用户名: 密码: 验证码:
先天免疫反应数学建模及动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先天免疫系统是一个复杂的通路互联网络,其中既有反馈或前馈回路,也有通路交谈以及包括转录和翻译后修饰在内的各种不同调控机制.同时,宿主与各种病原体的相互作用,也增加了系统的复杂性,这包括先天免疫受体信号的诱导和识别,细胞抗病毒反应,以及病毒的逃逸机制等.传统的研究方法从某一候选基因出发,分析病毒感染的先天免疫反应,虽然可行,但也存在许多的不足与局限性,限制了我们从系统水平上去分析和理解宿主-病原体的复杂关系,而且也没有办法将已知成分的相关信息结合起来一并考虑.因此,传统的简化方法无法阐明分子系统的整合效应和系统特性,最终只能是孤立地获得一些关于先天免疫反应的个别结论.相比之下,系统生物学方法更关注生物系统组成成分之间复杂的相互作用,以及由这些相互作用所产生的系统行为和生物学功能.因而,从系统论的角度出发,对宿主-病原体相互作用关系进行研究和分析,将更有助于我们全面和“无偏见”地理解和认识先天免疫反应.
     本文利用系统生物学方法对先天免疫反应建立数学模型,从系统水平上以干扰素为核心,对先天免疫相关通路进行描述,开展动力学行为分析,无疑将加深对先天免疫反应各主要参与组分之间相互作用关系的理解,从而使得在系统水平上为揭示先天免疫系统抗病毒的作用原理成为可能.为此,本文的主要工作主要集中在以下几个方面:
     首先,为了便于把握先天免疫反应的整个过程,我们将干扰素诱导和效应两个阶段结合起来一并考虑,化繁就简,针对其中的关键环节,根据质量作用原理,提出一个三阶的多时滞微分方程模型.依照希尔系数n2=1及n2>1分两种情况,对模型的稳定性进行理论分析,讨论了先天免疫系统抗病毒完全起作用、部分起作用、以及作用失效时所对应的参数空间,同时,研究了系统具有不同时滞情形下其行为如何.我们发现,如果干扰素的相对强度超过一定的阈值,免疫系统就能将病毒逐步消除.而干扰素自反馈环节的协同效应有助于诱发系统的双稳现象,病毒降解率的增加能够引起系统发生霍夫分岔产生周期振荡,以及某些环节的时滞不仅可以诱导系统振荡而且在一定范围内还能镇定失稳系统,将系统从一个不稳定或振荡的状态切换到一个稳定状态.这说明,在先天免疫反应中的某些时滞对于减少由病毒感染引起的病理损伤是有益的,这个有趣的现象并没有被以前文献所描述的.为了说明理论分析的正确性,我们对所有结果进行了数值模拟,并结合生物学实验验证了模型的有效性.
     其次,如果忽略模型中的特定生物学背景,本模型可以被看作是一个含有正、负自反馈环路的耦合系统,我们会发现,该系统可以在单稳态,双稳态和振荡之间进行切换.为了更好地阐明正、负反馈如何诱导了系统复杂的动力学行为,我们对系统进行双参数分岔分析和数值模拟.结果表明,系统展现出丰富的分岔现象(鞍结分岔、跨临界分岔、超临界霍夫分岔、亚临界霍夫分岔等),并且,自反馈、正反馈以及负反馈强度在诱导系统复杂动力学行为的方面具有重要作用,而其它系统参数,如相对活性系数K以及相对降解率α2和α4对系统行为没有明显的影响.同时,进一步说明了正反馈仅仅只是诱导双稳的必要条件,协同效应(希尔系数n2≥2)是有助于加强系统的非线性从而易于诱导系统产生双稳.而负反馈只有在适当的正反馈强度下才能导致系统的振荡,并且可以通过调节正、负反馈的强度调节系统振荡的振幅和周期.该模型表现出来的复杂动力学行为可以用来设计一个具有特定生物学功能的生物网络.
     最后,本文还利用最优控制理论建立适当的性能函数,讨论在先天免疫系统防护失效情形下如何采取最优的控制策略取得最好的抗病毒治疗效果.我们发现,在基本情形下,虽然三种控制策略各自所产生的最优控制都能有效杀灭病毒,但控制策略1所产生的最优控制不仅产生的费用最小,而且能够使得干扰素以及抗病毒蛋白较快地恢复正常水平.当权重发生变化时,策略1或策略2都将成备选方案,其中,当控制律权重变小或病毒状态权重变大时,策略1下的最优控制将形成最好的治疗方案,与之相反,当控制律权重变大或病毒状态权重变小时,策略2下的最优控制将成为最好的治疗措施.当治疗效率因子变小时,策略2所产生的最优控制不仅产生的费用最低,而且在整个治疗期间的控制律波动性小,可操作性强,因此,通过增强干扰素活性(策略2)将成为最好治疗方案.当治疗效率因子变大时,其中阻断病毒复制(策略1)所产生的最优控制重新成为最好的选择.在所有的讨论情形下,控制策略3都无法形成最好的治疗方案,这说明在疾病治疗时,有时独立的治疗措施或许在费用以及可操作性方面更具有优势.同时,提高治疗效率因子对于实际的疾病治疗不仅将有效降低费用,而且还能增加治疗方案的选择余地.
