用户名: 密码: 验证码:
鄱阳湖水体细菌物种多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用细菌16SrDNA序列分析的分子生物学技术对鄱阳湖南北主湖区水体细菌多样性进行了系统研究。其结果如下:
     ①.北湖平水期(2006年10月样)水域的细菌分属于八大细菌类群:变形菌门的α-,β-,γ-,Epsilon和未知分类地位的变形细菌纲,放线菌门,拟杆菌门,酸杆菌门,浮霉菌门。
     ②.北湖丰水期(2007年5月样)水域的细菌分属于以下七大细菌类群中:变形菌门的α-,β-,γ-变形细菌纲,放线菌门,拟杆菌门,OP10,浮霉菌门,以及未知分类地位细菌。
     ③.南湖平水期水域(2006年10月样)的细菌分属于以下九大细菌类群中:变形菌门的α-,β-,γ-变形细菌门,放线菌门,拟杆菌门,OP10,蓝细菌,疣微菌门,硝化螺旋菌门以及未知分类地位细菌。
     ④.南湖丰水期(2007年5月样)水域的细菌分属于以下八大细菌类群中:变形菌门的α-,β-,γ-变形细菌纲,放线菌门,拟杆菌门,蓝细菌,疣微菌门,浮霉菌以及未知分类地位细菌。
     鄱阳湖水体细菌主要由不可培养菌组成,细菌群落明显受季节影响,南湖水体细菌的丰富度和多样性高于北湖。北湖平水期和丰水期水体优势菌分别为β-变形菌和γ-变形菌+拟杆菌;南湖平水期和丰水期水体优势菌分别为β-变形菌纲+放线菌和β-变形菌。鄱阳湖水环境细菌群落受到了人类活动的影响。
In this study,bacterial community compositions in the northern and southern water area of Lake Poyang were analyzed firstly by 16S rDNA sequence analysis. The main conclusions were presented as follow:
     ①.Bacterial community composition from North water area of Lake Poyang in Oct.2006 belongs to the following eight groups of the domain bacteria: Alpha-proteobacteria、Beta-proteobacteria、Gamma-proteobacteria、Epsilon-proteobacteria、Actinobacteria、Bacteroidetes、Acidobacteria、Planctomycates and unclassified proteobacteria.
     ②.Bacterial community composition from North water area of Lake Poyang in May.2007 belongs to the following seven groups of the domain Bacteria: Alpha-proteobacteria、Beta-proteobacteria、Gamma-proteobacteria、Actinobacteria、Bacteroidetes、OP10、Planctomycetes and the unclassified bacteria.
     ③.Bacterial community composition from South Lake Poyang in Oct.2006 was affiliated with nine bacterial divisions,e.g.,Alpha-proteobacteria, Beta-proteobacteria,Gamma-proteobacteria,Actinobacteria,Bacteroidetes,OP10, Cyanobacteria,Verrucomicrobia,Nitrospira,unclassified bacterium.
     ④.Bacterial community composition from South Lake Poyang in May.2007 was affiliated with eight bacterial divisions,e.g.,Alpha-proteobacteria, Beta-proteobacteria,Gamma-proteobacteria,Actinobacteria,Bacteroidetes, Cyanobacteria,Verrucomicrobia,Planctomycetes,unclassified bacterium.
     Results indicated that bacteria had rich diversity and apparently temporal and spatial heterogeneity from water of Lake Poyang.Bacterial compositions were affected by season,and the bacterial diversity and richeness from southern water was greater than from northem water.Beta-proteobacteria was the most significant lineages in the northern(2006) and southern(2007) Lake Poyang.However, Gamma-proteobacteria and Bacteroidetes were the most significant lineages in the northern(2007) Lake Poyang,while Beta-proteobacteria and Actinobacteria were the significant lineages in the southern(2006) Poyang.
引文
[1] Cowan DA. Microbial genomesthe untapped resource [J]. Trend Biotechnol,2000, 18:14-16.
    [2] Amann R I, Ludwig W, Schleifer K H, et al. Phylogenetic identification and in situ detection of individiual microbial cells without cultivation [J]. Microbiol Rev 1995, 59:143-169.
    [3] Azam F., Smith D. C, Carlucci A. F, Bacterial Transformation and Transport of Organic Matter in the Southern California Bight [J]. Prog Oceanogr, 1992,30:151-166.
