用户名: 密码: 验证码:
二氯甲烷降解菌的分离鉴定、降解特性及关键酶基因克隆与表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过选择性富集培养,从长期被卤代脂肪烃污染的废水和活性污泥中分离纯化二氯甲烷高效降解菌,并对所分离菌株进行生化鉴定以及16S rDNA系统发育研究,进一步开展了降解特性、关键酶基因克隆与表达方面的研究,以期为探索微生物对异型生物质(Xenobiotics)的转化与降解机理、典型有机污染物的生物处理、污染环境的生物修复提供创新的技术支持与方法论指导。
     本研究获得的主要结论如下:
     1.从废水和活性污泥中分离筛选得到2株二氯甲烷降解菌株,分别命名为WZ-12和wh22菌株。通过细菌形态学观察、生理生化测试、抗生素抗性试验、碳源利用试验(Biolog)、全细胞脂肪酸分析、G+C mol%含量分析以及16S rDNA序列同源性分析,证明WZ-12和wh22菌株应分别属于芽孢杆菌属及梭杆菌属。其中WZ-12菌株被鉴定为环状芽孢杆菌(Bacillus circulans)的又一菌株;推测菌株wh22应当是梭形杆菌(Lysinibacillus sphaericus)的又一菌株,首次发现了环状芽孢杆菌菌株和梭形杆菌菌株具有二氯甲烷降解活性。
     2.WZ-12和wh22两株菌都有较宽的温度、pH及二氯甲烷底物浓度适应范围。在菌体生长最适的pH环境中,菌株对二氯甲烷的降解效率也最高;在30℃、初始pH6.0的MM培养基中,WZ-12菌株72 h对二氯甲烷的降解效率达85.23%。而wh22菌株在37℃、初始pH6.0的MM培养基中48 h的降解效率约80.09%。有机物的加入可使降解菌WZ-12对二氯甲烷的降解加速,其中酵母膏及葡萄糖效果优于蛋白胨。有机物的加入对wh22菌株的降解能力影响不大;WZ-12和wh22菌株会因二氯甲烷浓度增加而产生抑制,降解率下降,符合非线性的高姆比兹模型。菌株WZ-12能适应高盐浓度生长,NaCl浓度在10-60 g L~(-1)范围生长良好,对CH_2Cl_2、CH_2BrCl、C_2H_2Cl_2和C_2H_4Cl_2均有降解能力,72 h降解效率分别为78.28%、58.19%、60.32%和45.08%。
     3.菌株wh22含有1个降解性质粒,分子量为48.8 kb,命名为pRC11。初步建立了质粒pRC11的物理图谱。该质粒还是一个汞盐抗性质粒,可在不同种属菌株之间转移,以E.coli DH5(dcm~-)作为受体菌做质粒的接合转移试验,阳性转化子的转化频率为1.65×10~5/μg of plasmid DNA。
     4.通过设计基于二次多项式数学模型,对试验结果进行多元回归分析,得到了如下适用于DCM降解率预测的经验关联式回归模型:
     采用响应面分析法,在摇瓶水平上,得到了菌株WZ-12生物降解工艺的最优条件为:DCM初始浓度380 mg/L(X_1)、葡萄糖添加浓度13.72 mg/L(X_2)、H_2O_2添加浓度115 mg/L(X_3)。在此条件下,预测得到的最大降解率为93.18%。对以上获得的最佳工艺参数进行摇床水平上的降解率试验验证,得到好氧降解率平均值为92.88±0.27%,与模型预测值(93.18%)吻合较好,该降解率回归模型为菌株WZ-12在生物法处理含DCM废气的应用有一定的指导意义。
     5.对来自菌株WZ-12的脱卤素酶进行了分离纯化和酶学性质研究,获得二氯甲烷脱卤素酶,纯酶分子量为31 kDa,比酶活提高了8.27倍,得率为34.83%,纯化倍数为8.27。该酶为诱导酶,最佳产酶温度为30℃,粗酶液在50℃以下具备一定的耐热性能和稳定性,最佳产酶pH为6.5;该酶在pH5-7之间稳定较好,但当pH大于7或小于5时,稳定性急剧下降。Ca~(2+)、Mg~(2+)对酶活有增强作用,而Cu~(2+)、Zn~(2+)和Ba~(2+)则抑制酶活性,Hg~(2+)对酶活性抑制影响最大。
     该脱卤素酶表观Km值在30℃(pH7.0)为5.25×10~(-3)mol/L,Vmax为3.67×10~(-4)mol/L·min,K_(cat)为6.97×10~4S~(-1)。该酶的底物特异性不高,可以催化CH_2Cl_2、CH_2Br_2、CH_2I_2和CH_2BrCl脱卤。
     6.从菌株WZ-12中克隆得到二氯甲烷脱卤素酶基因dcmR,并对克隆产物进行了Southern杂交鉴定。dcmR编码基因序列为864 bp,编码脱卤素酶蛋白大小为288个氨基酸残基,预测分子量32±1 kDa。BLAST比对结果显示,克隆的基因片段与Methylobacterium sp.DM4的二氯甲烷脱卤酶基因序列同源性达98.6%。蛋白的氨基末端约20-80 aa与GST有类似的结构域,中间约第50位-80位aa间具有多个跟GSH的结合位点有关的超二级结构模体结构域。将所得到的菌株相关基因序列用SEQUIN软件上传至GenBank,得到序列登录号FJ405230。
     7.通过构建具T7强启动子的pET高效表达载体(pET21a和pET15b),转化E coli(DE3)RP,构建了二氯甲烷脱卤酶的原核表达系统。构建了3种表达载体,pET-21a-dcmR(no-tag)不含任何标签,其转化子的二氯甲烷脱卤素酶酶活(21.95U·mL~(-1))高于原始菌株WZ-12(14.26U·mL~(-1)),可直接用于二氯甲烷生物降解的工程应用研究;pET-21a- dcmR with his-tag引入了6个组氨酸残基“标签”(His-tag),为后续酶蛋白分离纯化获得纯化酶的研究非常有意义;pET-15b-dcmRwith his-tag and LVPRGS thrombin在引入6个组氨酸残基“标签"(His-tag)的同时,增加了凝血酶酶切位点,方便了His-tag的切除。将3种原核表达载体转化E.coli(DE3)RP并诱导表达,得到了具有酶活性的融合蛋白。
     8.探讨重组酶的表达特点和部分酶学性质。重组菌经IPTG诱导后,细菌总蛋白表达量为0.76g/L,其中融合蛋白占总蛋白的32.00%,酶活最高达25.78U/mL,酶的比活为88.86 U/mg蛋白。重组菌周质中酶活2.92 U/mL,胞内酶活22.86 U/mL。重组菌产生的酶活力与比活较原降解菌株高1-2倍。利用融合蛋白N末端的His-tag,经金属螯合亲和层析纯化后,得到了纯度较高的融合酶蛋白,酶蛋白的得率为72%,比活为144.73 U/mg。凝血酶切除His-tag后,经SDS-PAGE测定,重组蛋白的分子量为33±1 kDa,与理论计算值34 kDa相符。重组的二氯甲烷脱卤素酶在pH 6.5,温度30℃有最大相对酶活。但重组的二氯甲烷脱卤素酶对温度和pH要敏感。最后,对重组菌的生长特性和降解特性的研究表明,重组菌在LB培养基中的生长特性与原始菌株没有差别,生长至对数期A_(600nm)值都可达到2.4左右。重组菌株dcmR-1在25 h的降解率达90%以上,降解效率比原降解菌株有明显提高。
In this thesis, two dichloromethane-degrading bacterial were:isolated by using traditional incubation method. Their identification were based on standard morphological and physiological properties, cellular fatty acid composition, mol% G+C and nucleotide sequence analysis of enzymatically amplified 16S ribosomal deoxyribonucleic acid. The factors influencing growth of dichloromethane-degrading bacteria and degradation of dichloromethane, the cloning and expression of dichloromethane degrading gene of two strains, were studied in this thesis. The results were expected to supply useful reference for building up alert index systems in transformation and biodegradation mechanism of xenobiotics, and for environmental quality evaluation and for bioremediation of halogenated hydrocarbon pollution.
