用户名: 密码: 验证码:
HIV-1囊膜糖蛋白gp41核心结构域基因的表达及其单克隆抗体的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
艾滋病(AIDS)是由人类免疫缺陷病毒(HIV-1和HIV-2,主要为HIV-1)感染引起的一种后天性人类免疫缺陷综合征。目前用于抑制HIV-1的治疗药物主要针对病毒反转录酶和蛋白酶。尽管这些药物可以减缓HIV-1感染者向AIDS患者发展的进程,但长期使用存在副作用大、价格昂贵、易产生耐药性等缺点。因此,寻找有效而安全的治疗AIDS的药物成为当务之急。
     随着对HIV-1进攻靶细胞过程的深入了解,人们不断发现新的极具吸引力的药物靶点,并为研制有效疫苗提供了新的策略。HIV-1属于囊膜病毒,其囊膜蛋白复合物控制着病毒进入靶细胞的关键步骤,即决定着病毒趋向性和促进病毒基因组进入靶细胞以及感染细胞与邻近的非感染的细胞之间的膜融合过程。
     介导病毒膜与靶细胞膜融合的关键分子是HIV-1囊膜糖蛋白
    
     第四军医大学硕士学位论文
    gp41,其结构相对保守,针对gP41的药物可能避免耐药性的形成,
    是抑制病毒进入靶细胞的理想靶位。gp41的晶体结构已经明确,
    其融合活性构象的核心结构是一个由三个发卡结构紧密排列而成
    的六聚体螺旋束,gP41的N端螺旋形成中心的三聚体,而C端螺
    旋以反平行方式堆积在N端螺旋形成的疏水槽表面,组成外层的
    三聚体螺旋。该空间构象己被证实是促使病毒与靶细胞膜融合的
    关键构象,结构十分稳定。
     Nsl(L6)e46和N36(L6)e34均为模拟gp41融合态核心结构
    空f司构象的合成肤。Nsl(L6)C46是在N36(L6)C34基础上在C末
    端增加了一个含有中和表位ELDKWA序列的12月太序列。它们的
    一级序列与具有抑制活性的C多肤重叠。Jiang等针对
    N36(L6)C34合成肤研制了单克隆抗体(MAb)NC一1。该MAb
    能特异识别Hlv一1 gp41六股。一螺旋束核心结构空间构型,但未显
    示中和活性。
     本研究首先运用原核表达系统表达了N51(L6)C46多肤,并
    用能特异识别Hlv一1 gP41三聚体特征性的六股。一螺旋束核心结
    构空间构型的MAb NC一l进行Western blot鉴定,证实Nsl(L6)C46
    多肤单体(14KDa)及其三聚体(36KDa)与MAb NC一1反应,
    提示该多肤可形成gp41核心结构空间构型特征,结构稳定,SDS、
    二琉基乙醇的存在并不影响其空间构型的形成,可作为制备针对
    gP41核心结构空间构型MAb的免疫原。
     采用Nsl(L6)e46多肤免疫小鼠制备了针对N51(L6)e46多肤
    的4株MAb,其中MAb 1 AZ、IA4和IBg针对多肤单体,MAb 3AI
    针对多肤三聚体。利用ELISA间接夹心法进一步鉴定了MAb的
    特异性,包被兔抗N36(L6) C34抗体,特异吸附多肤后再检测
    杂交瘤细胞培养上清,结果显示这4株抗体都不同程度地与兔抗
    N36(L6) C34捕获的抗原反应,证实它们能特异识别表达多肤,
    但这4株MAb不与单独的N36或C34多肤片段反应,提示它们
     3
    
     第四军医大学硕士学位论文
    是抗多肤空间构象的MAb。将这4株MAb与MAb NC一1的抗体
    相对亲和力作比较,其高低依次为NC一1>IB9>IA2>3AI>IA4。位
    点相加和竞争ELISA法分析其抗原表位,发现这4株MAb与MAb
    NC一1识别的抗原表位近似,但也存在一些差异。其中识别多肤单
    体的MAb 1 AZ、1 A4、1 Bg和MAb NC一l识别的抗原表位较接近,
    而识别多肤三聚体的MAb 3AI与其它4株抗体识别表位差异均相
    对较大。
     上述4株MAb有可能成为筛选抗Hlv多肤及分析gp41表位
    免疫原特性的有效工具。
The human immunodeficiency virus (HIV) is the etiologic agents of acquired immunodeficiency syndrome in human. All current therapeutic agents for HIV type 1 (HIV-1) infection are directed at the viral enzymes, including reverse transcriptase and protease. Despite the success of these drugs in reducing the progression of HIV-1 infection to AIDS, there are increasing problems with long-term toxicity, high cost, difficulties adhering to treatment regimens, and emergence of multiple, drug-resistant viral strains. So it is urgent to find new type of effective and safe theraputic drug.