    [4] Melack J M, Kilham P. Photosynthetic rates of phytoplankton in East African alkaline, saline lakes[J]. Limnol Oceanogr, 1974,19:743-755
    [5] Findlay S, Pace M L, Lints D,et al. Weak coupling of bacterial and algal production in a heterotrophic ecosystem, the Hudson estuary[J]. Limnol Oceanogr, 1991, 36:268-278.
    [6] Martens, C. S., Berner R A. Methane production I. The interstitial waters of sulfate-depleted marine sediments[J].Science, 1974,185:1167-1169.
    [7] Wetzel R G. Bacterioplankton. In R. G. Wetzel (ed.), Limnology. Lake and river ecosystems, 3~(rd)ed [M]. New York: Academic Press, 2001,489-525.
    [8] Corner, J B, Biddanda, B A. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems [J]. Ecosystems 5: 105-121 five mesotrophic lakes. Microb Ecol .2.002,42: 598-605
    [9] Delong E F. Diversity of naturally occurring prokaryotes. Microbial Diversity in Time and Space[M]. New York: Plenum Press, 1996.
    
    [10] Istock C A, Bell J A, Ferguson N, et al. Bacteria diversity and evolution: Theoretical and practical perspectives[J]. J.Ind.Microbiol 1996,17(3): 137-150.
    
    [11] Xu J. Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances [J]. Mol. Ecol 2006,15:1713-1731
    
    [12] Tamaki H, Sekiguchi Y, Hanada S, et al.Comparative Analysis of Bacterial Diversity in Freshwater Sediment of a Shallow Eutrophic Lake by Molecular and Improved CultivationBased Techniques[J]. Appl. Environ. Microbiol. 2005, 71(4):2162-2169
    [13] Yannarell A.C, Kent A D.Temporal Patterns in Bacterial Communities in Three Temperate Lakes of Different Trophic Status [J]. Microb Ecol, 2003, (46):391-405
    [14] Takai K, Sugai A, Itoh T, et al. Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deepsea hydrothermal vent chimney[J].Int J Syst Evol Microbiol 2000, 50(2):489-500
    [15] Schwarz J I K, Eckert W, Conrad R. Community structure of Archaea and Bacteria in a profundal lake sediment Lake Kinneret (Israel)[J]. Syst. Appl. Microbiol 2007, (30) :239-254
    [16] Wani A A, Surakasi V P, Siddharth J, et al. Molecular analyses of microbial diversity associated with the Lonar soda lake in India: An impact crater in a basalt area [J]. Res Microbiol, 2006,157: 928-937
    [17] Jiang H, Dong H, Zhang G, et al. Microbial Diversity in Water and Sediment of Lake Chaka, an Athalassohaline Lake in Northwestern China [J]. Appl. Environ. Microbiol. 2006,3832-3845
    [18] Auchtung T A, Takacs-Vesbach C D, Cavanaugh C M. 16S rRNA Phylogenetic Investigation of the Candidate Division "Korarchaeota" [J]. Appl. Environ. Microbiol. 2006, 72(7): 5077-5082
    [19] Lehours A C, Bardot C, Thenot A, et al. Anaerobic Microbial Communities in Lake Pavin, a Unique Meromictic Lake in France[J]. Appl. Environ. Microbiol.2005,71(11): 7389-7400
    [20] Floyd M M, Tang J, Kane M, et al. Captured Diversity in a Culture Collection: Case Study of the Geographic and Habitat Distributions of Environmental Isolates Held at the American Type Culture Collection [J]. Appl. Environ. Microbiol. 2005,71(6): 2813-2823
    [21] Zwart G, Crump B C, Agterveld M P, et al. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers [J]. Aquat. Microb. Ecol.2002, 28:141-155.