     Here are presented the main results of this study:
     1. Two strains which could use dichloromethane as sole carbon source were isolated from halogenated hydrocarbon contaminated sample. Their identification were based on standard morphological and physiological properties, G+C content and nucleotide sequence analysis of enzymatically amplified 16S ribosomal deoxyribonucleic acid. Strain named WZ-12 (GenBank accession no.EF100968) was isolated and identified as Bacillus circulans and strain named wh22 (GenBank accession no. FJ418643) as Lysinibacillus sphaericus which were the first representative of Bacillus circulans and Lysinibacillus sphaericus able to degrade dichloromethane very fast at high experimental concentration.
     2. Both WZ-12 and wh22 has wide temperature, pH range for growth and degradation, and could tolerate high concentration of dichloromethane. The optimal growth conditions of strain WZ-12 (pH6.0, 37℃,degradation rate 85%) and wh22 (pH7.0, 30℃,degradation rate 80%), respectively. Addition of yeast extraction, peptone or glucose could promote the growth and dichloromethane degradation ability of both WZ-12 and wh22 to different degree. Biodegradation of DCM followed the modified Gompertz model. WZ-12 degrade CH_2C1_2,CH_2BrCl,C_2H_4C1_2 and C_2H_2C1_2 efficiently in the medium containing NaCl at concentrations of 15 g L~(-1) in 72 h. Kinetic analysis revealed that there was an inverse relationship between the velocity of the degradation reaction and salt concentration over the range between 5 and 60 g NaCl L~(-1) and a linear reciprocal relationship (R~2=from 0.85 to 0.94) was observed.
     3. The strain wh22 harbored a novel degradative plasmid, pRC11 (48.8 kilobases). The genes coding for the metabolism of dichloromethane were found to be plasmid-borne, and a physical map of the plasmid has been established. The purified plasmid was transformed to dcm~- Escherichia coli DH5 at a rate of 1.65×10~5.The transformed cells were able to grow on dichloromethane at concentration of 5-16 mM, and can be further used as a excellent source for genetic manipulations leading to construction of genetically modified microbial strains or genetically engineered microorganisms.
     4. Response surface methodology (RSM) was employed to evaluate the optimum aerobic biodegradation of dichloromethane (DCM) in batch culture. The parameters investigated include the initial DCM concentration, glucose as an inducer and hydrogen peroxide as terminal electron acceptor (TEA). Maximum aerobic biodegradation efficiency was predicted to occur when the initial DCM concentration was 380 mg/Lwith the glucose of 13.72 mg/L and the H_2O_2 of 115 mg/L.Under these conditions the aerobic biodegradation rate reached up to 93.2%, which was significantly higher than that obtained under original conditions. Without additives, the degradation efficiencies≤80% were obtained with the DCM concentrations < 326 mg/L. In order to achieve an 80% or higher biodegradation efficiency, DCM concentrations should be lower than 350 mg/L and the addition of glucose is necessary. When concentrations of DCM were more than 480 mg/L, the addition of H_2O_2 did not significantly contribute to increase DCM degradation efficiency. When DCM concentrations was increased from 240 mg/L to 480 mg/L, the overall DCM degradation efficiency decreased from 91% to 60% as the presence of H_2O_2 for 120mg/L.