    Fortunately, rapid advances in understanding how HIV-1 enter cells have lead to the identification of promising new drug targets and have also suggested new strategies for the generation of vaccine candidates. HIV-1 is an enveloped virus, and its envelope protein complex controls the key process of viral entry. This envelope protein determines viral tropism and facilitates the membrane fusion process that allows invasion of the viral genome. The envelope
    
    
    protein can also promote the fusion of infected cells with uninfected neighboring cells.
    The transmembrane glycoprotein gp41 could promote the fusion of viral and cellular membranes. Owing to the conservative structure of gp41, anti-gp41 drugs maybe avoid drug resistance development. So gp41 could be an attractive target for the development of antiviral agents. Crystallographic analysis has demonstrated that the gp41 fusion-active core adopts a six-stranded helical bundle, in which three N-terminal peptides adopt a homo-trimeric helical coiled-coli forming the center of the bundle and three C-terminal peptide helices pack into hydrophobic grooves on the outer surface of the N-peptide core in an antiparallel manner forming a trimer-of-hairpins structure. The trimer-of-hairpins likely resembles the fusion-active conformation since this structural motif brings the N-terminal region of gp41 containing the fusion peptide together with the C-terminal region that is anchored to the viral membrane. This conformation rearrangement brings the viral and target cell membranes together and promots membrane fusion.
    N51(L6)C46 and N36(L6)C34 are synthetic polypeptide which could simulate the fusogenic core structure of gp41. N51(L6)C46 polypeptide includes neutralizing epitope (ELDKWA), but N36(L6)C34 hasn't it. Their sequences are same as part of the C-terminal of gp41. The monoclonal antibody (MAb) against N36(L6)C34, NC-1, could specific recognition of conformational epitopes on the six-helix core of gp41. But it has no detectable inhibitory activity for HIV-1 infection.
    In this study we performed the expression of N51(L6)C46 gene of HIV-1 gp41 core structural domain in E.Coli BL(21)DE3. Then
    
    
    the expressed polypeptide was detected by Western blot with the conformation-specific monoclonal antibody, designated NC-1, specifically recognizes the fusogenic core structure of gp41. The results showed that the N51(L6)C46 polypeptide, including monomer and trimer, could be recognized by NC-1. It suggested that the structure of the polypeptide resemble that of the proposed fusion-active core stucture of gp41. So the expressed polypeptide could be used as immunogen in following study.
    Then, we generated four cloned MAbs from mice immunized with the polypeptide N51(L6)C46, three of them (1A2, 1A4, 1B9) against the polypeptide N51(L6)C46 monomer and one against the trimer, named 3A1. We found that the four anti-N51(L6)C46 MAbs could bind N51(L6)C46 or N36(L6)C34, but not N36 or C34. The results suggested the antibodies maybe react with the oligomeric forms of gp41 or a -helical core domain specificly. The relative affinity sequence of the MAbs is NC-1>1B9>1 A2>3A1>1A4. The results of epitope analysis with competitive ELISA and pairwise testing showed that the MAbs could recognize the similar epitopes, whereas the difference lies in that the epitope recognized by 3A1 is comparatively different from those of others.
