [46] Wu, Z., et al., Design of a soft switching bidirectional DC-DC powerconverter for ultracapacitor-battery interfaces. INTERNATIONAL JOURNALOF AUTOMOTIVE TECHNOLOGY,2012,13(2).325~336.
    [47] A, D.D., Energy Consumption of Different Types of Lift Drive System, inElevator Technology.1992.
    [48] Dr. Schroeder, J., The Energy Consumption of Elevators, in Elevator World,1980.28~32.
    [49] Dr. Schroeder, J., Energy Consumption and Power Requirements of Elevators,in Elevator World,1986.28~29.
    [50] Al-Sharif, L., Lift energy consumption: General overview (1974-2001), inELEVATOR WORLD,2004.61-67.
    [51]浙江省质量技术监督局,电梯能源效率评价技术规范, DB33/T771-2009,2009.
    [52]刘宏鑫,毛新建,提高电梯运行舒适感的有效途径,中国电梯,2003,14(21):34~36.
    [53]陈志溪,余志林,叶剑刚,电梯工作特性与能耗形式分析,中国电梯,2008,18:45~49.
    [54] Rufer, A. and P. Barrade, A supercapacitor-based energy storage system forelevators with soft commutated interface. CONFERENCE RECORD OF THE2001IEEE INDUSTRY APPLICATIONS CONFERENCE, VOLS1-4,2001.1413~1418.
    [55] Li, Z. and Y. Ruan, A Novel Energy Saving Control System for Elevator Basedon Supercapacitor Bank Using Fuzzy Logic. ICEMS2008: PROCEEDINGSOF THE11TH INTERNATIONAL CONFERENCE ON ELECTRICALMACHINES AND SYSTEMS, VOLS1-8,2008.2717~2722.
    [56] Yang, H., W. Sun and B. Xu, New investigation in energy regeneration ofhydraulic elevators. IEEE-ASME TRANSACTIONS ON MECHATRONICS,2007,12(5).519~526.
    [57] Oyarbide, E., et al., Ultracapacitor-based plug&play energy-recovery systemfor elevator retrofit.2011IEEE INTERNATIONAL SYMPOSIUM ONINDUSTRIAL ELECTRONICS (ISIE),2011.
    [58] De Almeida, A., et al., Energy-efficient elevators and escalators in Europe: Ananalysis of energy efficiency potentials and policy measures. ENERGY ANDBUILDINGS,2012,47.151~158.
    [59]丁靖铸,丁毅敏,变频驱动电梯节能透析,中国电梯,2006:12~15.
    [60]孔伟荣,朱武标,姜建国,双PWM控制能量回馈电梯传动系统的设计,电气传动,2007,37(8):8~11.
    [61]刘志忠,周云翔,浅谈变频电梯的谐波影响及对策,变频器世界,2007(8):99~100
    [62]朱武标,姚铨,睿叶,东辉,两种不同能量回馈电梯对电网谐波影响的比较,中国电梯,2010.
    [63]姚秋霞,武贤慧与李斌,VVVF控制电梯中的漏电流和高次谐波问题及解决对策,电气应用,2007,26(6):92~94.
    [64]中华人民共和国国家技术监督局,电能质量-电力系统频率偏差,GB/T15945-2008,中华人民共和国国家标准,北京:中国标准出版社,2008.
    [65]中华人民共和国国家技术监督局,电能质量-电压波动与闪变,GB/T12326-2008,中华人民共和国国家标准,北京:中国标准出版社,2000.
    [66]中华人民共和国国家技术监督局,电能质量-暂时过电压和瞬态过电压,GB/T18481-2001,中华人民共和国国家标准,北京:中国标准出版社,2001.
    [67]中华人民共和国国家技术监督局,电能质量-公用电网谐波,GB/T14549-1993,中华人民共和国国家标准,北京:中国标准出版社,1993.
    [68]中华人民共和国国家技术监督局,电能质量-供电电压偏差,GB/T12325-2008,中华人民共和国国家标准,北京:中国标准出版社,2008.
    [69]中华人民共和国国家技术监督局,电能质量-三相电压不平衡,GB/T15543-2008,中华人民共和国国家标准,北京:中国标准出版社,2008.
    [70]中华人民共和国国家技术监督局,对额定电流大于16A的设备在低压供电系统中产生的谐波电流的限值,GB/Z17625.6-2003,中华人民共和国国家标准,北京:中国标准出版社,2003.
    [71]王兆安,谐波抑制和无功功率补偿,北京:机械工业出版社,2006.