    [22] Wu Q L, Zwart G, Schauer M, et al. Bacterioplankton Community Composition along a Salinity Gradient of Sixteen HighMountain Lakes Located on the Tibetan Plateau [J]. Appl. Environ. Microbiol. 2006, 72(8): 5478-5485
    
    [23] L6pez-Garcia P, Kazmierczak J, Benzerara K, et al. Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey[J].Extremophiles. 2005,9(4):263-274
    [24] Ma Y, Zhang W, Xue Y, et al. Bacterial diversity of the Inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analyses [J]. Extremophiles. 2004,8:45-51
    [25] Humayoun S B, Bano N, Hollibaugh J T. Depth Distribution of Microbial Diversity inMono Lake,a Meromictic Soda Lake in California [J].Appl.Environ.Microbiol,2003,69(2): 1030-1042
    [26] Wever A D, Muylaert K, Van der Gucht K, et al. Bacterial Community Composition in LakeTanganyika: Vertical and Horizontal Heterogeneity[J]. Appl. Environ. Microbiol, 2005,71(9): 5029-5037
    [27] Lefranc M, Thenot A, Lepere C, et al. Genetic Diversity of Small Eukaryotes in Lakes Differing by Their Trophic Status[J].Appl. Environ.Microbiol. 2005, .71(10): 5935-5942
    [28] Takishita K, Tsuchiya M. Genetic Diversity of Microbial Eukaryotes in Anoxic Sediment of the Saline Meromictic Lake Namakoike (Japan): On the Detection of Anaerobic or Anoxictolerant Lineages of Eukaryotes [J]. Protist, 2007, 158:51-64
    [29] Slapeta J, Moreira D, L6pez—Garcia P. The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes [J]. Proc. R. Soc. B, 2005, 272(1576): 2073-2081
    [30] Lepere C, Boucher D, Jardillier L, et al. Succession and Regulation Factors of Small Eukaryote Community Composition in a Lacustrine Ecosystem (Lake Pavin) [J] Appl. Environ.Microbiol,2006,72(4):2971-2981
    [31]Koonin E V,Makarova K S..Horizational gene transfer in Prokary-otes:Quantification and classification[J].Ann Rev Microbiol.2001,55:709-742.
    [32]Prudhomme M,Libante V,Claverys J P.Homologous recombination at the border:Insertion-deletions and the trapping of foreign DNA in streptococcus pneumoniae[J].Pro Natl Acad Sci,2002,99(4):2100-2105.
    [33]曾润颖,赵晶,张锐等西太平洋“暖池”区沉积物中的细菌类群及其与环境的关系[J]中国科学D辑地球科学,2004,34(3):265-271.
    [34]CHIN K J,LUKOW T,CONRAD R.Effect of Temperature on Structure and Function of the Methanogenic Archaeal Community in an Anoxic Rice Field Soil[J].Appl.Environ.Microbiol.1999,65(6):2341-2349.
    [35]Casamayor E O,Pedr6s-Ali6 C,Muyze Gr,et al.Microheterogeneity in 16S Ribosomal DNA-Defined Bacterial Populations from a Stratified Planktonic Environment Is Related to Temporal Changes and to Ecological Adaptations J].Appl.Environ.Microbiol.2002,68(4):1706-1714
    [36]Wayne L G,Brenner D J,Colwell R R,et al.Report of the ad hoe committee on reconciliation of approaches to bacterial systematies[J].Int.J.Syst.Bacteriol,1987,37:463-464.
    [37]Amann R I,Lin C,Key R,et al.Diversity among Fibrobacter isolates:towards a phylogenetic and habitatbased classification[J].Syst.Appi.Microbiol,1992,15:23-31.
    [38]Fox G E,Wisotzkey J D,Jurtshuk P.How close is close:16S rRNA sequence identity may not be sufficient to guarantee species identity[J].Int.J.Syst.Bacteriol,1992,42:166-170.
    [39]Devereux R,He S H,Doyle C L,et al.Diversity and origin of Desulfovibrio species:phyogenetie definition of a family[J].J Bacteriol,1990,172(7):3609-3619.
    [40]Chi Z M.Mierobiology Ecology[M].Shandong University Publishing House,China,1999
    [41]TorsvikV,Goksoyr J,Daae F L.High diversity of DNA of soil bacteria[J].Appl.Environ.Microbiol,1990,56(3):782-787.
    [42]Dasch G A,Weiss E,Chang K P.Endosymbionts of insects,p.811-833.In N.R.Krieg and J.G.Holt(ed.),Bergey's manual of systematic bacteriology[M].Baltimore:The Williams &Wiikins Co,1984
    [43]陈皓文,袁峻峰,曹俊杰等.南极菲尔德斯半岛环境微生物含量估计[J].黄渤海海洋,2001,19(1):01-08
    [44]Hugenholtz P,Goebel B M,Pace N R.Impact of cultureindependent studies on the emerging phylogenetic view of bacterial diversity[J]..Bactedol.1998,180(18):4765-4774.