     5. Dichloromethane dehalogenase from B. circulans WZ-12 was purified to 8.27-fold with a yield of 34.83%. The electrophoretically homogeneous-purified enzyme exhibited a specific activity of 118.82 U/mg. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified DCM dehalogenase gave a distinct band with an estimated molecular mass of 31 kDa. Enzyme activity was optimized at 30℃to 35℃and pH from 6.5 to 7.0. The enzyme was stable in the pH range of 5.0-8.0. The reaction was apparently accelerated by addition of Mg~(2+)and Ca~(2+),causing an 22 to 27% stimulation, whereas it was inhibited by the addition of Hg~(2+),Cu~(2+),Zn~(2+) and Ba~(2+).DCM dehalogenase exhibited extremely broad substrate and the apparent Km value at 30℃(pH7.0) for DCM was 5.25×10~(-3) mol·L~(-1). Vmax was 3.67×10~(-4)mol·L~(-1)/min and K_(cat) was 6.97×10~4 S~(-1),respectively.
     6. The gene dcmR encoding a novel dichloromethane dehalogenases(DehalA), has been cloned from strain WZ-12. Its accession number in Genbank was FJ418643. The open reading frame of dcmR, spanning 864 bp, encoded a 288-amino-acid protein. A homology search with the BLAST program revealed that the nucleotide sequence of the dcmR gene was almost identical (98.6%) to Methylobacterium sp DM4.
     7. The gene dcmR of strain WZ-12 was recombined and expressed in E.coli BL21(DE3) successfully. A high level of soluble dehalogenases (DehalA) was expressed in E.coli BL21(DE3) from a pET expression system(pET21a and pET15b) and the activity of recombined enzyme protein expressed by recombinant obtained was much more than that by the original WZ-12 strain in primary detection. The gene dcmR was subcloned into pET21a vector at Nde I and Xho I sites with no any tag, the gene dcmR was subcloned into pET21a vector at Nde I and Xho I sites with his-tag and the gene dcmR was subcloned into pET15b vector at Nde I and BamH I sites with his-tag and LVPRGS thrombin. The recombined vectors were confirmed by DNA sequencing and transformed into the E. coli strain ArcticExpress~(TM) (DE3) RP for expression optimization. The expressions were analyzed by SDS-PAGE followed by Coomassie blue staining. There were obvious expression band and there were soluble fusion protein when induced at low temperature.
     8. Then plasmid pET-15b-dcmR with his-tag and LVPRGS thrombin was introduced into Escherichia. coli BL21(DE3). Expression was induced by IPTG, and the enzyme activity reached 25.78 U/mL, the specific enzyme activity reached 88.86 U/mg protein. The periplasmic and cytoplasmic enzyme activity reached 2.92 U/mL and 22.86 U/mL respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified recombinant DCM dehalogenase gave a distinct band with an estimated molecular mass of 33±1kDa. All results analysis demonstrated that the E.coli. strain carrying the dcmR gene could produce dichloromethane dehalogenase efficiently. The growth characteristics of dcmR-l was compared with the original strain, and the result showed that there was no difference,A_(600) nm of dcmR-1 in LB medium could reach about 2.4 in logarithmic period, which was the same as that of the original strain. The recombinant strain dcmR-1 showed the higher degrading ability than B. circulans WZ-12 and with more than 90% removal efficiency of 120 mM CH_2C1_2 in 25 h.All these results indicated that recombinant strain dcmR-1 was a promising strain in bioremediation of CH_2Cl_2 contaminated environment.
引文
[1] DiStefano T D, Gossett J M, Zinder S H( 1991). Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis [J]. Appl. Environ. Microbiol., 57:22 87-92.
    [2] Kirk-Othmer. Encyclopedia of Chemical Technology. 2nd.Vol.5, John Wiley & Sons, Inc., New York, 1970:111.
    [3] 向可华,辛本清.水在甲烷氯化物中溶解度的测定[J].天然气化工, 1987,12(2):32-36.
    [4] Vershueren K (1983). Methylene chloride. In: Handbook of Environmental Data on Organic Chemicals. Second Edition. pp. 848-849. Van Nostrand Reinhold Company, New York, NewYork.
    [5] Weast R C (1985). Methylene chloride. In: CRC Handbook of Chemistry and Physics. 66th ed.p. C-349. Weast RC editor. 1985-1986. CRC Press, Boca Raton, Florida.
    [6] Organization for Economic Co-operation and Development (OECD) (1994). Risk Reduction Monograph number 2: Methylene chloride: background and national experience with reducing risk. OECD Environmental Monograph Series No. 101.123 pp. OECD working paper V. 2, No.90. OECD, Environment Directorate, Environmental Health and Safety division, Cedex 16, Paris, France.
    [7] Rhomberg L (1995). Use of quantitative modeling in methylene chloride risk assessment. Toxicol., 102(1-2): 95-114. September 1.
    [8] Hansch C, Leo A, editors (1979). Substituent Constants for Correlation Analysis in Chemistry and Biology. John Wiley and Sons, New York, New York.
    [9] U.S. EPA (1994b). Chemicals Summary for Methylene Chloride (Dichloromethane). 9 pp. August. EPA/749-F-94-018a. Office of Pollution Prevention and Toxics (OPPT) Chemical Fact Sheet. OPPT, U.S. EPA, Washington, D.C.
    [10] Organization for Economic Co-operation and Development (OECD) (1994). Risk Reduction Monograph number 2: Methylene chloride: background and national experience with reducing risk. OECD Environmental Monograph Series No. 101.123 pp. OECD working paper V. 2, No.90. OECD, Environment Directorate, Environmental Health and Safety division, Cedex 16, Paris, France.
    [11] Page BD, Conacher HB, Salminen J, Nixon GR, Riedel G, Mori B, Gagnon J, Brousseau Y(1993). Survey of bottled drinking water sold in Canada. Part 2. Selected volatile organic compounds. J. Am. Off. Analyt. Chem. Int., 76 (1): 26-31. January-February.
    [12] Divincenzo G D, Yanno F J, Astill B D (1972). Human and canine exposure to methylene chloride vapor. Am. Ind. Hyg. Assoc. J., 33: 125-135.
    [13] ATSDR (1989). Toxicological Profile for Methylene Chloride. Final Report. April. 123 pp.TP-88-18. PB89-194468. ATSDR, CDC, PHS, USDHHS. Atlanta, Georgia.