    All these MAbs will be effective tools in selecting anti-HIV polypeptide and analysing t
引文
1. Gottlieb MS, Schroff R, Schanker HM, Weisman JD, Fan PT, Wolf RA, Saxon A. Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N Engl J Med. 1981; 305(24): 1425-31.
    2. Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science. 1998; 280(5371): 1884-8.
    3. Chan DC, Fass D, Berger JM, Kim PS. Core structure of gp41 from the HIV envelope glycoprotein. Cell. 1997; 89(2): 263-73.
    4. Lu M, Blacklow SC, Kim PS. A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol. 1995 ;2(12): 1075-82.
    5. Lu M, Kim PS. A trimeric structural subdomain of the HIV-1 transmembrane glycoprotein. J Biomol Struct Dyn. 1997; 15(3): 465-71
    6. Muster T, Steindl F, Purtscher M, Trkola A, Klima A, Himmler G, Ruker F, Katinger H. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol. 1993; 67(11): 6642-7.
    7. Jiang S, Lin K, Lu M. A conformation-specific monoclonal antibody reacting with fusion-active gp41 from the human immunodeficiency virus type 1 envelope glycoprotein. J Virol. 1998; 72(12): 10213-7.
    8. Hallenberger S, Moulard M, Sordel M, Klenk HD, Garten W. The role of eukaryotic subtilisin-like endoproteases for the activation of human immunodefieiency virus glycoproteins in natural host cells. J Virol. 1997; 71(2): 1036-45.
    9. Helseth E, Olshevsky U, Furman C, Sodroski J., Human immunodeficiency virus type 1 gp120 envelope glycoprotein regions important for association with the gp41 transmembrane glycoprotein. J Virol. 1991; 65(4): 2119-23.
    10. Weiss CD, Levy JA, White JM. Oligomeric organization of gp120 on infectious human immunodeficiency virus type 1 particles. J Virol. 1990; 64(11): 5674-7.
    11. Starcich BR, Hahn BH, Shaw GM, McNeely PD, Modrow S, Wolf H, Parks ES, Parks WP, Josephs SF, Gallo RC, et al. Identification and characterization of conserved and variable regions in the envelope gene of HTLV-Ⅲ/LAV, the retrovirus of AIDS. Cell. 1986; 45(5): 637-48.
    
    
    12. Wyatt R, Sullivan N, Thali M, Repke H, Ho D, Robinson J, Posner M, Sodroski J. Functional and immunologic characterization of human immunodeficiency virus type 1 envelope glycoproteins containing deletions of the major variable regions. J Virol. 1993; 67(8): 4557-65.
    13. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 1998; 393(6686): 648-59.
    14. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996; 272(5263): 872-7.
    15. Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W, Gerard N, Gerard C, Sodroski J. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996; 85(7): 1135-48.
    16. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall T J, Littman DR, Landau NR. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996; 381(6584): 661-6.
    17. Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, Parmentier M, Collman RG, Doms RW. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell. 1996; 85(7): 1149-58.
    18. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA. CC CKRS: a RANTES, MIP-1 alpha, MIP-lbeta receptor as a fusion eofactor for macrophage-tropic HIV-1. Science. 1996; 272(5270): 1955-8.
    19. Sattentau QJ, Clapham PR, Weiss RA, Beverley PC, Montagnier L, Alhalabi MF, Gluckmann JC, Klatzmann D. The human and simian immunodefieiency viruses HIV-1, HIV-2 and SIV interact with similar epitopes on their cellular receptor, the CD4 molecule. AIDS. 1988; 2(2): 101-5.
    20. Salzwedel K, Berger EA. Cooperative subunit interactions within the oligomerie envelope glycoprotein of HIV-1: functional complementation of specific defects in gp120 and gp41. Proe Natl Aead Sci U S A. 2000;
    
    97(23): 12794-9.