    [45]ZehrJ P,Voytek m A.Molecular ecology of aquatic communities:reflections and future directions[J].Hydrobiologia,1999,401:1-8.
    [46]Lindstr(o|¨)m E S.Bacterioplankton community composition in five lakes differing in trophic status and humic content[J].Microb.Ecol.2000,40:104-113.
    [47]Lindstr(o|¨)m E S.Investigating influential factors on bacterioplankton community composition: results from a field study of five mesotrophic lakes [J].Microb. Ecol. 2001,42:598-605.
    [48] Casamayor E O, Schafer H, Baneras L, et al. Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis[J]. Appl. Environ. Microbiol.2000, 66(2): 499-508.
    [49] Hiorns W D, Methe'B A, Nierzwicki-Bauer S A, et al. Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences[J]. Appl. Environ. Microbiol.1997,63(7):2957-2960.
    [50] Konopka A, Bercot T, Nakatsu C. Bacterioplankton community diversity in a series of thermally stratified lakes [J]. Microb. Ecol. 1999,38:126-135.
    [51] Yannarell A C, Kent A D, Lauster G L., et al. Temporal patterns in bacterial communities in three temperate lakes of different trophic status[J]. Microb. Ecol. 2004,46:391-405.
    [52] Yannarell A C, Triplett E W. Within-and between-lake variability in the composition of bacterioplankton communities: investigations using multiple spatial scales [J]. Appl. Environ. Microbiol. 2004,70(1):214-223.
    [53] Anthony C, Yannarell A C, Triplett E. Geographic and Environmental Sources of Variation in Lake Bacterial Community Composition [J].Appl.Environ. Microbiol. 2005, 71(1):227-239.
    [54] Christian S, Patrick R, Schloss D, et al. METAGENOMICS: Genomic Analysis of Microbial Communities [J]. Annu. Rev. Genet. 2004, 38:525-52
    [55] Dhondt S, Rutherford S, Spivack A J. Metabolic activity of subsurface life in deep-sea sediments [J]. Science, 2002,295: 2067-2070
    [56] Chynoweth D P, Pullammanappallil P. Anaerobic digestion of municipal solid wastes.In: Palmisano A C and Balaz M A eds.. Microbiology of solid waste [M]. Boca Raton: CRC Press, 1996
    [57] Eastman J A, Ferguson J F.Solubilization of paniculate organic carbon during the acid phase of anaerobic digestion [J].J.Water Pollut.Control. 1981, 53:352-366
    [58] Grimes D J, Atwell R W, Brayton P R, et al. The fate of enteric pathogenic bacteria in estuarine and marine environments [J]. Microbiol. Sci.1986,3:324-329.
    [59] Roszak D B, Grimes D J, Colwell R R. Viable but nonrecoverable stage of Salmonella enteritidis in aquatic systems[J]. Can. J. Microbiol. 1984, 30:334-338.
    [60] Colwell R R, Brayton P R, Grimes D J, et al. Viable but nonculturable Vibrio cholerae and related pathogens in the environment: implications for the release of genetically engineered microorganisms [J]. Bio/Technology, 1985, 3:817-820.
    [61] Chandler D P, Brockman F J, Fredrickson J K. Use of 16SrDNA clone libraries to study changes in a microbial community resulting from ex situ perturbation of a subsurface sediment [J]. FEMS Microbiol. Rev. 1997,20: 217-230.
    [62] Ward N, Rainey FA, Goebel B, et al. Identification and culturing the 'unculuturables': a challenge for microbiologists. In: Microbial Diversity and Ecosystem Function (Allsopp, D., Colwell, R.R. and Hawksworth, D.L., Eds.)[M]. CAB International Wallingford, 1995
    [63] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situdetection of individual microbial cells without cultivation [J]. Microbiol.Rev.1995, 59, 143-169
    [64] Van de Peer Y, Chapelle S, De Wachter R. A quantitative map of nucleotide substitution rates in bacterial rRNA [J]. Nucl Acids Res, 1996, 24:3381-3391
    [65] Ling S S, Cowan D A. High 16SrDNA bacterial diversity in glacial meltwater lake sediment, ratina Island [J]. Antarctica.2003, 7:275-282.
    [66] Poulsen L K, Ballard G, Stahl D A. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms[J]. Appl. Environ. Microbiol. 1993, 59(5): 1354-1360.
