用户名: 密码: 验证码:
中立型随机微分方程中若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本篇博士论文由四部分组成,主要讨论了具无限时滞中立型随机泛函微分方程解的存在惟一性,L~p(p≥2)指数估计和局部解的存在惟一性;考虑了具变时滞中立型随机神经网络的二阶矩指数稳定性和渐近稳定性和研究了具变时滞中立型随机偏微分方程Mild解的存在惟一陛,p(p≥2)阶矩指数稳定性和p阶矩渐近稳定性.
     第一章简单地介绍问题产生的背景知识,发展概况,本文的主要工作以及预备知识.
     第二章在有界连续函数空间中,研究了具无限时滞中立型随机泛函微分方程解的存在惟一性,L~p指数估计和局部解的存在惟一性.首先,在一致Lipschitz条件,线性增长条件和压缩性条件下,直接得到了具无限时滞中立型随机泛函微分方程解的存在惟一性,并给出了解的矩估计,近似解与精确解之间的误差估计;将一致Lipschitz条件替换为局部Lipschitz条件,也得到了具无限时滞中立型随机泛函微分方程解的存在惟—性,同时,也给出了在整个区间[0,+∞)上具无限时滞中立型随机泛函微分方程解的存在惟一性定理;其次,也讨论了具无限时滞中立型随机泛函微分方程解的L~p指数估计;最后,在局部Lipschitz条件和压缩性条件下,建立了具无限时滞中立型随机泛函微分方程局部解的存在惟一性定理。
     第三章首先,利用线性矩阵不等式(LMI)方法和半鞅收敛定理,考虑了一类具变时滞中立型随机神经网络的二阶矩指数稳定性和几乎必然指数稳定性,所得到的条件保守性要好;其次,采用不动点方法,给出了具变时滞中立型随机神经网络的二阶矩渐近稳定性的充要条件.
     第四章首先,在非Lipschitz条件下,研究了具变时滞中立型随机偏微分方程Mild解的存在惟一性;其次,通过建立一引理,给出了变时滞中立型随机偏微分方程Mild解的p(p≥2)阶矩指数稳定性和几乎必然指数稳定性的充分条件;特别地,当中立项消失时,也建立一引理,所得到的Mild解的p阶矩指数稳定性和几乎必然指数稳定性的充分条件比已有文献的条件要弱,因而,我们改进了原有的结果;最后,也通过建立一引理,给出了具变时滞中立型随机偏微分方程Mild解的p阶矩渐近稳定性的充分条件;当方程为与其对应的具变时滞随机偏微分方程时,也建立一引理,也能得到的Mild解的p阶矩渐近稳定性的充分条件,这二者结果都是新的。
This Ph. D. thesis is composed of four Chapters. The existence and uniqueness, L~p (p≥2)-exponential estimate and the local existence and uniqueness theorem for the solution of neutral stochastic functional differential equations with infinite delay are mainly discussed; The exponential stability and asymptotic stability in mean square for neutral stochastic neural networks with time-varying delays are investigated, respectively; And the existence and uniqueness, exponential stability and asymptotic stability in p (p≥2)-moment for mild solution of neutral stochastic partial differential equations with delays are also studied.
     In Chapter 1 The history background and developments about problems above, some main works and some preliminary knowledges in this context are briefly introduced.
     In Chapter 2 The existence and uniqueness, L~p (p≥2)-exponential estimate and the local existence and uniqueness of the solution for neutral stochastic functional differential equations with infinite delay are mainly studied under the space of bounded and continuous functions. Firstly, the existence and uniqueness of the solution for neutral stochastic functional differential equations with infinite delay under the uniformly Lipschitz condition, linear grown condition and contractive condition can be directly derived; And the moment estimate of the solution and the estimate for error between the approximate solution and the accurate solution can be both given; If the uniformly Lipschitz condition is replaced by the local Lipschitz condition, the existence and uniqueness theorem can be gained; Meanwhile, the existence and uniqueness of the global solution in the interval [0, +∞) can also be obtained; Secondly, L~p-exponential estimate of the solution for neutral stochastic functional differential equations with infinite delay can be studied; At length, the theorem of the local solution about neutral stochastic functional differential equations with infinite delay only under the local Lipschitz condition and the contractive condition can be established.
     In Chapter 3 Firstly, the exponential stability in mean square and almost sure exponential stability for neutral stochstic neural networks with time-varying delay can be discussed by using the linear matrix inequality (LMI) and the semimartingale convergence theorem; And our sufficient conditions are less conserative; Secondly, by utilizing the fixed point theorem, some sufficient and necessary conditions ensuring the asymp- totic stability in mean square for neutral stochastic neural networks with time-varying delays can be given.