    [72] Wang, S., et al., A New Method in Harmonies Tesing.2008CHINESECONTROL AND DECISION CONFERENCE, VOLS1-11,2008.3461~3464.
    [73]范沙浪,基于神经网络的谐波测量方法研究:[博士学位论文],陕西:西安理工大学,2005.
    [74]李圣清,彭玉楼,周有庆,一种改进型自适应谐波电流检测方法的研究,高电压技术,2002,28(12):3~5.
    [75]周龙华,基于小波变换的谐波检测技术,电力系统及其自动化学报,2010,22(1):80~85.
    [76]吴亚麟,稀土永磁同步无齿轮曳引机矢量控制变频调速,九江学院学报,2008,(6):40~43.
    [77]申瑞,电梯节能能量回馈控制系统设计,河南科技大学学报(自然科学版),2010,31(1):27~30+115~116.
    [78]陈玉东,朱武标,能量回馈技术在电梯中的应用——必要性分析与现状概述,智能建筑,2009,(10):37~40.
    [79]张健民,杨华勇,路甬祥,能量回馈式VVVF液压电梯速度控制系统研究,机械工程学报,2000,36(7):61~65.
    [80]孔伟荣,朱武标,姜建国,双PWM控制能量回馈电梯传动系统的设计,电气传动,2007,37(8):8~11.
    [81]金辛海,双PWM变频器及应用技术研究,自动化技术与应用,2010,29(10):113~118.
    [82]高喜阳,姜建国,电梯用双PWM可逆整流控制系统研究及实现,微处理机,2008,(2):123~126.
    [83] Yu, L., et al., A Study on Energy Consumption of Elevator Group SupervisoryControl Systems using Genetic Network Programming.2009IEEEINTERNATIONAL CONFERENCE ON SYSTEMS, MAN ANDCYBERNETICS (SMC2009), VOLS1-9,2009.583~588.
    [84] Yu, L., et al., Analysis of Energy Consumption of Elevator Group SupervisoryControl System Based on Genetic Network Programming. IEEJTRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING,2011,6(5).414~423.
    [85] Lee, S.O. and H.Y. Bahn, An energy-aware elevator group control system.20053rd IEEE International Conference on Industrial Informatics (INDIN),2005.639~643.
    [86] Grbovic, P.J., et al., Modeling and Control of the Ultracapacitor-BasedRegenerative Controlled Electric Drives. IEEE TRANSACTIONS ONINDUSTRIAL ELECTRONICS,2011,58(8).3471~3484.
    [87] Tominaga, S., et al., Development of energy-saving elevator using regeneratedpower storage system. PCC-OSAKA2002: PROCEEDINGS OF THEPOWER CONVERSION CONFERENCE-OSAKA2002, VOLS I-III,2002.890~895.
    [88] He, J.P., et al., Design and Implementation of an Energy Feedback DigitalDevice Used in Elevator. IEEE TRANSACTIONS ON INDUSTRIALELECTRONICS,2011,58(10).4636~4642.
    [89] Lin, W.S. and C.H. Zheng, Energy management of a fuel cell/ultracapacitorhybrid power system using an adaptive optimal-control method. JOURNALOF POWER SOURCES,2011,196(6).3280~3289.
    [90] Henson, W., Optimal battery/ultracapacitor storage combination. JOURNALOF POWER SOURCES,2008,179(1).417~423.
    [91] Fang, X., et al., Analysis of generalized parallel-series ultracapacitor shiftcircuits for energy storage systems. RENEWABLE ENERGY,2011,36(10SI).2599~2604.
    [92] Dzielinski, A. and D. Sierociuk, Ultracapacitor modelling and control usingdiscrete fractional order state-space model. ACTA MONTANISTICASLOVACA,2008,13(1).136~145.
    [93] Orphanou, A., T. Yamada and C.Y. Yang, Modeling of a carbon nanotubeultracapacitor. NANOTECHNOLOGY,2012.23(0954019).
    [94] Szenasy, I., Modeling and simulation for the energy storage by ultracapacitorin urban rail car. ECT-2008: PROCEEDINGS OF THE3RDINTERNATIONAL CONFERENCE ON ELECTRICAL AND CONTROLTECHNOLOGIES,2008.239~242.
    [95] Shi, L.S. and M.L. Crow, Comparison of Ultracapacitor Electric CircuitModels.2008IEEE POWER&ENERGY SOCIETY GENERAL MEETING,VOLS1-11,2008.4691~4696.