    [67] Maes N, Gheldre Y D, Ryck R D. Rapid and accurate identification of Staphylococcus species by tRNA intergenic spacer length polymorphism analysis[J]. J. Clin. Microbiol. 1997,35:2477-2481.
    [68] Schloss P D, Handelsman J. Biotechnological prospects from metagenomics [J]. Curr. Opin. Biotechnol. 2003,14:303-310.
    [69] Stein J L, Marsh T L, Wu K Y, et al. Characterization of uncultivated prokaryotes: isolation and analysis of a 40- kilobase-pair genome fragment front a planktonic marine archaeon[J].. J. Bacteriol.1996,178:591-599.
    [70] Gartner W, Losi A. Crossing the borders: archaeal rhodopsins go bacterial [J]. Trends Microbiol, 2003,11:405-407.
    [71] Piel J, Hui D, Fusetani N, et al. A polyketide synthasepeptide synthetase gene cluster from an uncultured bacteria symbiont of Paederus beetles [J]. Proc. Natl. Acad. Sci. 2002,99:14002-14007.
    [72] Wang G Y, Graziani E, Waters B, et al. Novel natural products from soil DNA libraries in a Streptomycetehost [J]. Org. Lett. 2000, 2:2401-2404
    [73] Gillespie D E, Brady S F, Bettermann A D, et al. Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA [J]. Appl. Environ. Microbiol. 2002, 68(9):4301-4306
    [74] Brady S F, Clardy J. Long-chain Nacyl amino acid antibiotics isolated from heterologously expressed environmental DNA [J]. J. Am. Chem. Soc. 2000, 122:12903-12914
    [75] Riesenfeld C S, Goodman R M, Handelsman J. Uncultured soil bacteria are a reservoir of new antibiotic resistancegenes[J]. Environ. Microbiol. 2004,6(9):981-989
    [76] Majernik A, Gottschalk G, Daniel R. Screening of environmental DNA libraries for the presence of genes conferring Na+(Li+)/H+ antiporter activity on Escherichia coli:haracterization of the recovered genes and the corresponding gene products[J]. J. Bacteriol. 2001,183:6645-6653
    [77] Knietsch A, Waschkowitz T, Bowien S, et al. Metagenomes of complex microbial consortia derived from different soils as sources for novel genes conferring formation of carbonyls from short-chain polyols on Escherichia coli[J]. J. Mol. Microbiol. Biotechnol. 2003, 5:46- 56
    [78]Voget S,Leggewie C,Uesbeck A,et al.Prospecting for novel biocatalysts in a soil metagenome[J].Appl.Environ.Microbiol.2003,69(10):6235-6242
    [79]Henne A R A,Schmitz M,Bomeke G,et al.Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Eschedchia coli[J].Appl.Environ.Microbiol.2002,66(7):3113-3116.
    [80]Rondon M R.,August P R.,Bettermann A D,et al.Cloning the soil metagenome:a strategy for accessingthe genetic and functional diversity of uncultured microorganisms[J].Appl.Environ.Microbiol.2000,66(6):2541 -2547.
    [81]Gottschalk G.Construction of environmentalDNAlibraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate[J].Appl.Environ.Microbiol.1999,65(9):3901-3907
    [82]Venter J C,Remington K,Heidelberg J F,et al.Environmental genome shotgun sequencing of the Sargasso Sea[J].Science,2004,304(5667):66-74
    [83]Healy F G,Ray R M,Aldrich H C,et al.Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic,anaerobic digester maintained on lignocellulose[J].Appl.Microbiol.Biotechnol,1995,43:667-674
    [84]Tyson G W,Chapman J,Hugenholtz P,et al.Community structure and metabolism through reconstruction of microbial genomes from the environment[J].Nature,2004,428:4327-4336.
    [85]刘信中,叶居新.2000.江西湿地[M].北京:中国林业出版社
    [86]孙晓山.关于如何应对鄱阳湖区水生态恶化的调研报告[J].水利发展研究.2008,10:1-4
    [87]王毛兰,周文斌,胡春华.枯水期赣江流域氮磷的分布特征[J].地球与环境,2007,35(2):166-170
    [88]戴熙畴.鄱阳湖综合开发治理必须列入重要议事日程[J].人民长江,1996,27(7):15-17.