     In Chapter 4 In first quarter, the existence and uniqueness of mild solution for stochastic partial differential equations with delays under the non-Lipschitz condition are mainly discussed; In second quarter, by establishing a Lemma, some sufficient conditions ensuring p (p≥2)-moment exponential stability and almost surely exponential stability for mild solution to neutral stochastic partial differential equations with delays can be given; Specially, when the neutral item is removed, some sufficient conditions about p-moment exponential stability and almost sure exponential stability for mild solution of stochastic partial differential equations with delays are weaker than some existing literatures by establishing a Lemma, too; Thus, we improve some results; In third quarter, similarly, by constructing a Lemma, some sufficient conditions about asymptotic stability in p-moment of mild solution for neutral stochastic partial differential equations with delays can be given; If the neutral item is dropped out, some sufficient conditions about asymptotic stability in p-moment of mild solution for stochastic partial differential equations with delays can be derived; These two results are new.
引文
[1] Hale J. K. Theory of Functional Differential Equations. Now York: Springer Verlag, 1977.
    [2] Hale J. K., Kato J. Phase space for retarded equations with infinite delay. Funkcial. Ekvac, 1978, 21: 11-41.
    [3] Hale J. K., Lunel S. M. V. Introduction to Functional Differential Equations. Berlin: Springer Verlag, 1993.
    [4] Kolmanovskii V. B., Nosov V. R. Stability and Periodic Modes of Control Systems with Aftereffect. Moscow: Nauka, 1981.
    [5] Kappel F., Schappacher W. Some considerations to the fundamental theory of infinite delay equations. J. Diff. Eqs, 1980, 37(2): 141-183.
    [6] Kato J. Stability problems in functional differential equationw with infinite delay. Funkcial Ekvac, 1978, 21: 63-80.
    [7] Schumacher K. Existence and continuous dependence for differential equations with unbounded delay. Arch Rational Mech. Anal., 1978, 67: 315-335.
    [8] Schumacher K. Dynamical systems with memory on history-spaces with monotontic seminorms. J. Diff. Eqs, 1979, 34(3): 440-463.
    [9] 王克,范猛.泛函微分方程的相空间理论及应用.北京:科学出版社, 2008.
    [10] 王克.无线时滞泛函微分方程周期解的存在性.数学年刊,1987,8A(4):514-517.
    [11] 王克,黄启昌. |·|_h模与Volterra积分微分方程的周期解.东北师范大学学报(自然科学版),1985,17(3):7-15.
    [12] 王克,黄启昌. h有界与具无穷时滞的泛函微分方程的周期解.科学通报,1986,31(15):1121-1123.
    [13] 王克,黄启昌. C_h空间与无线时滞的泛函微分方程解的有界性及周期解.中国科学, 1987,17A(3):242-252.
    [14] Burtou T. A., Dwiggins D. P., Feng Y. H. Periodic solutions of functional differential equations with infinite delay. J. London Math. Soc., 1989, 40(2): 81-88.
    [15] Burton T. A. Uniform asymptotic stability in functional differential equations. Proc. Amer. Math. Soc., 1978, 68: 195-199.
    [16] 郑祖庥.泛函微分方程的发展与应用.数学进展,1983,12(4):94-112.
    [17] 范猛,王克.无线时滞泛函微分方程周期解.数学学报,2000,43(4):695-702.
    [18] 迪申加卜,王克.无线时滞泛函微分方程解的稳定性与有界性.数学学报, 1997,40(4):511-520.
    [19] 王克.多物种生态系统的周期正解.应用数学学报, 1994,17(1):1-8.
    [20] Wang K. Persistence of nonautonomous competitive systems with infinite delay. Acta Math. Sinica, 1998, 4(3): 333-336.
    [21] 王克.一类泛函微分方程的稳定性定理及其应用.系统科学与数学, 1992,12(3):273-276.
    [22] 石磊.具无穷时滞中立型泛函微分方程的解的有界性及周期解.科学通报, 1990,35(6):409-411.
    [23] 迪申加卜.具有无穷时滞中立型泛函微分方程零解的渐近性态.工科数学,2001,17(4):9-11.
    [24] 范猛,王克,李宪高.容许空间中对解的有界性之间的等价关系.广西教育学院学报,1998,2:113-118.
    [25] 黄启昌.具有无限时滞的泛函微分方程的周期解的存在性.中国科学(A辑),1984,14(10):882-889.
    [26] Wang Q., Dai B. Three periodic solutions of nonlinear neutral functional differential equations. Nonlinear Anal.: Real World Applications, 2008, 9(3): 997-984.
    [27] Matsui K., Matsunage H., Murakami S. Perron type theorems for functional differential equations with infinite delay in a Banach space. Nonlinear Anal.: Theory, Methods & Applications, 2008, 69(1): 3821-3837.