    21. Thali M, Moore JP, Furman C, Charles M, Ho DD, Robinson J, Sodroski J. Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120-CD4 binding. J Virol. 1993; 67(7): 3978-88.
    22. Trkola A, Dragic T, Arthos J, Binley JM, Olson WC, Allaway GP, Cheng-Mayer C, Robinson J, Maddon PJ, Moore JP. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature. 1996; 384(6605): 184-7.
    23. Lapham CK, Ouyang J, Chandrasekhar B, Nguyen NY, Dimitrov DS, Golding H. Evidence for cell-surface association between fusin and the CD4-gpl20 complex in human cell lines. Science. 1996; 274(5287): 602-5.
    24. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon P J, Koup RA, Moore JP, Paxton WA. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996; 381(6584): 667-73.
    25. Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol. 1999; 17: 657-700.
    26. Berger EA, Doms RW, Fenyo EM, Korber BT, Littman DR, Moore JP, Sattentau Q J, Schuitemaker H, Sodroski J, Weiss RA. A new classification for HIV-1. Nature. 1998; 391 (6664): 240.
    27. Speck RF, Wehrly K, Platt EJ, Atchison RE, Charo IF, Kabat D, Chesebro B, Goldsmith MA. Selective employment of chemokine receptors as human immunodeficiency virus type 1 coreceptors determined by individual amino acids within the envelope V3 loop. J Virol. 1997; 71(9): 7136-9.
    28. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996; 382(6593): 722-5.
    29. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald
    
    ME, Stuhlmann H, Koup RA, Landau NR. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996; 86(3): 367-77.
    30. Zhang YJ, Moore JE Will multiple coreceptors need to be targeted by inhibitors of human immunodeficiency virus type 1 entry? J Virol. 1999; 73(4): 3443-8.
    31. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, Donfield S, Vlahov D, Kaslow R, Saah A, Rinaldo C, Detels R, O'Brien SJ. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. 1996; 273(5283): 1856-62.
    32. Picchio GR, Gulizia RJ, Mosier DE. Chemokine receptor CCR5 genotype influences the kinetics of human immunodeficiency virus type 1 infection in human PBL-SCID mice. J Virol. 1997; 71(9): 7124-7.
    33. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4-and SDF-1-deficient mice. Proc Natl Acad Sci U S A. 1998; 95(16): 9448-53.
    34. Cohen OJ, Paolucci S, Bende SM, Daucher M, Moriuchi H, Moriuchi M, Cicala C, Davey RT Jr, Baird B, Fauci AS. CXCR4 and CCR5 genetic polymorphisms in long-term nonprogressive human immunodeficiency virus infection: lack of association with mutations other than CCRS-Delta32. J Virol. 1998; 72(7): 6215-7.
    35. Winkler C, Modi W, Smith MW, Nelson GW, Wu X, Carrington M, Dean M, Honjo T, Tashiro K, Yabe D, Buchbinder S, Vittinghoff E, Goedert JJ, O'Brien TR, Jacobson LP, Detels R, Donfield S, Willoughby A, Gomperts E, Vlahov D, Phair J, O'Brien SJ. Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC) Science. 1998; 279(5349): 389-93.
    36. Bandres JC, Wang QF, O'Leary J, Baleaux F, Arnara A, Hoxie JA,
    
    Zolla-Pazner S, Gomy MK. Human immunodeficiency virus (HIV) envelope binds to CXCR4 independently of CD4, and binding can be enhanced by interaction with soluble CD4 or by HIV envelope deglycosylation. J Virol. 1998; 72(3): 2500-4.
    37. Maroon L, Choe H, Martin KA, Farzan M, Ponath PD, Wu L, Newman W, Gerard N, Gerard C, Sodroski J. Utilization of C-C chemokine receptor 5 by the envelope glycoproteins of a pathogenic simian immunodeficiency virus, SIVmac239. J Virol. 1997; 71(3): 2522-7.