    [89]李昌花,林波.利用生物修复技术防治鄱阳湖水体富营养化初探[J],江西化工,2005,(1):35-37
    [90]吕兰军.鄱阳湖富营养化评价[J],水资源保护,1994,3:47-52
    [91]水和废水监测分析方法[M].第三版,北京:中国环境科学出版社
    [92]Zhou J,Davery M E,Figure J B,et al.Phylogenetic diversity of a bacterial community Determined from Siberian tundras oil DNA[J].Microbiol.1997,14(3):3913-3919
    [93]Blackwood C B,Oaks A,Buyer J S.Phylumand elassspecific PCR primers for general microbial community analysis[J].Appl.Environ.Microbiol,2005,71(10):6193-6198.
    [94]Maidak B L,Olsen G J,Larsen N,et al.The RDP ribosomal database project[J].Nucleic Acids Res.2001,29(1):173-174.
    [95]Good I L.The population frequencies of species and the estimation of population Parameters [J].Biometrika,1953,40:237-264
    [96]Krebs C J.Ecological Methodology.2~(th) ed.Memo Park CA:Benjamin Cummings,1998
    [97]Chao A.Nonparametric estimation of the number of classes in a population[J].Stand J Stat,1984,11:265-270.
    [98] Wu X, Xi W, Ye W, et al. Bacterial community composition of a shallow hypertrophic freshwater lake in China, revealed by 16S rRNA gene sequences[J]. FEMS Microbiol Ecol. 2007,61 (1):85-96.
    [99] Sekiguchi H, Watanabe M, Nakahara T, et al. Succession of Bacterial Community Structure along the Changjiang River Determined by Denaturing Gradient Gel Electrophoresis and Clone Library Analysis[J]. Appl. Environ. Microbiol, 2002,68(10): 5142-5150
    [100] Lapara T M, Klatt C G, Chen R. Adaptations in bacterial catabolic enzyme activity and community structure in membrane-coupled bioreactors fed simple synthetic wastewater[J]. 2006, 121 (3): 368-380.
    
    [101] Cupples A M, Sims G K. Identification of in situ 2,4-dichlorophenoxyacetic acid- degrading soil microorganisms using DNA-stable isotope probing[J]. Soil Biol. Biochem.2007, 39(1): 232-238.
    
    [102] DeSantis T Z, Brodie E L, Moberg J P, et al. High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment[J]. Microb. Ecol. 2007, 53 (3): 371-383.
    [103] Winderl C, Anneser B, Griebler C, et al. Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume [J]. Appl. Environ. Microbiol.2008, 74 (3): 792-801.
    [104] Singleton D R, Powell S N, Sangaiah R, et al. Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil[J].Appl. Environ. Microbiol. 2005, 71 (3): 1202-1209.
    [105] Simpson J M, Domingo J W, Reasoner D J. Assessment of equine fecal contamination: the search for alternative bacterial source—tracking targets [J]. FEMS Microbiol. Ecol. 2004, 47(1): 65-75.
    [106] Piccini C, Conde D, Alonso C, et al. Blooms of single bacterial species in a coastal lagoon of the southwestern atlantic ocean [J]. Appl. Environ. Microbiol. 2006, 72 (10): 6560-6568.
    
    [107] Niemi R.M, Heiskanen I, Wallenius K, et al. Extraction and purification of DNA in rhizosphere soil sample for PCR-DGGE analysis of bacterial consortia[J]. J. Microbiol.Methods, 2001,45:155-165.
    [108] Miller D N, Bryant J E, Madsen E L, et al. Evalution and optimization of DNA extraction and purification procedures for soil and sediment samples[J]. Appl. Environ. Microbiol. 1999,65(11):4715-4724.
    [109] Tsai Y L, Park M J. Olson B H, et al. Rapid method for direct extraction of DNA from soil and sediments[J]. Appl. Envir. Microbiol, 1991,57(4):1070-1074.
    [110] Rochelle P A, Fry J C, Parkes R J, et al. DNA extraction for 16SrRNA gene analysis to determine genetic diversity in deep sediment communities [J]. FEMS Microbiol Lett., 1992,2: 59-65.
    
    '
    [111] Holben W E, Jansson J K, Chelm B K, et al. DNA probe method for the detection of specific microorganisms in the soil bacterial community[J]. Appl. Environ. Microbiol., 1988,54(3):703-711.