    [28] Shen J., Liu Y., Li J. Asymptotic behavior of solutions of nonlinear neutral differential equations with impulses. J. Math. Anal. Appl., 2007, 332(1): 179-189.
    [29] Ezzinbi K., Ouhinou A. Necessary and sufficient conditions for the regularity and stability for some partial functional differential equations with infinite delay. Nonlinear Anal.: Theory, Methods & Applications, 2006, 64(8): 1690-1709.
    [30] Li Y., Wang H., Lu X., et al. Periodic solutions for functional differential equations with infinite lead and delay. Appl.Math. Comput.. 1995, 70(1): 1-28.
    [31] Wei F., Wang K. The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay. J. Math. Anal. Appl., 2007, 331: 516-531.
    [32] Ren Y., Lu S. P., Xia N. Remarks on the existence and uniqueness of the solution for stochastic functional differential equations with infinite delay. J. Comput. Appl. Math., 2008, 220(15): 364-372
    [33] Tanguchi T. Successive approximations to solutions of stochastic differential equations. J. Diff. Eqs, 1992, 96: 152-169.
    [34] Rodkina A. E. On existence and uniqueness of solution of stochastic differential equations with heredity. Stochastics, 1984, 12: 187-200.
    [35] Zhou S., Hu S. Razuminkhin-type theorems of neutral stochastic functional differential equations. Acta Math. Scientia, 2009, 29(1): 181-190.
    [36] Zhou S., Wu F. Convergence of numerical solutions to neutral stochastic delay differential equations with Markovian switching. J. Comput. Appl. Math., 2009, 229(1): 85-96.
    [37] 周少波,薛明高.具无穷时滞中立型随机泛函微分方程解的存在唯一性.应用数学,2008,21(1):75-83.
    [38] Dai W., Hu S. A new LaSalle-Type theorem for stochastic differential delay differential equations of neutral type. Stochastic and Dynamics, 2007, 7(4): 459-478.
    [39] Mao X. Asymptotic properties of neutral stochastic differential equations. Stochastic and Stochastic Rep., 2000, 68: 273-295.
    [40] Mao X. Razumikhin type theorems on exponential stability of neutral stochastic functional differential equations. SIAM J. Math. Anal., 1997: 28(2): 389-401.
    [41] Mao X., Shen Y., Yuan C. Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian swithching. J. Math. Anal. Appl., 2008, 118(8): 1385-1406.
    [42] Mao X. Exponential stability in mean square of neutral stochastic differential functional equations. Systems & Control Lett., 1995, 26: 245-251.
    [43] Mao X., Marion G., Renshaw E. Environmental Brownian noise suppreses explosions in population dynamics. Stoch. Proc. Appl., 2002, 97(1): 95-110.
    [44] Mao X. Attraction, stability and boundednes for stochastic differential delay equations. Nonlinear Anal.: Theory, Methods & Applications, 2001, 47(7): 4795-4806.
    [45] Mao X. Razuminkhin-type theorems on exponential stability of stochstic functional differential equations. Stoch. Proc. Appl., 1996, 26(4): 245-251.
    [46] Mao X. Stochastic versions of the LaSalle Theorem. J. Diff. Eqs.. 1999. 153(1): 175-195.
    [47] Mao X. LaSalle-Type Theorems for stochastic differential delay equations. J. Math. Anal. Appl., 1999, 236(2): 350-369.
    [48] Mao X. A note on the LaSalle-Type theorems for stochastic differential delay equations. J. Math. Anal. Appl., 2002, 268(1): 125-142.
    [49] Mao X., Yuan C., Zou J. Stochastic differential delay equations of population dynamics. J. Math. Anal. Appl., 2005, 174(1): 1-27.
    [50] Bahar A., Mao X. Stochastic delay Lotka-Volterra model. J. Math. Anal. Appl., 2004,292(2): 364-380.
    [51] Mao X., Lam J., Xu S., et al. Razuminkhin method and exponential stability of hybrid stochastic delay interval systems. J. Math. Anal. Appl., 2006, 314(1): 45-66.
    [52] Shen Y., Luo Q., Mao X. The improved LaSalle-Type theorems for stochastic functional differential equations. J. Math. Anal. Appl., 2006, 318(1): 134-154.
    [53] Luo Q., Mao X., Shen Y. New criteria on exponential stability of neutral stochastic differential delay equations. Systems & Control Lett., 2006, 55: 826-834.
    [54] Wu F., Mao X. Numerical solutions of neutral stochastic functional differential equations.SIAM J. Numer. Anal., 2008, 46(4): 1821-1841.
    [55] Mao X. Stochastic Differential Equations and Applications. Horwood Publication, Chichester, 1997.
    [56] Xu D., Yang Z., Huang Y. Existence-uniqueness and continuation theorems for stochastic functional differential equations. J. Diff. Eqs., 2008, 245: 1681-1703.