    38. Rizzuto CD, Wyatt R, Hemandez-Ramos N, Sun Y, Kwong PD, Hendrickson WA, Sodroski J. A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science. 1998; 280(5371): 1949-53
    39. Stegmann, T., and Helenius,A. (1993)influenza virus fusion:from models toward a mechanism. In Viral fusion Mechanisms, J.Bentz, ed.pp.89-111
    40. Stegmann T, Delfino JM, Richards FM, Helenius A. The HA2 subunit of influenza hemagglutinin inserts into the target membrane prior to fusion. J Biol Chem. 1991; 266(27): 18404-10.
    41. Tsurudome M, Gluck R, Graf R, Falchetto R, Schaller U, Brenner J. Lipid interactions of the hemagglutinin HA2 NH2-terminal segment during influenza virus-induced membrane fusion. J Biol Chem. 1992; 267(28): 20225-32.
    42. Gallaher WR, Ball JM, Garry RF, Griffin MC, Montelaro RC. A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Res Hum Retroviruses. 1989; 5(4): 431-40.
    43. Chambers P, Pringle CR, Easton AJ. Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. J Gen Virol. 1990; 71 (Pt 12):3075-80.
    44. Bullough PA, Hughson FM, Skehel JJ, Wiley DC. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature. 1994; 371 (6492): 37-43.
    45. Moore JP, McKeating JA, Weiss RA, Sattentau QJ. Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science. 1990; 250(4984): 1139-42.
    46. Hart TK, Kirsh R, Ellens H, Sweet RW, Lambert DM, Petteway SR Jr, Leary J, Bugelski PJ. Binding of soluble CD4 proteins to human
    
    immunodeficiency virus type 1 and infected cells induces release of envelope glycoprotein gp120. Proc Natl Acad Sci U S A. 1991; 88(6): 2189-93.
    47. Sattentau Q J, Moore JP, Vignaux F, Traincard F, Poignard P. Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding. J Virol. 1993; 67(12): 7383-93.
    48. Sullivan N, Sun Y, Li J, Hofmann W, Sodroski J. Replicative function and neutralization sensitivity of envelope glycoproteins from primary and T-cell line-passaged human immunodeficiency virus type 1 isolates. J Virol. 1995; 69(7): 4413-22.
    49. Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC. Atomic structure of the ectodomain from HIV-1 gp41. Nature. 1997; 387(6631): 426-30.
    50. Wild CT, Shugars DC, Greenwell TK, McDanal CB, Matthews TJ. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci U S A. 1994; 91(21): 9770-4.
    51. Sodroski JG. HIV-1 entry inhibitors in the side pocket. Cell. 1999; 99(3): 243-6.
    52. Jones PL, Korte T, Blumenthal R. Conformational changes in cell surface HIV-1 envelope glycoproteins are triggered by cooperation between cell surface CD4 and co-receptors. J Biol Chem. 1998; 273(1): 404-9.
    53. Munoz-Barroso I, Durell S, Sakaguchi K, Appella E, Blumenthal R. Dilation of the human immunodeficiency virus-1 envelope glycoprotein fusion pore revealed by the inhibitory action of a synthetic peptide from gp41. J Cell Biol. 1998; 140(2): 315-23.
    54. Wild C, Oas T, McDanal C, Bolognesi D, Matthews T. A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition Proc Natl Acad Sci U S A. 1992; 89(21): 10537-41.
    55. Jiang S, Lin K, Strick N, Neurath AR. HIV-1 inhibition by a peptide. Nature. 1993; 365(6442): 113.
    56. Blacklow SC, Lu M, Kim PS. A trimerie subdomain of the simian immunodeficiency virus envelope glycoprotein. Biochemistry. 1995;
    
    34(46): 14955-62.