    [112] Vetriani C, Jannasch H W, MacGregor B, et al. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments[J]. Appl. Environ. Microbiol., 1999,65(10):4375-4384.
    [113] Ogram A, Sayler G S, Barkey T, et al. The extraction and purification of microlbial DNA from sediments [J]. Microbial., 1987,7:57-66.
    [114] Tsai Y L, Park M J, Olson B H, et al. Rapid method for direct extraction of DNA from soil and sediments[J]. Appl. Environ. Microbial, 1991, 57(4):1070- 1074.
    [115] 高平平,赵立平.可用于微生物群落分子生态学研究的活性污泥总DNA提取方法研究[J].微生物学报, 2002, 22(11): 2015-2019.
    [116] Bosshard P P, Santini Y, Gruter D, et al. Bacterial diversity and community composition in the chemocline of the meromictic alpine Lake Cadagno as revealed by 16SrDNA analysis[J]. FEMS Microbiol Ecol, 2000,31:173-182.
    [117] Martin F P, Cavanaugh C M. Bias in template-to-product ratios in multitemplate PCR [J]. Appl Environ Microbiol, 1998,64(1): 3724-3730.
    [118] Sipos R, Szekely A J, Palatinszky M, et al. Effect of primer mismatch, annealing temperature and PCR cycle number on 16SrRNA gene—targetting bacterial community analysis[J]. FEMS Microbiol Ecol, 2007,60:341-350.
    [119] Farrelly V, Rainey F A, Stackebrandt E. Effect of genome size and rrn gene copy number on PCR amplification of 16SrRNA gene from a mixture of bacterial species[J]. Appl Environ Microbiol, 1995,61(7):2798-2801.
    [120] Ishii K, Fukui M. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR [J]. Appl Environ Microbiol, 2001,67(8):3753-3755.
    [121] Chandler D P, Fredrickson J K, Brockman F J. Effect of PCR template concentration on the composition and distribution of total community 16SrDNA clone libraries[J]. Mol Ecol, 1997,6:475 -482.
    [122] Dohrmann A B, Tebbe C C. Molecular Microbial Ecology Manual[M]. Kluwer Academic Publisher, 2004.
    [123] Suzuki M T, Giovannoni S J. Bias caused by template annealing in the amplification of mixtures of 16SrRNA genes by PCR[J]. Appl Environ Microbiol, 1996,62(2):625-630.
    [124] Bidle K D, Lee S, Marchant D R, et al. Fossil genes and microbes in the oldest ice on Earth[J]. Proceedings of the National Academy of Sciences,2007,104(33):13455-13460.
    [125] Kemp P F, Aller J Y. Bacterial diversity in aquatic and other environments: what 16SrDNA libraries can tell us [J]. FEMS Microbiol Ecol. 2004,47:161-177.
    [126] Amann R, Ludwig W. Ribosomal RNAtargeted nucleic acid probes for studies in microbial ecology [J]. FEMS Microbiol Rev.2000,24: 555-565.
    [127] Elshahed M S, Senko J M, Najar F Z, et al. Bacterial diversity and sulfur cycling in a mesophilic sulfiderich spring[J]. Appl. Environ. Microbiol.2003,69:5609-5621.
    [128] Friedrich U K, Altendorf P K, Lipski A. High bacterial diversity of a waste gasdegrading community in an industrial biofilter as shown by a 16SrDNA clone library[J].Environ Microbiol.2002,4:721-734.
    [129] Rosenberg M S, Kumar S. Incomplete taxon sampling is not a problem for phylogenetic inference [J]. Proceedings of the National Academv of Sciences, 2001, 98: 10751 -10756.
    [130] Olsen G J, Woese C R, Overbeek R. The winds of (evolutionary) change: breathing new life into microbiology [J]. Bacteriol, 1994,176: 1-6.
    
    [131] 焦振泉,刘秀梅,孟昭赫.16S rRNA 序列同源性分析与细菌系统分析鉴定[J].国外医学卫生学分册,1998,25: 12-16.
    [132] Hugenholtz P, Goebel B M, Pace N R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity[J]. Bacteriol, 1998, 180, 4765-4774.
    [133] Drancourt M, Bollet C, Carlioz R, et al. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates[J]. Clin. Microbiol, 2000, 38 (10): 3623 -3630.