    [57] Liu K., Xia X. On the exponential stability in mean square of neutral stochastic functional differential equations. Systems & Control Lett., 1999, 37: 207-215.
    [58] Mohammed S -E A. Stochastic Functional Differential Equations. Pitman Advanced Publishing Program, 1984.
    [59] Ren Y., Xia N. Existence, uniqueness and stability of the solutions to neutral stochastic functional differential equations with infinite delay. Appl. Math. Comput., 2009, 210(1):72-79.
    [60] Driver R. D. Ordinary and delay differential equations. New York: Springer-Verlag,1977.
    [61] Vel(?)zquez J. E., Kharitonov V. L. Lyapunov-Krasovskii functionals for scalar neutral type time delay equations. System & control lett., 2009, 58(1): 17-25.
    [62] Zhao J., Meng F. Oscillation criteria for second-order neutral equations with distributed deviating argument. Appl. Math. Comput., 2008, 206(1): 485-493.
    [63] Li Y. Positive periodic solutions for neutral functional differential equations with distributed delays and feedback control. Nonlinear Anal.: Real World Applications, 2008,9(5): 2214-2221.
    [64] Wang Q., Dai B. Existence of positive periodic solutions for a neutral population model with delays and impulse. Nonlinear Anal.: Theory, Methods & Applications, 2008,69(11): 3919-3930.
    [65] Zhou X., Zhang W. Oscillatory and asymptotic properties of higher order nonlinear neutral difference equations. Appl. Math. Comput., 2008, 203(2):679-689.
    [66] Park J. H., Won S. Asymptotic stability of neutral systems with multiple delays. J.Optimi. Theo. Appl., 1999, 103(l):183-200.
    [67] Wu J. Two periodic solutions of (?)-dimensional neutral functional difference systems. J.Math. Anal. Appl., 2007, 334(1): 738-752.
    [68] Shen J., Liu Y., Li J. Asymptotic behavior of solutions of nonl(?)near neutral differential equations with impulses. J. Math. Anal. Appl., 2007, 332(1): 179-189.
    [69] Lin X. Oscillation of second-order nonlinear neutral differential equations. J. Math. Anal. Appl., 2005, 309(2): 474-488.
    [70] Dauer J. P., Mahmudov N. I. Integral inequalities and mild solutions of semilinear neutral evolution equations. J. Math. Anal. Appl., 2004, 300(1): 189-202.
    [71] Hern(?)ndez E., Henr(?)quez H. R. Existence of periodic solutions of partial neutral functional differential equations with unbounded delay. J. Math. Anal. Appl., 1998, 221(2): 499-522.
    [72] Grace S. R. Oscillation criteria for nth order neutral functional differential equations. J.Math. Anal. Appl., 1994, 184(1): 44-55.
    [73] Xu D., Yang Z., Yang Z. Exponential stability of nonlinear impulsive neutral differential equations with delays. Nonlinear Anal.: Theory, Method & Applications, 2007, 67(5):1426-1439.
    [74] Burton T. A., Furumochi T. Existence theorems and periodic solutions of neutral integral equations. Nonlinear Anal.: Theory, Method & Applications, 2001, 43(4): 527-546.
    [75] EI-Morshedy H. A., Gopalsamy K. Nonoscillation, oscillation and convergence of a class of neutral equations. Nonlinear Anal.: Theory, Method & Applications, 2000, 40: 173-183.
    [76] Parhi N. On the existence and continuous dependence of solutions of a class of neutral functional-differential equations. Nonlinear Anal.: Theory, Method & Applications, 1983, 7(12): 1335-1345.
    [77] Kolmanovsky V. B., Nosov V. R. Stability of neutral-type functional differential equa- tions. Nonlinear Anal.: Theory, Method & Applications, 1982, 6(9): 873-910.
    [78] Blythe S. , Mao X., Liao X. Stability of stochastic delay neural networks. J. Franklin Institute, 2001, 338: 481-495.
    [79] Blythe S., Mao X., Shah A. Razumikhin-type theorems on stability of stochastic neural networks with delays. Stoch. Anal. Appl., 2001, 19: 85-101.
    [80] Lou X., Cui B. Stochastic stability analysis for delayed neural networks of neutral type with Markovian jump parameters. Chaos, Solitons & Fractals, 2009, 39(5): 2188-2197.
    [81] Roska T., Chua L. O. Cellular neural methods with nonlinear and delay-type template elements. IEEE on Cellular Neural Networks and their Applications, 1990, 1:12-25.
    [82] Liao X., Mao X. Stability of stochastic neural networks, Neural, Parallel and Scientific Computations. 1996, 14(6): 205-224.