    [14] ATSDR (1993). Toxicological Profile for Methylene Chloride, Update. April. 122 pp.Prepared by Life Systems, Inc., under subcontract to Clement International Corporation under Contract No. 205-88-0608 for the ATSDR, CDC, PHS, USDHHS. TP-92/13. PB93-182483.Toxicology Information Branch, Division of Toxicology, ATSDR, CDC. Atlanta, Georgia.
    [15] Brandt K R, Okamoto M Y (1988). Final report on the safety assessment of methylene chloride.J. Am. Coll. Toxicol., 7 (6): 741-835.
    [16] Dhillon S, Von Burg R (1995). Toxicology update: Methylene chloride. J. Appl. Toxicol., 15 (4): 329-335. July-August 31.
    [17] IARC (1987). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs Volumes 1 to 42, Supplement 7. IARC, WHO, Lyon, France.
    [18] IARC (1999). Re-evaluation of Some Industrial Chemicals. IARC Monographs on the Evaluation of the Carcinogenic Risks of Chemicals to Humans. Vol. 71. Part One. pp. 251-315.This publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans from the Meeting held in Lyon, February 17-24, 1998. IARC, WHO, Lyon, France.
    [19] Strobel K, Grummt T (1987). Aliphatic and aromatic halocarbons as potential mutagens in drinking water. Part I. Halogenated methanes. Toxicol. Environ. Chem., 13: 205-221.
    [20] Stewart RD, Fisher TN, Hosko MJ, Peterson JE, Barretta ED, Dodd HC (1972b). Carboxyhemoglobin elevation after exposure to dichloromethane. Science, 176 (32): 295-296. April 21.
    [21] GOCKE (1981). Mutagenicity of cosmetics ingredients licensed by the European Communities. Mutation research, 90: 91-109.
    [22] DILLON, D (1992). The role of glutathione in the bacterial mutagenicity of vapour phase dichloromethane. Environmental and molecular mutagenesis, 20: 211-217.
    [23] Ahn Y B, Rhee S K, Fennell D E, et al. Reductive dehalogenation of brominated phenolic compounds by microorganisms associated with the marine sponge Aplysida aerophoba[J].Appl.Enviorn.Microbiol.,2003,69:4 159-166.
    [24] Struijs J, Rogers J E. Reductive dehalogenation of dichloroanilines by anaerobic microorganisms in fresh and dichlorophenol-acclimated pond sediment[J]. Appl. Environ. Microbiol., 1989,55:2527-2531.
    [25] Janssen D B, Oppentocht J E, Poelarends GJ.Microbial dehalogenation[J]. Curr. Opin. Biotechnol., 2001,12: 254-258.
    [26] Bouchard B, Beaudet R,Villemur R, et al. Isolation and Characterization of Desulfitobacterium frappieri sp. nov., an Anaerobic Bacterium Which Reductively Dechiorinates Pentachlorophenol to 3-Chloropheno][J]. International Journal of Systematic Bacteriology, 1996,46:1010-1015
    [27] Schlotelburg C, Von Wintzingerode F, Hauck R, et al. Bacteria of an anaerobic 1,2-dichloropropane-dechlorifating mixed culture are phylogenetically related to those of other anaerobic dechlorinating consortia[J]. Int. J. Syst. Evol. Microbiol., 2000, 50(4): 1505-1511
    [28] Shelton DR,Tiedje J M. Isolation and Partial Characterization of Bacteria in an Anaerobic Consortium That Mineralizes-Chlorobenzoic Acid [J]. A ppl. Environ.Microbiol, 1984,48: 840-848.
    [29] Song B, Palleroni N J, Haggblom M M. Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments[J]. Appl. Environ Microbiol.,2000,66:3446-3453.
    [30] Dijk J A, Stams A J, Schraa G, et al. Anaerobic oxidation of 2-chloroethanol under denitrifying conditions by Pseudomonas stutzeri strain [J]. Appl. Microbiol. Biotechnol., 2003,63:68-74.
    [31] He J, Ritalahti K M, Aiello M R, et al. Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species[J].Appl. Environ.Microbiol., 2003,69:996-1003.
    [32] Dimitrios G K, Allan W. Factors influencing the ability of Pseudomonas putida epl to degrade ethoprophos in soil [J]. Soil Biology and Biochemistry, 2000, 32:1753-1762.
    [33] van Hall, G. and Janssen, D.B. Characterization of the haloacid dehalogenase from Xanthobacter autothrophicus GJ10 and sequencing of the dhlB gene. J. Bacteriol. 1991, 173: 7925-7933.
    [34] Taylor, K.L., Xiang, H., Wie, Y., Zhang, W. and Dunaway-Mariano, D. Role of active site binding interactions in 4-chlorobenzoyl-coenzyme A dehalogenase catalysis. Biochemistry. 2001, 40:15684-15692.
    [35] Willi, L., Traber, H., Leisinger, T. and Vuilleumier, S. Effects of bacterial host and dichloromethane dehalogenase on the competitiveness of methylotrophic bacteria growing with dichloromethane. Appl. Environ. Microbiol. 1998, 64:1194-1202.
    [36] Marquez, B.L., Williamson, R.T., Rossi, J., Roberts, M.A., Gerwick, W.H., Nguyen, V.A. and Willis, C.L. Biosynthetic pathway and origin of the chlorinated methyl group in barbamide and dechlorobarbamide, metabolites from the marine cyanobacterium Lyngbya majuscula. Tetrahedron. 2000, 56:9103-9113.
    [37] Kengen S W, Breidenbach C G, Felske A, et al.Reductive dechlorination of tetrachloroethene to cis-1, 2-dichloroethene by a thermophilic anaerobic enrichment culture[J]. Appl. Environ. Microbiol, 1999,65:231-236.