    [ 134] Bosshard P P, Abels S, Zbinden R, et al. RibosomalDNA sequencing for identification of aerobic gram positive rods in the clinical laboratory ( an 182 month evaluation) [J]. Clin. Microbiol, 2003,41 (9): 4134 -4140.
    [135] Huelsenbeck J P. The robustness of two phylogenetic methods: Fourtaxon simulations reveal a slight superiority of maximum likelihood over neighbor joining[J]. Molecular Biology and Evolution, 1995,12: 843-849.
    [136] Leff L G, Brown B J, Cemke M J. Spatial and temporal changes in bacterial assembles of the Cuyahoga River [J]. Ohio Sci, 1999, 99: 44 - 48.
    [137] Eiler A, Bertilsson S. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes [J]. Environ Microbiol, 2004,6:1228-1243.
    [138] Bahr M, Hobbie J E, Sogin M L. Bacterial diversity in an Arctic lake: a freshwater SAR11 cluster [J]. Aquat Microb Ecol, 1996,11: 271-277.
    [139] Zwisler W, Selje N, Simon M Seasonal patterns of the bacterioplankton community composition in a large mesotrophic lake[J].Aquat Microb Ecol, 2003, 31:211-225
    [140] Zwart G, Crump B C, Kamst-van Agterveld M P, et al. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers [J]. Aquat Microb Ecol, 2002,28: 141-155
    [141] Kasper U K, Alexander L, Trine F J, et al. Diversity of sulfatereducing bacteria from an extremehypersaline sediment, Great Salt Lake [J]. FEMS Microbiol Ecol, 2007, 60: 287-298.
    [142] Rashidan K K, Bird D F. Role of predatory bacteria in the termination of a cyanobacterial bloom [J]. M icrob Ecol, 2001, 41: 97-105
    [143]Warnecke F, Amann R, Pernthaler J. Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages[J].Environ Microbiol,2004,6(3):243-253
    [144]Urbach E,Vergin K L,Young L,et al.Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake[J].Limnol Oceanog,2001,46:557-572.
    [145]齐玉梅,黄光明.湖泊富营养化物元模型及复合应用初探[J].重庆环境科学,1999,2(15):9-11.
    [146]谢平,黎红秋.基于经验频率曲线的湖泊富营养化随机评价方法及验证[J].湖泊科学2004,16(4):371-376.
    [147]万金保,闫伟伟.鄱阳湖水质富营养化评价方法应用探讨及应用[J].江西师范大学学报(自然科学版),2007,31(2):102-412.
    [148]王毛兰,周文斌,胡春华.鄱阳湖区水体氮、磷污染状态分析[J].湖泊科学,2008,20(3):334-338。
    [149]Lindstr(o|¨)m E S,Kamst-van A M P,Zwart G.Distribution of typical freshwater bacterial groups is associated with pH,temperature,and water retention time[J].Appl Environ Microbiol,2005,71(12):8201-8206.
    [150]Schauer M,Kamenik C,Hahn M W.Ecological differentiation with a cosmopolitan group of planktonic freshwarer bacteria(SOL cluster,Saprospiraceac,bactedoidetes)[J].Appl Environ Microbiol,2005,71:5900-5907.
    [151]Yannarell A C,Triplett E W.Within and between lake variability in the composition of bacteri-oplankton communities:investigations using multiple spatial scales[J].Appl Enviro Microbiol.2004,70(1):214-223.
    [152]Wu Q L,Hahn M W.Structure and dynamics of polynucleobacter communities in a temperate and a sub-tropical lake revealed at three phylogenetic levels[J].FEMS Microb Ecol,2006,57:67-79.
    [153]Eiler A,Bertilsson S.Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes[J].Environ Microbiol,2004,6:1228-1343.
    [154]Wu Q L,Chen Y W,Xu K D,et al.Intra- habitat beterogentity of microbial food web structure under the regime of eutrophication and sediment resuspension in the large subtrophical shallow lake Taihu,China[J].Hydrobiologia,2007,58:241-251.
    [155]Wu Q L,Zwart G,Wu J,et al.Submerged macrophytes play a key role in structuring bacterioplankton community in the large shallow subtropical Taihu,China[J].EnvironMicrobiol,2007,9(11):2765-2774.
    [156]Aleksandra S.Bacteria characteristics of water in the Nita River and its tributaries[J].Acta.Hydrobiology,1997,21(4):341-360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700