    [83] Cao J. New results concerning exponential stability and periodic solutions of delayed celluar neural networks. Phys. Lett. A, 2003, 307: 136-147.
    [84] Cao J., Song Q. Stability in Cohen-Grossberg type BAM neural networks with time-varying delays. Chaos, 2006, 16:130-133.
    [85] Cao J., Wang J. Global asymptotic and robust stability of recurrent neural networks with time delays. IEEE Trans. Circuits Syst. I, 2005, 152: 417-426.
    [86] Hu J., Zhong S., Liang L. Exponential stability analysis of stochastic delayed cellular neural network. Chaos, Solitons & Fractals, 2006, 27: 1006-1010.
    [87] Huang C., Chen P., He Y., et al. Almost sure exponential stability of delayed Hopfield neural networks. Appl. Math. Lett., 2008, 21: 701-705.
    [88] Chua L. O., Yang L. Cellular neural networks theory, IEEE Trans. Circuits Syst. I,1988, 35: 1257-1272.
    [89] Hopfield J. J. Neurons with graded response have collective computational properties likes those of two-state neurons. Proc. Natl. Acad. Sci., USA, 1984, 81: 3088-3092.
    [90] Huang H., Cao J. Exponential stability analysis of uncertain stochastic neural networks with multiple delays. Nonlinear Anal.: Real World Applications, 2007, 8: 646-653.
    [91] Li X., Cao J. Exponential stability of stochastic Cohen-Grossberg neural networks with time-varying delays. Lecture Notes in Computer Science (LNCS), 2005, 3469: 162-167.
    [92] Liao W., Wang Z., Liao X. Almost sure exponential stability on interval stochastic neural networks with time-varying delays. Lecture Notes in Computer Science (LNCS), 2006,3971: 159-164.
    [93] Li W. J., Lee T. Hopfield neural networks for affine invariant matching. IEEE Trans.Neural Networks, 2001, 12: 1400-1410.
    [94] Mohammed S. E. A. Stochastic Functional Differential Equations. Pitman Advanced Publishing Program, 1984.
    [95] Mohamad S., Gopalsamy K. Exponential stability of continuous-time and discrete-time cellular neural networks with delays. Appl. Math. Comput., 2003, 135: 17-38.
    [96] Rodkinal A., Basin M. On delay-dependent stability for a class of nonlinear stochastic delay-differential equations. Mathematics of Control, Signals and Systems (MCSS), 2006,18: 187-197.
    [97] Sun Y., Cao J. pth moment exponential stability of stochastic recurrent neural networks with time-varying delays. Nonlinar Anal.: Real World Applications, 2007, 8: 1171-1185.
    [98] Zhou Q., Wan L. Exponential stability of stochastic delayed Hopfield neural networks.Appl. Math. Comput., 2008, 199: 84-89.
    [99] Zhao H. Global exponential stability and periodicity of cellular neuron networks with variable delays. Phys. Lett. A, 2005, 336: 331-341.
    [100] Zeng Z., Wang J., Liao X. Global exponential stability of a general class of recurrent neural networks with time-varying delays. IEEE Trans. Circuits Syst. I, 2003, 50:1353-1358.
    [101] Su W., Chen Y. Global asymptotic stability analysis for neutral stochastic neural networks with time-varying delays. Commun. Nonlinear Sci. Numer. Simulat., 2009, 14:1576-1581.
    [102] Zhou L., Hu G. Almost sure exponential stability of neutral stochastic delayed cellular neural networks. J. Control The. Appl., 2008, 6(2): 195-200.
    [103] Chen L., Zhao H. Stability of stochastic neutral cellular neural networks. Lecture Notes in Computer Science (LNCS), 2007, 4682: 148-156.
    [104] Jiang M., Shen Y., Liao X. Robust stability of uncertain neutral linear stochastic differential delay system. Appl. Math. Mech.. (English editon), 2007, 28(6): 829-836.
    [105] Zhang Y., Guo L., Feng C. Stability analysis on a neutral neural network model. Lecture Notes in Computer Science (LNCS), 2007, 3644: 697-706.
    [106] Cui B., Lou X. Robust stability analysis of neutral stochastic neural networks with delay:an LMI approach. In: IEEE International Conference on Control and Automation.Guangzhou. China, 2007, WeC4-5: 177-122.
    [107] Haykin S. Neural Networks. Prentice-Hall, Englewood Cliffs, NJ, 1994.
    [108] Liao X., Mao X. Almost sure exponential stability of neutral stochastic differential difference equations. J. Math. Anal. Appl., 1997, 212(2): 554-570.
    [109] Zhang H., Gan S. Mean square convergence of one-step methods for neutral stochastic differential delay equations. Appl. Math. Comput., 2008, 204: 884-890.
    [110] Luo J., Fixed points and stability of neutral stochastic delay differential equations. J. Math. Anal. Appl., 2007, 334: 431-440.