    [38] Egland P G, Gibson J, Harwood C S. Reductive, coenzyme A-mediated pathway for 3-chlorobenzoate degradation in the phototrophic bacterium Rhodopseudomonas palustris[J]. Appl.Environ.Microbiol., 2001,67:139-149.
    [39] Gibson J S, Harwood C. Metabolic diversity in a romatic compound utilization by anaerobic microbes[J]. Annu. Rnu. Microbiol., 2002, 56:345-349.
    [40] van der Meer J R, de Vos W M, Harayama S, et al. Molecular mechanisms of genetic adaptationt to xenobioticc ompounds [J]. Microbiol. Rev., 1992, 56:677-694.
    [41] Freedman DL, Gossett JM. Biodegradation of dichloromethane and its ii ilization as a growth substrate under methanogenic conditions[J]. Apple Environ Microbiol 1991, 57:2847-2857.
    [42] Stromeyer SA, Winkelbauer W, Kohler H, Cook AM, Leisinger T. Dichloromethane utilized by an anaerobic mixed culture: acetogenesis and methanogenesis. Biodegradation 1991, 2:129-137.
    [43] Brunner, W. B., Staub, D., Leisinger, T. Bacterial degradation of dichloromethane [J]. Appl. Microbiol., 1991,40:950-958.
    [44] de Jong R M, Dijkstra B W. Structure and mechanism of bacterial dehalogenases: diferent ways to cleavea carbon-halogen bond [J]. Curr.Opin.Struct. Biol., 2003,13:722-730.
    [45] Banerjee R, Ragsdale S W. The many faces of vitamin B_(12): catalysis by cobalamin-dependenten zymes [J]. Annu.Rev. Biochem., 2003,72:209-247.
    [46] Ni S, Fredrickson J K, Xun L. Purification and characterization of a novel 3-chlorobenzoate-reductive dehalogenase from the cytoplasmic membrane of Desulfomonile tiedjei DCB-1[J]. J. Bacteriol.,1995,177:5135-5139.
    [47] Boyer A, Page-BeLanger R, Saucier M, et al. Purification, cloning and sequencing of an enzyme mediating the reductive dechlorination of 2,4,6-trichlorophenol from Desulfitobacterium frappieri PCP-1 [J]. Biochem.J., 2003, 373:297-303.
    [48] Jayachandran G, Gorisch H, Adrian L,et al. Dehalorespiration with hexachlorobenzene and pentachlorobenzene by Dehalococcoides sp.strain CBDBI [J]. Arch.Microbiol, 2003,180: 411-416.
    [49] Muller J A, Rosner B M, Von Abendroth G, et al. Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution [J].Appl.Environ.Microbiol., 2004, 70: 4880-4888.
    [50] Janssen D B, Oppentocht J E, Poelarends G J. Microbial dehalogenation [J]. Current Opinion in Biotechnol, 2001,12:254-258.
    [51] Kohler-Staub D, Hartmans S, Gilli R, Suter F, Leisinger T (1986) Evidence for identical dichloromethane dehalogenases in different methylotrophic bacteria, J. Gen. MicrobioL 132:2837-2843.
    [52] Kobler-Staub D, Leisinger T. Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2[J]. J. Bacteriol. 1985, 162:676-681.
    [53] Hohenberg H, Mannweiler K & Mtitler M. High pressure freezing of cell suspensions in cellulose capillary tubes[J]. J. Bacteriol. 1994, 162:678-689.
    [54] Bader R, Leisinger T. Characterization ofdcmA in Methy-Iophilus sp. DMI1, the plasmid encoded structural gene of dichloromethane dehalogenase (Abstract). Bioengineering, 1993.9:58, 261-269.
    [55] Zhang P, Liu S, Shah S O, et al (1992) Modular mutagenesis of exons 1,2 & 8 of a glutathione S-transferase from the muclass: mechanistic and structural consequences for chimeras of isoenzyme 3-3. Biochemistry 31:10185-10193.
    [56] La Roche SD, Leisinger T. Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S-transferase supergene family [J]. J. Bacteriol. 1990, 172:164-171.
    [57] Bader R (1994) Das Strukturgen der Dichlormethan Dehalogenase/Glutathion S-Transferase aus Methylophilus sp. StammDMl 1. Ph.D. Thesis. Federal Institute of Technology, Ziirich
    [58] Nagata Y, Fukuda M, Takagi M, Yano K. Molecular cloning of a Pseudomonas paucimobilis gene encoding a 17-kilodalton polypeptide that eliminates HC1 molecules from γ-hexachlorocyclohexane [J]. J. Bacteriol. 1991,173:6811-6819.
    [59] J.E.T, Janssen D B. Bacterial degradation of 3-chloroacrylic acid and the characterization of cis-and trans-specific dehalogenases [J]. Biodegradation . 1992, 2:139-150.
    [60] Reinhardt M S, Wohlfarth G and Diekert G. Studies on methylchloride dehalogenase and O-demethylase in cell extracts of the homoacetogen strain MC based on newly developed coupled enzyme assay [J]. Arch. Microbiol. 1996, 165: 18-25.
    [61] G.V.B. and Gold M H. Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved [J]. Microbiology. 2000, 146: 405-413.
    [62] Markus A, Seez M, Ruf H.H. and Lingens, F. Purification and some properties of component B of the 4-chlorophenylacetate 3,4-dioxygenase from Pseudomonas sp. strain CBS3 [J]. J. Biol. Chem. 1987, 262: 9340-9346.
    [63] Hohenberg H, Mannweiler K & Mtitler M (1994) High pressure freezing of cell suspensions in cellulose capillary tubes. J. Microsc.
    [64] Galli R, Leisinger T. Plasmid analysis and cloning of the dichloromethane-utilization genes of Methylobacterium sp, DM4. J. Gen. Microbiol. 1988, 134:943-952.
    [65] Meyer D J, Coles B, Pemble SE, Gilmore KS, Fraser GM, Ketterer.B. Theta, a new class of glutathione transferases purified from rat and man. Biochem. J. 1991, 274 : 409-414.