    [96] Kuperman, A. and I. Aharon, Battery-ultracapacitor hybrids for pulsed currentloads: A review. RENEWABLE&SUSTAINABLE ENERGY REVIEWS,2011,15(2).981~992.
    [97]马奎安,超级电容器储能系统中双向DC/DC变流器设计:[博士学位论文],浙江:浙江大学,2010.
    [98]钟海云,双电层电容器的研制,电子元件与材料,2001,(5):3~5+39.
    [99] R. L. Spyker, R.M.N.S., Evaluation of Double Layer Capacitors for PowerElectronic Applications, in Applied Power Electronics Conference andExposition.1996.
    [100]罗曼,张丹丹,何俊佳,降低双电层电容器等效串联内阻的研究进展,高电压技术,2005,31(12):26~28.
    [101] Jia, J., et al., A Dynamic Discharge Structure for Ultracapacitor Application inthe Fuel Cell UPS.200810TH INTERNATIONAL CONFERENCE ONCONTROL AUTOMATION ROBOTICS&VISION: ICARV2008, VOLS1-4,2008.2102~2107.
    [102] Dzielinski, A., G. Sarwas and D. Sierociuk, Time domain validation ofultracapacitor fractional order model.49TH IEEE CONFERENCE ONDECISION AND CONTROL (CDC),2010.3730~3735.
    [103] Rotenberg, D., A. Vahidi and I. Kolmanovsky, Ultracapacitor assistedpowertrains: Modeling, control, sizing, and the impact on fuel economy.2008AMERICAN CONTROL CONFERENCE, VOLS1-12,2008.981~987.
    [104] Parreno, A., et al., Analysis of the Fractional Dynamics of an Ultracapacitorand Its Application to a Buck-Boost Converter. NEW TRENDS INNANOTECHNOLOGY AND FRACTIONAL CALCULUS APPLICATIONS,2010.97~105.
    [105]王楠,吴庆彪,顾明,双向双重DC/DC变换器及其在超级电容储能系统中的应用,电气自动化,2007,29(6):30~31+38.
    [106]杨惠,基于双向DC-DC变换器的超级电容器储能系统研究,西安理工大学学报,2011,27(4):456~460.
    [107]高云,姜学娟,龙龙,高效双向DC/DC变换器,低压电器,2010,(21):36~40.
    [108]黄杰辉,王明渝,周锋,车用双向DC-DC变换器的仿真研究,计算机仿真,2006,23(10):315~320.
    [109]王兆安,电力电子技术,北京:机械工业出版社,2006.
    [110]高明远,双向DC-DC变换器基于切换系统的建模与储能控制,电力系统保护与控制,2012,40(3):129~134.
    [111]徐德鸿,电力电子系统建模及控制,北京:机械工业出版社,2006.
    [112]王英武,DC/DC变换器小信号建模与补偿网络设计,电力电子技术,2009,43(3):26~28.
    [113]国家质检总局,电梯安装验收规范,GB10060-1993,1993,.
    [114]唐少农,龚世缨,易敏军,葛少成,电梯理想速度曲线的理论分析及实现方法,电力电子技术,1996,(1):18~20+28.
    [115]郝晓弘,张萍,VS-616G5变频器在电梯调速控制系统中的应用,微计算机信息,2006,22(1):36~38.
    [116] Kim, J.Y.S., et al., Fuzzy-Logic-Based Vector Control Scheme forPermanent-Magnet Synchronous Motors in Elevator Drive Applications, inIndustrial Electronics, IEEE Transactions on,2007.2190~2200.
    [117] Sul, H.R.S. Position control for direct landing of elevator using time-basedposition pattern generation. in Industry Applications Conference,2002.37thIAS Annual Meeting.2002. Pittsburgh, PA, USA.
    [118]刘季能,基于绝对剩余距离原则的VVVF电梯速度控制策略,安全与健康,2007,(13):46~47.
    [119]福建省特种设备检验研究院,电梯能耗综合检测方法及检测仪,中国专利,201110117981,2011-09-28.
    [120]王鹏程,张信平,金严,电能质量分析仪在电梯能耗测量中的应用,现代科学仪器,2011,(3):37~39.
    [121]王士琴,电梯能耗测量与能效评价方法的研究:[博士学位论文],上海:上海交通大学,2009.
    [122]王士琴,电梯能耗测量新方法,起重运输机械,2009,(9):35~39.
    [123]黄春榕,关于电梯能耗评价的探讨,黑龙江科技信息,2009,(25):33~34.
    [124]万健如,姚泽华,周海亮,阮庆军,超级电容储能式电梯驱动器,中国专利,ZL201010156180.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700