    [111] Wu M., Huang N., Zhao C. Fixed points and stability in neutral stochastic differenital equaitons with variable delays. Fixed Point Theory and Application, 2008, In press.
    [112] 罗交晚,蓝国烈.不动点与随机时滞微分方程的稳定性.广州大学学报(自然科学版),2008,7:6-9.
    [113] Burton T. A. Volterra Integral and Differential Equations. Stanford University, Second Edition, 2005.
    [114] Burton T. A. Lyapunov functional, fixed points and stability by Kranoselskii's theorem. Nonlinear Stud., 2001, 9 : 181-190.
    [115] Burton T. A. Perron-type stability theorems for neutral equations. Nonlinear Anal.: Theory, Method & Applications, 2003, 55: 285-297.
    [116] Burton T. A. Stability by fixed point theory or Lyapunov theory: A comparison. Fixed Point Theory, 2003, 4: 15-32.
    [117] Burton T. A. Furumochi, T., Asymptotic behavior of solutions of functional differential equations by fixed point theorems. Dynam. Systems Appl., 2002, 11:499-521.
    [118] Burton T. A., Furumochi, T. Krasnoselskii's fixed point theorem and stability. Nonlinear Anal.: Theory, Method & Applications, 2002 49: 445-454.
    [119] Raffoul Y. N. Stability in neutral nonlinear differential equations with functional delays using fixed-point theory. Math. Comput. Modelling, 2004, 40:691-700.
    [120] Kuang Y. Delay Differential Equations with Applications in Population Dynamics. Academic Pres, San Diego, 1993.
    [121] Kolmanovskii V. B., Myshkis A. D. Applied Theory of Functional Differential Equations. Kluwer Academic, Dordrecht, 1992.
    [122] Kolmanovskii V. B., Nosov V. R. Stability of Functional Differential Equations. Academic Press, London, 1986.
    [123] Kolmanovskii V. B., Shaikhet L. E. Matrix Riccati equations and stability of stochastic linear systems with non-increasing delay. Funct. Diff. Eqs., 1997, 4: 279-293.
    [124] 廖晓昕.稳定性的数学理论及应用.华中师范大学出版社,1998.
    [125] Liu D., Zhong S., Xiong L. On robust stability of uncertain neutral systems with multiple delays. Chaos, Solitous & Fractals, 2007, In press.
    [126] Randjelovi(?) J., Jankovi(?) S. On the pth moment exponential stability criteria of neutral stochastic functional differenital equations. J. Math. Anal. Appl., 2007, 326: 266-280.
    [127] Shen Y., Liao X. Razumikhin-type theorems on exponential stability of neutral stochastic functional differential equations. Chinese Science Bull., 1999, 44: 2225-2228.
    [128] 李必文.中立型随机微分方程解的稳定性.武汉大学学报(自然科学版),2005,10:957-960.
    [129] 戴伟星,周少波.中立型随机泛函微分方程的有界性.应用数学,2008,21(3):622-628.
    [130] 吴付科.中立型随机泛函微分方程的Khasminskii-type定理.应用数学,2008,21(4):794-799.
    [131] Datko R. An extension of a theorem of A. M. Lyapunov to semigroup of operators. J. Math. Anal. Appl., 1968, 24: 290-295.
    [132] Datko R. Extending a theorem of A. M. Lyapunov to Hilbert spaces. J. Math. Anal. Appl., 1970, 32, 610-616.
    [133] Datko R. Uniform asymptotic stability of evolutionary processes in a Banach space. SIAM J. Math. Anal., 1972, 3: 428-445.
    [134] Zabczyk J. On stability of infinite dimensional stochastic systems. Proceedings of Probability Semester, Banach Centre, Warsaw, Scientific Pubilisher, 1975.
    [135] Hausmann U. G. Asymptotic stability of the linear It(?) equation in infinite dimensions. J. Math. Anal. Appl., 1978, 65: 219-235.
    [136] Ichikawa A. Stability of semilinear stochastic evolution equaitons. J. Math. Anal. Appl., 1982, 90: 12-44.
    [137] 胡宣达,命中名.比较定理与随机稳定性.南京大学学报(自然科学版),1982,25:427-440.
    [138] 胡宣达.随机微分方程的指数稳定性.南京大学学报(自然科学版),1984,1:1-7.
    [139] 胡宣达.Hilbert空间中随机微分系统稳定性理论的进展.高等应用数学学报(A辑),1988,3:57-68.
    [140] Barbu D., Bocsan G. Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients. Czech. Math. J., 2002, 52: 87-95.
    [141] Caraballo T., Liu K. Exponential stability of mild solutions of stochastic partial differential equations with delays. Stoch. Anal. Appl., 1999, 17: 743-763.