    [66] Hallier E, Langhof T, Dannapel D, Leutbecher M, Schrfder K, Goergens H W, Miilier A, Bolt HM (1993) Polymorphism of glutathione conjugation of methyl bromide, ethylene oxide and dichloromethane in human blood: influence on the induction of sister chromatid exchanges (SCE) in lymphocytes. Arch. Toxicot. 67:173-178.
    [67] Sysoev O V, Govorukhina N I, Gruzman M B. Glutathione S-transferase of methylotrophic bacteria: distribution and characterization [J]. Appl. Biochem. Microbiol. 1990, 26:367-371.
    [68] Mignogna G, Alloeati N, Aceto A, Piccolomini R, Di Ilio C, Barra D, Martini F. The amino acid sequence of glutathione transferase from Proteus mirabilis a prototype of a new class of enzymes [J]. Eur, J, Biochem.1993,211:421-425.
    [69] La Roche S D, Leisinger T. Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S-transferase supergene family [J]. J.Bacteriol. 1990, 172:164-171.
    [70] 王家德,陈建孟,唐翔宇.有机废气的生物处理概述[J],上海环境科学,1998,17(4):21-24.
    [71] 孙佩石,生物膜填料塔净化有机废气研究[J],中国环境科学,1996,(3):13-17.
    [72] Sim onP.P.O ttengraf.废气处理新技术——生物处理系统,王飞译自:“Trendsin Biotechnology,Vol.5,No.5(1987).
    [73] Galli R. Biodegradation of dichloromethane in wastewater using a fluidized bed bioreactor [J].Appl.Microbiol Biotechnol., 1987,27:206-213.
    [74] Hartmans D S, Tramper J. Dichloromethane removal from waste gases with a trickle-bed bioreactor [J]. Bioprocess Eng., 1991,6: 83-92.
    [75] Ronald A Z, Mathew T T, Gary W G. Treatment of volatile organic compounds in a pilot scale biofilter [J]. Air and Waste Management,1993,(7):1-8.
    [76] 陈建孟,王家德,唐翔宇.生物技术在有机废气处理中的研究进展[J].环境科学进展,1998,17(4):21-24.
    [77] Kirchner K, Schlachter L. Biological purification of exhaust air using fixed bacterial monocultures [J]. Appl. Microbiol. and Biotech.,1989,21(6):629-632.
    [78] Walter Brunner, Doris Staub,Thomas Leisinger. Bacterial degradation of dichloromethane [J].Appl Env Microbiol 1980, 40 (5): 950-958.
    [79] Kohler-Staub D, Leisinger T. Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2 [J]. J Bacteriol 1985, 162:676-681.
    [79] Wang J D, Chen J M. Removal of dichloromethane from waste gases with a bio-contact oxidation reactor [J]. J Chem Eng 2006, 123(3):103-107.
    [80] John G Holt, Noel R,Krieg. et al.Bergey's manual of determinative bacteriology(ninth edition),1994. Baltimore-philadelphia-hongkong-london-munich-sydney-tokyo.Williams & Wilkins.
    [81] 周德庆.微生物实验手册[M].上海科学技术出版社。1983
    [82] 范秀容,李广武,沈萍等。微生物学实验(第二版)[M]。北京:高等教育出版社。1989
    [83] 卢焱,叶萍,王靖等.铜绿假单胞菌全细胞脂肪酸气相色谱分析及应用[J].中华医院感染 学杂志,1997,7:7-10.
    [84] 王振雄,徐毅,周培瑾.嗜盐碱古生菌新种的系统分类学研究[J].微生物学报,2000,40(2):115-120.
    [85] 孙征,周宇光,东秀珠.一个甲烷杆菌新种的描述和系统分类学研究[J].微生物学报,2001,41(3):265-269.
    [86] Frederich M, Choi Y H, Angenot L, Harnischfeger G, Verpoorte R (2004) Metabolomic analysis of Strychnos nux-vomica,Strychnos icaja and Strychnos ignatii extracts by ~1H nuclear magnetic resonance spectrometry and multivariate analysis techniques [J].Phytochemistry 65:1999-2004.
    [87] 程光胜,朱厚础,周方。分析微生物学专辑[M]。北京:科学出版社。1988
    [88] Yabuuchi E, Yanol,Oyaizu H, et al.Proposal of Sphingomonas paucimobilis gen. nov. and comb.nov.Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. Nov Sphingomonas adhaesiva sp. nov.,Sp hingomonas capsulate comb.nov and two genospecies of the genus Sphingomonas [J]. Microbiol Immunol,1990,34(2):99-119.
    [89] 东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社.2001
    [90] Nohynek L J, Nurmiaho-Lassila E L, Suhonen E L, et al. Description of chlorophenol-degrading Pseudomonas sp. Strains KF1~T,KF3, and NKF1 as a New species the genus of Sphingomonas Sphingomonas subarctica sp.nov [J]. Int J Syst Bacteriol, 1996,46(4):1042-1055.
    [91] Shijin Wu, Lili Zhang, Jiade Wang and Jianmeng Chen. Bacillus circulans WZ-12-a newly discovered aerobic dichloromethane-degrading methylotrophic bacterium [J]. Applied Microbiology and Biotechnology. 2007,76(6): 1289/1296
    [92] Shijin Wu, Zhihang Hu, Lili Zhang, Xiang Yu and Jianmeng Chen. A novel dichloromethane-degrading Lysinibacillus sphaericus strain wh22 and its degradative plasmid [J].Applied Microbiology and Biotechnology. 2009,82:731/740
    [93] 裘娟萍,王家德,于建明,等(2001)二氯甲烷降解菌的紫外线诱变及降解工艺条件的研究[J]激光生物学报,10(2):92-96
    [94] Gisi D,Willi L,Traber H, Leisinger T, Vuilleumier S (1998) Effects of bacterial host and dichloromethane dehalogenase on the competitiveness of methylotrophic bacteria growing with dichloromethane [J]. Appl Environ Microbiol 64:1194-1202.