    57. Cohen J. Investigators detail HIV's fatal handshake. Science. 1996; 274(5287): 502.
    58. Cao J, Bergeron L, Helseth E, Thali M, Repke H, Sodroski J. Effects of amino acid changes in the extracellular domain of the human immunodeficiency virus type 1 gp41 envelope glycoprotein. J Virol. 1993; 67(5): 2747-55.
    59. Fass D, Harrison SC, Kim PS. Retrovirus envelope domain at 1.7 angstrom resolution. Nat Struct Biol. 1996; 3(5): 465-9
    60. Tan K, Liu J, Wang J, Shen S, Lu M. Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc Natl Acad Sci U S A. 1997; 94(23): 12303-8.
    61. Freed EO, Myers DJ, Risser R. Characterization of the fusion domain of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Proc Natl Acad Sci U S A. 1990; 87(12): 4650-4.
    62. Rafalski M, Lear JD, DeGrado WF. Phospholipid interactions of synthetic peptides representing the N-terminus of HIV gp41. Biochemistry. 1990; 29(34): 7917-22.
    63. Mobley PW, Curtain CC, Kirkpatrick A, Rostamkhani M, Waxing AJ, Gordon LM. The amino-terminal peptide of HIV-1 glycoprotein 41 lyses human erythrocytes and CD4+ lymphocytes. Biochim Biophys Acta. 1992; 1139(4): 251-6.
    64. Freed EO, Delwart EL, Buchschacher GL Jr, Panganiban AT. A mutation in the human immunodeficiency virus type 1 transmembrane glycoprotein gp41 dominantly interferes with fusion and infectivity. Proc Natl Acad Sci U S A. 1992; 89(1): 70-4.
    65. Tse FW, Iwata A, Almers W. Membrane flux through the pore formed by a fusogenic viral envelope protein during cell fusion. J Cell Biol. 1993; 121(3): 543-52.
    66. Root MJ, Kay MS, Kim PS. Protein design of an HIV-1 entry inhibitor. Science. 2001; 291 (5505): 884-8.
    67. Chan DC, Kim PS. HIV entry and its inhibition. Cell. 1998 May 29; 93(5): 681-4.
    68. Littman DR. Chemokine receptors: keys to AIDS pathogenesis? Cell.
    
    1998; 93(5): 677-80.
    69. Clapham PR, McKnight A. Cell surface receptors, virus entry and tropism of primate lentiviruses. J Gen Virol. 2002; 83(Pt 8): 1809-29.
    70. Simmons G, Clapham PR, Picard L, Offord RE, Rosenkilde MM, Schwartz TW, Buser R, Wells TN, Proudfoot AE. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science. 1997; 276(5310): 276-9.
    71. Howard OM, Oppenheim JJ, Hollingshead MG, Covey JM, Bigelow J, McCormack JJ, Buckheit RW Jr, Clanton DJ, Turpin JA, Rice WG. Inhibition of in vitro and in vivo HIV replication by a distamycin analogue that interferes with chemokine receptor function: a candidate for chemotherapeutic and microbicidal application. J Med Chem. 1998; 41(13): 2184-93.
    72. Strizki JM, Xu S, Wagner NE, Wojcik L, Liu J, Hou Y, Endres M, Palani A, Shapiro S, Clader JW, Greenlee WJ, Tagat JR, McCombie S, Cox K, Fawzi AB, Chou CC, Pugliese-Sivo C, Davies L, Moreno ME, Ho DD, Trkola A, Stoddart CA, Moore JP, Reyes GR, Baroudy BM. SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc Natl Acad Sci U S A. 2001; 98(22): 12718-23.
    73. Datema R, Rabin L, Hincenbergs M, Moreno MB, Warren S, Linquist V, Rosenwirth B, Seifert J, McCune JM. Antiviral efficacy in vivo of the anti-human immunodeficiency virus bicyclam SDZ SID 791 (JM 3100), an inhibitor of infectious cell entry. Antimicrob Agents Chemother. 1996; 40(3): 750-4.