    [142] Curtain R. F., Pritchard A. J. Infinite Dimensional Linear System Theory. Lecture Notes In Control and Information Sciences Springer-Verlarg, New York and Berlin, No.8, 1978.
    [143] Govindan T. E. Stability of mild solutions of stochastic evolution equations with variable delay. Stoch. Anal. Appl., 2003, 5: 1059-1077.
    [144] Govindan T. E. Existence and stability of solutions of stochastic semilinear functional differential equations. Stoch. Anal. Appl., 2002, 20: 1257-1280.
    [145] Govindan T. E. Existence and stability of solutions of stochastic semilinear evolution equations. Commun. Appl. Anal., 2003, 7: 102-114.
    [146] Govindan T. E. Almost sure exponential stability for stochastic neutral partial functional differential equations. Stochastics, 2005, 77: 215-227.
    [147] Liu K. Lyapunov functional and asymptotic stability of stochastic delay evolution equations. Stoch. Stoch. Rep., 1998, 63: 1-26.
    [148] Liu K., Truman A. A note on almost sure exponential stability for stochastic partial functional differential equations. Statist. & Probab. Lett., 2000, 50(3): 273-278.
    [149] Luo J. Stability of stochastic partial differential equations with infinite delays. J. Corn-put. Appl. Math., 2008, 222: 364-371.
    [150] Luo J. Fixed points and exponential stability of mild solutions of stochastic partial differential equation with delays. J. Math. Anal. Appl., 2008, 342: 753-760.
    [151] Luo J. Exponential stability for stochastic neutral partial functional differential equations. J. Math. Anal. Appl., 2009, 355(1): 414-425.
    [152] Liu X., Liao X. Comparison method and robust stability of large-scale dynamic systems.Dynam. Contin. Discrete Impul. Systems Ser. A Math. Anal., 2004, 11: 413-430.
    [153] Da Prato G.. Zabczyk J. Stochastic Equations In Infinite Dimensions. Cambridge University Press. 1992.
    [154] Pazy A. Semigroups of Linear Operator and Applications to Partial Differential Equations. New York: Springer-Verlag, 1983.
    [155] Taniguchi T. Almost sure exponential stability for stochastic partial functional differential equations. Stoch. Anal. Appl., 1998, 16: 965-975.
    [156] Taniguchi T., Liu K., Truman A. Existence, uniqueness and asymptotic behavior of mild solutions to stochastic functional differential equations in Hilbert Spaces. J. Diff. Eqs., 2002, 181: 72-91.
    [157] Taniguchi T. Asymptotic stability theorems of semilinear stochastic evolution equations in Hilbert Space. Stoch. Stoch. Rep., 1995, 53: 41-52.
    [158] Boukfaoui Y. E., Erraoui M. Remarks on the existence and approximation for semilinear stochastic differential equations in Hilbert spaces. Stoch. Anal. Appl., 2002, 20(3): 495-518.
    [159] Ren Y., Hu L., Xia N. Stability of the mild solution of stochastic nonlinear evolution differential equations. Ann. of Diff. Eqs., 2006, 22(2): 185-191.
    [160] Mark A. M. Second-order neutral stochastic evolutions equations with heredity. J. Appl. Math. Stoch. Anal., 2004, 2004(2): 177-192.
    [161] Dauer J. P., Mahmudov N. I. Controllability of stochastic semilinear functional differential equations in Hilbert spaces. J. Math. Anal. Appl., 2004, 290(2): 373-394.
    [162] Sakthivel R., Kim J.-H., Mahmudov N. I. On controllability of nonlinear stochastic systems. Reports on Math. Phys., 2006, 58(3): 433-443.
    [163] Paul H. B. Existence of almost periodic solutions to some functional integro-differential stochastic evolution equations. Statist. & Probab. Lett., 2008, 78(17): 2844-2849.
    [164] Bao H., Jiang D. The Sanach space C_h~p and L~P(Ω, C_h~p) with application to the approximate controllability of stochastic partial functional differential equations with infinite delay. Stoch. Anal. Appl., 2007, 25: 995-1024.
    [165] Mahmudov N. I. Existence and uniqueness results for neutral SDEs in Hilbert spaces. Stochast. Anal. Appl., 2006, 24: 79-95.
    [166] Balasubramaniam P., Vinayagam D. Existence of solutions of nonlinear neutral stochastic differential inclusions in a Hilbert space. Stochast. Anal. Appl., 2005, 23: 137-151.
    [167] Balasubramaniam P., Ntouyas S. K., Vinayagam D. Existence of solutions of semilinear stochastic delay evolution inclusions in a Hilbert space. J. Math. Anal. Appl., 2005. 305: 438-451.
    [168] 薄立军,史可华,王永进.带跳中立型随机发展方程解的逼近.中国科学(A辑).2008,38(11):1276-1288.