    [95] Smith F L, Sorial M T, Sudan M T, et al. Evaluation of trickle bed air biofilter performance as a function of inlet VOC concentration and loading, and biomass control [J].Journal of the Air&Waste Management Association,1998,48(7):627-636.
    [96] Prak D J, Pritchard P H. Degradation of polycyclic aromatic hydrocarbons dissolved in Tween 80 surfactant solutions by Sphingomonas paucimobilis EPA 505 [J]. Can J Microbial,2002,8(2): 151-158.
    [97] 马士金,孙国萍.一种简便快速检测质粒DNA的方法[J].遗传,1983,5(2):15-16.
    [98] Prakash D, Chauhan A, Jain RK (1996) Plasmid encoded degradation of p-nitrophenol by P.cepacia [J]. Biochem Biophys Res Commun. 224:375-381
    [99] 谢振华,晁代军,刘长振.感受态细胞的快捷制备和转化[J].哈尔滨医科大学学报,2001,35:160-164
    [100] Brunner W, Staub D, Leisinger T (1980) Bacterial degradation of dichloromethane [J]. Appl Environ Microbiol 40:950-958
    [101] Goodwin KD,Schaefer JK, Oremland RS (1998) Bacterial oxidation of dibromomethane and methyl bromide in natural waters and enrichment cultures [J]. Appl Environ Microbiol 64:4629-4636
    [102] McDonald IR,Doronina NV, Trotsenko YA, McAnulla C, Murrell JC (2001) Hyphomicrobium chloromethanicum sp.nov.and Methylobacterium chloromethanicum sp. nov.,chloromethane-utilizing bacteria isolated from a polluted environment [J].Int J Syst Evol Microbiol 51:119-122
    [103] Jayachandran G, Gorisch H, Adrian L,et a 1. Dehalorespiration with hexachlorobenzene and pentachlorobenzene by Dehalococcoides sp.strain CBDBI [J].Arch.Microbiol, 2003,1 80: 411-6.
    [104] Dijk J A, Stams A J, Schraa G, et al. Anaerobic oxidation of 2-chloroethanol under denitrifying conditions by Pseudomonas stutzeri strain JJ [J]. Appl. Microbiol. Biotechnol.,2003,6 3:6 8-74.
    [105] Zwietering M H, Jongenburger I, Rombouts F M. Modeling of the bacterial growth curve [J],Appl. Environ. Microbiol, ,1990, 56:1875-1881.
    [106] Diks R M M,Ottengraf P P. The influence of NaCl on the degradation rate of dichloromethane by Hyhomicrobium sp [J]. Biodegradation, 1994, 5(22):129-141.
    [107] Prakash A, Chauhan, Jain RK. Plasmid encoded degradation of p-nitrophenol by P. cepacia, Biochem[J]. Biophys Res Commun 1996, 224:375-381.
    [108] Chaudhry GR, Huang GH.Isolation andcharacterisation of a new plasmid from a Flavobacte-rium sp. which carries the genes for degradation of 2,4-dichlorophenoxyacetate[J]. J Bacteriol 1988, 170:3897-3902.
    [109] Kirchner K. Biological purification of exhaust air using fixed bacterial monocultures [J].Applied Microbiology and Biotechnology, 1989,31 (6): 629-932.
    [110] Ikatsu H , Kawata H , Nakayama C,et al. Dichloromethane degrading properties of bacteria isolated from environmental water [J]. Biocontrol Science, 2000, 5 (2) :117-120.
    [111] Okkerse WJ H , Ottengraf P P,Kuipers B. Biomass accumulation and clogging in biotrickling filters for waste gas treatment:evaluation of a dynamic model using dichloromethane as a model pollutant [J ]. Biotechnology and Bioengineering, 1999, 63 (4) :418-430.
    [112] Diks R M M,Ottengraf P P. Verification studies of a simplified model for the removal of dichloromethane from waste gases using a biological trickling filter [J]. Bioprocess Engineering,1991,6(3): 93-99.
    [113] Hartmans D S,Tramper J.Dichloromethane removal from waste gases with a tricklebed bioreactor [J]. Bioprocess Engineering,1999,6: 83-92.
    [114] Young-Sook O,Richard B. Design and performance of a trickling air biofilter for Chlorobenzene and O_2 Dichlorobenzene vapors [J]. Applied Environmental Microbiology, 1994,60:2717-2722.
    [115] 李国文,胡洪营,郝吉明,等.生物过滤塔甲苯降解性能研究[J].环境科学,2000,22(2):31-35
    [116] 孙佩石,杨显万,黄若华,等.生物法净化有机废气中低浓度挥发性有机物的过程机理研究[J].中国环境科学,1997,17(6):545-549
    [117] YU X , HALL ET S G, SHEPPARD J, et al. Application of the Plachett-Burman experimental design to evaluate nut ritional requirements for the production of Colletot richum coccodes spores [J]. Appl Microbiol Biotechnol, 1997, 47: 301-305.
    [118] ANNADIRAI G. Design of optimum response surface experiments for adsorption of sirect dye on chitosan [J]. Biopronc Eng, 2000, 23:451-455.
    [119] William C.1978.Process for the production of dihydroxyacetone, US patent 4,076,589.
    [120] McCarty P L, Golts M N, Hopkins G D, et al. Full-scale evaluation of in-situ cometabolic degradation of TCE in groundwater through toluene injection[J]. Environmental Science and Technology, 1998, 32 (1): 88-100.
    [121] Guo GL, Tseng D H, Huang S L, Co-metabolic degradation of trichloroethylene by Pseudomonas utida in a fibrous bed bioreactor [J]. Biotechnology Letters, 2001,23:1653-1657.
    [122] Bouchez M, Blanchet D. Vandecastle. Degradation of PAHs by pure strains and by defined strain associations: inhibition phenomena and cometabolism [J]. Applied Microbiology Biotechnology, 1995,43: 156-164.