    74. Eckert DM, Kim PS. Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem. 2001; 70:777-810.
    75. Chan DC, Chutkowski CT, Kim PS. Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target. Proc Natl Acad Sci U S A. 1998; 95(26): 15613-7.
    76. Kliger Y, Shai Y. Inhibition of HIV-1 entry before gp41 folds into its fusion-active conformation. J Mol Biol. 2000; 295(2): 163-8.
    77. Kilby JM, Hopkins S, Venetta TM, DiMassimo B, Cloud GA, Lee JY, Alldredge L, Hunter E, Lambert D, Bolognesi D, Matthews T, Johnson MR, Nowak MA, Shaw GM, Saag MS. Potent suppression of HIV-1
    
    replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med. 1998; 4(11): 1302-7.
    78. Kilby JM, Lalezari JP, Eron JJ, Carlson M, Cohen C, Arduino RC, Goodgame JC, Gallant JE, Volberding P, Murphy RL, Valentine F, Saag MS, Nelson EL, Sista PR, Dusek A. The safety, plasma pharmacokinetics, and antiviral activity of subcutaneous enfuvirtide (T-20), a peptide inhibitor of gp41-mediated virus fusion, in HIV-infected adults. AIDS Res Hum Retroviruses. 2002; 18(10): 685-93.
    79. Hanna SL, Yang C, Owen SM, Lal RB. Variability of critical epitopes within HIV-1 heptad repeat domains for selected entry inhibitors in HIV-infected populations worldwide [corrected]. AIDS. 2002; 16(12): 1603-8.
    80. Louis JM, Bewley CA, Clore GM. Design and properties of N (CCG)-gp41, a chimeric gp41 molecule with nanomolar HIV fusion inhibitory activity, J Biol Chem. 2001; 276(31): 29485-9.
    81. Eckert DM, Kim PS. Design of potent inhibitors of HIV-1 entry from the gp41 N-peptide region. Proc Natl Acad Sci U S A. 2001; 98(20): 11187-92
    82. Louis JM, Nesheiwat I, Chang L, Clore GM, Bewley CA. Covalent trimers of the internal N-terminal trimeric coiled-coil of gp41 and antibodies directed against them are potent inhibitors of HIV envelope-mediated cell fusion. J Biol Chem. 2003; 278(22): 20278-85.
    83. Root MJ, Hamer DH. Targeting therapeutics to an exposed and conserved binding element of the HIV-1 fusion protein. Proc Natl Acad Sci U S A. 2003; 100 (9): 5016-21.
    84. Bewley CA, Louis JM, Ghirlando R, Clore GM. Design of a novel peptide inhibitor of HIV fusion that disrupts the internal trimeric coiled-coil of gp41. J Biol Chem. 2002; 277(16): 14238-45.
    85. Burton DR. A vaccine for HIV type 1: the antibody perspective. Proc Natl Acad Sci U S A. 1997; 94(19): 10018-23.
    86. Zagury D, Bernard J, Cheynier R, Desportes I, Leonard R, Fouehard M, Reveil B, Ittele D, Lurhuma Z, Mbayo K, et al. A group specific anamnestic immune reaction against HIV-1 induced by a candidate vaccine against AIDS. Nature. 1988; 332(6166): 728-31.
    87. Kion TA, Hoffmann GW. Anti-HIV and anti-anti-MHC antibodies in
    
    alloimmune and autoimmune mice. Science. 1991; 253(5024): 1138-40.
    88. Robinson WE Jr, Kawamura T, Gomy MK, Lake D, Xu JY, Matsumoto Y, Sugano T, Masuho Y, Mitchell WM, Hersh E, et al. Human monoclonal antibodies to the human immunodeficiency virus type 1 (HIV-1) transmembrane glycoprotein gp41 enhance HIV-1 infection in vitro. Proc Natl Acad Sci U S A. 1990; 87(8): 3185-9.