    [169] Hern(?)ndez E. Existence results for partial neutral functional integrodifferential equations with unbounded delay. J. Math. Anal. Appl., 2004, 292: 194-210.
    [170] Park J. H., Kwon O. M. Further results on state estimation for neural networks of neutral-type with time-varying delay. Appl. Math. Comput, 2009, 208(1): 69-75.
    [171] Liu J., Zong G. New delay-dependent asymptotic stability conditions concerning BAM neural networks of neutral-type. Neurocomputing, 2008, In press.
    [172] Rakkiyappan R., Balasubramaniam P., Cao J. Global exponential stability results for neutral-type impulsive neural networks. Nonlinear Anal.: Real World Applications, 2008,In press.
    [173] Bai C. Global stability of almost periodic solutions of Hopfield neural networks with neutral time-varying delays. Appl. Math. Comput., 2008, 203(1): 72-79.
    [174] Shen C., Zhong S. New delay-dependent robust stability criterion for uncertain neutral systems with time-varying delay and nonlinear uncertainties. Chaos, Solitons & Fractals,2007, In press.
    [175] Wang B., Zhong S. M. On novel stability criterion of neutral system with time-varying delay. Appl. Math. Comput., 2007, 189(2): 1124-1130.
    [176] Qiu J., Cao J. Global asymptotical stability in neutral-type delayed neural networks with reaction-diffusion terms. Lecture Notes in Computer Science (LNCS), 2007, 3571:155-168.
    [177] Fan Z., Liu M., Cao W. Existence and uniqueness of the solutions and convergence of semi-implicit Euler methods for stochastic pantograph equations. J. Math. Anal. Appl.,2007, 325: 1142-1159.
    [178] Wu J. Theory and Applications of Partial Functional Differential Equations. Applied Mathematics Science Springer-Verlag, New York, NO. 119, 1996.
    [179] Walter W. Differential and Integral Inequalities. Springer-Verlag, New York, 1970.
    [180] Liu K. Stability of Infinite Dimensional Stochastic Differential Equations with Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics, Volume 135, Chapman & Hall/CRC, Boca Raton, 2006.
    [181] Oksanrlal B. Stochastic Differential Equations. New York: Springer-Verlag, Sixth Edition. 2003.
    [182] Deimling K. Nonlinear Functional Analysis. New York: Springer-Verlag, 1985.
    [183] Goldstein J. K. Semigroups of Linear Operators and Applications. Oxford University Press, New York, 1985.
    [184] Travis C. C., Webb G. F. Cosine families and abstract nonlinear second-order differential equations. Acta. Math. Hungarica, 1978, 32: 75-96.
    [185] Travis C. C., Webb G. F. Second-Order Differential Equations in Banach Spaces. In: Proceedings of the International Symposium on Nonlinear Equations in Abstract Spaces. Now York: Academic Press. 1978, 331-361.
    [186] 胡宣达.随机微分方程稳定性理论.南京:南京大学出版社,1986.
    [187] 方洋旺,潘进.随机系统分析及应用.西安:西北工业大学出版社,2006.
    [188] 苏宏业,褚健,鲁仁全等.不确定时滞系统的鲁棒控制理论.北京:科学出版社, 2007.
    [189] 郭大钧,孙经先.抽象空间常微分方程(第二版).济南:山东科学技术出版社, 2003.
    [190] 夏道行,吴卓人,严绍宗等.实变函数论与泛函分析(下册).北京:人民教育出版社,1979.
    [191] 张恭庆,林源渠.泛函分析讲义(下册).北京:北京大学出版社, 1987.
    [192] 郑祖庥.泛函微分方程理论,合肥:安徽教育出版社,1994.
    [193] 徐森林.实变函数论.安微:中国科学技术大学出版社,2002.
    [194] 黄志远.随机分析学基础.北京:科学出版社,第二版,2001.
    [195] 严加安.测度论讲义,北京:科学出版社,第二版,2004.
    [196] 钱敏平,龚光鲁.随机过程论.北京:北京大学出版社,第二版, 1997.
    [197] Yosida K. Functional Analysis. 6th editon, Springer-Verlag, Berlin, 1980.
    [198] 胡适耕,吴付科,黄乘明.随机微分方程.北京:科学出版社,2008.
    [199] 鲁世平,葛渭高,郑祖庥.一类中立型泛函微分方程正周期解问题.数学年刊(A辑),2004,25(5):645-652.
    [200] 彭世国,朱思铭.无穷时滞泛函微分方程的正周期解.数学年刊(A辑),2004,25(3): 285-292.
    [201] 彭世国,朱思铭.一类无穷时滞微分系统的周期解和全局渐近稳定性.应用数学学报,2004.27(3):416-422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700