    [123] Li Y, Lu J, Gu G X, Mao Z. Characterization of the enzymatic degradation of arabinoxylans in grist containing wheat malt using response surface methodology [J]. Journal of the American Society of Brewing Chemists, 2005,63:171-176.
    [124] Stucki, G., R.Galli, and T.Leisinger. Dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2 [J]. Arch.Microbiol. 1981,130: 366-371.
    [125] Brunner, W. B.,Staub,D.,and Leisinger,T.Bacterial degradation of dichloromethane[J].Appl.Microbiol., 1991,40:950-958.
    [126] S. Hartmans,J.Tramper,and Wageninggen. Dichloromethane removal from waste gases with a trickle-bed bioreacter[J]. Bioprocess Engineering. 1991,6:83-92.
    [127] Janssen D B, Oppentocht J E, Poelarends G J. Microbial dehalogenation[J]. Current Opinion in Biotechnol. 2001, 12:254-258.
    [128] Rudolf Scholtz,Lawrence P,Wackett, et al.Dichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloromethane-utilizing bacterium [J].Journal.of Bacteriology, 1988,170(12):5698-5704.
    [129] Vuilleumier S,Leisinger T. Protein engineering studies of dichloromethane dehalogenase/glutathione S-transferase from Methylophilus sp. strain DM11.Ser12 but not Tyr6 is required for enzyme activity[J]. Eur J Biochem 1996,239:410-417.
    [130] 李建武,肖能庚,余瑞民,等.生物化学原理和方法[M].北京:北京大学出版社,1994,1-465.
    [131] Eriksson K.& Pettersson B. Extracellular Enzyme System utilized by the Fungus Sporotrichuum Pulverulmtum for the Breakdown of Cellulose[J]. European Journal of Biochemistry,1975,51:213-218.
    [132] Kohler, Staub, D., Leisinger, T. Dichloromethane dehalogenase of Hyphomicrobium sp. StrainDM2 [J]. J Bacteriol., 1985,162:676-681.
    [133] Van Pee K H,Unversucht. Biological dehalogenation and the halogenation reactions [J].Chemosphere 2003,52:299-312.
    [134] Stucki G, Galli R, Leisinger T. Dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2[J]. Arch.Microbiol, 1981,130:366-371.
    [135] Bader R, Leisinger T. Isolation and characterization of the Methylophilus sp. strain DM11 gene encoding DCM dehalogenases/glutathione S-transferase. J Bacteriol, 1994,176:3466-3473.
    [136] Hartmans S, Tramper J, Wageninggen. Dichloromethane removal from waste gases with a trickle-bed bioreacter[J]. Bioprocess Engineering, 1991, 6: 83-92.
    [137] Janssen D B, Oppentocht J E, Poelarends G J. Microbial dehalogenation[J]. Current Opinion in Biotechnol,2001,12:254-258.
    [138] J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南(第三版)[M].科学出版社.
    [139] 华南农业大学现代生物技术实验室基因工程分室编.基因工程技术实验指导[M].1998
    [140] 蔡宝立,Wackett LP.假单胞菌菌株DM11的二氯甲烷脱氯素酶研究[J].微生物学报,1991,31:321-324.
    [141] 王淑芳,蔡宝立.假单胞菌的二氯甲烷脱氯素酶研究动力学性质和抑制剂[J].南开大学学报(自然科学版),1994,(1):56-61.
    [142] 蔡宝立,程思文.嗜甲基菌DM11菌株的二氯甲烷脱卤素酶是二聚体蛋白[J].南开大学学报(自然科学版),1998,31(2):106-108.
    [143] 郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,1999.
    [144] Rudolf Scholtz,Lawrence P,Wackett, et al.Dichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloromethane-utilizing bacterium[J].Journal.of Bacteriology, 1988,170(12):5698-5704.
    [145] 董红军,伍丽娴,陈三凤.乙烯合成酶基因的克隆及其在大肠杆菌中的表达[J].农业生物技术学报,2007,15(4):698-701
    [146] 陈卫,葛佳佳,张灏,等.半乳糖苷酶基因在大肠杆菌中的过量表达及IPTG诱导条件[J].无锡轻工业大学学报,2001,21(5):492-495.
    [147] Taguchi S, Arakawa K,Yokoyama K, et al. Overexpression and purification of microbial protransglutaminase from Streptomyces cinnamoneum and in vitro processing by Streptomyces albogriseolus proteases [J]. J Biosci Bioeng 2002, 94:478-481.
    [148] Yokoyama K I,Nakamura N, Seguro K,et al.Overproduction of microbial transglutaminase in Escherichia coli, in vitro refolding, and characterization of the refolded form [J]. Biosci Biotechnol Biochem 2000, 64:1263-1270.
    [149] Vieira J, Messing J. New pUC-derived cloning vectors with different selectable markers and DNA replication origins[J]. Gene 1991, 100:189-194.
    [150] Sambrook J, Russell D W. Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY,2001.
    [151] Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning——A Laboratory Manual. New York:Cold Spring Harbor, 1989.
    [152] 李建武,肖能庚,余瑞民,等.生物化学原理和方法[M].北京:北京大学出版社,1994,1-465.
    [153] Eriksson K.& Pettersson B. Extracellular Enzyme System utilized by the Fungus Sporotrichuum Pulverulrntum for the Breakdown of Cellulose [J]. European Journal of Biochemistry,1975,51:213-218.
    [154] Thomas L, Kohler-Staub D. Dichloromethane dehalogenase [J]. Methods Enzymol,1990,188:355-361.
    [155] Janssen D B, Oppentocht J E, Poelarends G J. Microbial dehalogenation [J]. Current Opinion in Biotechnol. 2001,12:254-258.
    [156] Diks R M M, Otengraf S P P. Verification studies of a simplified model for the removal of dichloromethane from waste gases using a biological trickling filter. Bioprocess Eng,1991a(PartⅠ),6:93-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700