    89. Albert J, Abrahamsson B, Nagy K, Aurelius E, Gaines H, Nystrom G, Fenyo EM. Rapid development of isolate-specific neutralizing antibodies after primary HIV-1 infection and consequent emergence of virus variants which resist neutralization by autologous sera. AIDS. 1990; 4(2): 107-112.
    90. Parren PW, Moore JP, Burton DR, Sattentau QJ. The neutralizing antibody response to HIV-1: viral evasion and escape from humoral immunity. AIDS. 1999; 13 Suppl A: S137-62.
    91. Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF, Salazar MG, Kilby JM, Saag MS, Komarova NL, Nowak MA, Hahn BH, Kwong PD, Shaw GM. Antibody neutralization and escape by HIV-1. Nature. 2003; 422(6929): 307-12.
    92. Klein M. Current progress in the development of human immunodeficiency virus vaccines: research and clinical trials. Vaccine. 2001; 19(17-19): 2210-5.
    93. Zwick MB, Bonnycastle LL, Menendez A, Irving MB, Barbas CF 3rd, Parren PW, Burton DR, Scott JK. Identification and characterization of a peptide that specifically binds the human, broadly neutralizing anti-human immunodeficiency virus type 1 antibody b12. J Virol. 2001; 75(14): 6692-9.
    94. Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, Sullivan N, Srinivasan K, Sodroski J, Moore JP, Katinger H. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol. 1996; 70(2): 1100-8.
    95. Moulard M, Phogat SK, Shu Y, Labrijn AF, Xiao X, Binley JM, Zhang MY, Sidorov IA, Broder CC, Robinson J, Parren PW, Burton DR, Dimitrov DS. Broadly cross-reactive HIV-1-neutralizing human monoclonal Fab selected for binding to gp120-CD4-CCR5 complexes.
    
    Proc Natl Acad Sci U S A. 2002; 99(10): 6913-8.
    96. Stiegler G, Kunert R, Purtscher M, Wolbank S, Voglauer R, Steindl F, Katinger H. A potent cross-clade neutralizing human monoclonal antibody against a novel epitope on gp41 of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses. 2001; 17(18): 1757-65.
    97. Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, Binley JM, Moore JP, Stiegler G, Katinger H, Burton DR, Parren PW. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol. 2001; 75 (22): 10892-905
    98. Conley AJ, Kessler JA 2nd, Boots LJ, Tung JS, Arnold BA, Keller PM, Shaw AR, Emini EA. Neutralization of divergent human immunodeficiency virus type 1 variants and primary isolates by IAM-41-2F5, an anti-gp41 human monoclonal antibody. Proc Natl Acad Sci U S A. 1994; 91(8): 3348-52.
    99. Golding H, Zaitseva M, de Rosny E, King LR, Manisehewitz J, Sidorov I, Gorny MK, Zolla-Pazner S, Dimitrov DS, Weiss CD. Dissection of human immunodeficiency virus type 1 entry with neutralizing antibodies to gp41 fusion intermediates. J Virol. 2002; 76(13): 6780-90.
    100. Xu W, Hofmann-Lehmann R, McClure HM, Ruprecht RM.. Passive immunization with human neutralizing monoclonal antibodies: correlates of protective immunity against HIV. Vaccine. 2002; 20(15): 1956-60.
    101. Ruprecht RM, Ferrantelli F, Kitabwalla M, Xu W, McClure HM. Antibody protection: passive immunization of neonates against oral AIDS virus challenge. Vaccine. 2003; 21 (24): 3370-3.
    102. Ausubel F, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Stnthl K.One-Dimensional SDS Gel Electrophoresis of Proteins.Current protocols in molecular biology. 1997; Volume 2.
    103.(美) J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯。分子克隆第二版。科学出版社。55—56
    104.金伯泉。细胞和分子免疫学实验技术。第四军医大学出版社。9—13
    105.金伯泉。细胞和分子免疫学实验技术。第四军医大学出版社。14
    106. http://www.37c.com.cn/topic/006/technich/exp4_1.htm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700