Innate immune system is a complex network of passages which include not only feed-back or feedforward circuits, but also cross-talks or transcriptional and post-translational modifications. On the other hand, the interactions of host and various pathogens, in-volved the induction and identification of innate immune receptor signaling, cell antiviral responses and viral escape mechanism, also increase the complexity of the system. The traditional method, analyzing the innate immune responses of viral infection from a candidate gene, is feasible, but no doubt restricts understanding of host-pathogen com-plex relationship from system level and has no way to integrate the known information. Thus, the simple method can not elucidate the integration effect and system charac-teristics about the molecular system, and we can only get a few isolated conclusions on the innate immune responses. To the contrast, systems biology is more concerned about the complex interactions between biological system components, as well as the system behaviors and biological functions arising from the interactions. Therefore, to understand the innate immune responses comprehensively, through the analysis of the host-pathogen interactions is helpful from the perspective of system theory.
     By systems biology methods, the dissertation establishes the mathematical model of the innate immune responses based interferon as core component, describing the innate immune related pathways and carrying out dynamic behavior analysis. This will undoubtedly enhance understanding the interactions between main components in the innate immune responses, so that it is possible to reveal the innate immune system antiviral mechanism from the system level. Therefore, the main works of the dissertation are focused on the following aspects:
     First, in order to understand the whole process of the innate immune responses, we propose a model with three order delays differential equations about virus, interferon and antiviral protein based the mass action law, considering the generation phase and the effect phase of interferon together. In accordance with the Hill coefficient of n2=1and n2>1, we analyze the stability of the model, discuss the parameter space when the innate immune system clears all virus, plays part role or fails antiviral ability and investigate the behaviors under different time delays. We found that the innate immune system can guarantee to remove virus gradually if the relative strength of interferon exceeds a certain threshold. The synergistic effect of interferon self-feedback can induce bistability and increasing the viral fatality rate can cause oscillation by a Hopf bifurcation. Some delays can not only induce the oscillation of the system but also calm instable system within a certain range, switching the system from an unstable or oscillatory state to a stable state. These results show that some delays of innate immune responses are beneficial to reduce the pathological injury caused by viral infection and this interesting phenomenon has not been previously described in the literatures. This helps us to understand the antiviral mechanism of innate immune system. In order to illustrate the correctness of the theoretical analysis, we carry out numerical simulation for all results and validate the model combined with the biological experiments.
     Second, the model can be viewed as a regulatory system with a negative feedback coupled with two positive auto-feedback loops if ignoring the specific biological back-ground, which can switch in a single stable, bistable or oscillation state. In order to better illustrate the positive and negative feedback how to induce complex dynamics, we carry out two-parameter bifurcation analysis and numerical simulation and we find that the system exhibits rich bifurcation phenomena (for example, saddle node bifur-cation, transcritical bifurcation, and supercritical or subcritical Hopf bifurcation). And the auto-positive feedback and negative feedback strength (σ1and σ2) plays an impor-tant role in the induction of complicated dynamic behaviors. However, other system parameters, such as relative reactive coefficient K and the relative degradation rates of α2and α4, have no significant effects on the system behaviors. At the same time, we again confirm that the positive feedback is just the necessary condition for bistability and synergistic effect (the Hill coefficient n2≥2) is helpful to induce bistability by strengthening the nonlinear of system. Negative feedback can cause oscillation under appropriate positive feedback strength and we can adjust the amplitude and period of oscillation by regulating strength of positive or negative feedback. The model with the complex dynamic behaviors can be used to design a network with specific biological function.
     Finally, establishing the mathematical model not only can be used to predict the behaviors of the system, but also can help us to find a proper method to intervene and control the behaviors of the system. Therefore, in the last part of the dissertation, we discuss how to adopt optimal control strategy to obtain a good therapeutic effect when innate immune system failure in protection by using the optimal control theory. We find that in the basic case, the three control strategies can effectively kill all viruses, but Strategy1will be the best treatment option, which not only lead to the smallest cost but also make the antiviral protein and interferon quickly returning to normal levels. When the weight changes, Strategy1or Strategy2will be the best optional control. When the control law weights are small or virus-weight becomes large, Strategy1will be the best treatment option. On the contrast, when the weight of the control law weights increase or virus-weight decreases, the optimal control will be Strategy2. When the treatment efficiency factor decreases, the control u2by enhancing interferon activity in Strategy2, becoming the best treatment options, not only minimizes the cost, but also reduces control volatility throughout the treatment period. When treatment efficiency factor increases, Strategy1again becomes the best choice. In all our discussions cases, Strategy3is unable to become the best treatment, indicating that a separate treatment sometimes has more advantages, including the smallest cost and operability, in the treatment of the disease. And improving efficiency factor for treatment will not only reduce the cost, but also provide more the treatment choices in the actual treatment of diseases.
引文
[1]Ideker T., Galitski T., Hood L. A new approach to decoding life:systems biology. Annu. Rev. Genomics Hum. Genet.,2001,2:343-372.
    [2]Ideker T., Thorsson V., Ranish J.A., Christmas R., Buhler J., Eng J.K., Bumgarner R., Goodlett D.R., Aebersold R., Hood L. Integrated genomic and protemoic analyses of a systematically perturbed metabolic network. Science,2001,292:929-934.
    [3]Kitano H. Computational systems biology. Nature,2002,420:206-210.
    [4]Kitano H. Systems biology:a brief overview. Science,2002,295:1662-1664.
    [5]Goesmann A., Linke B., Rupp O., et al. Building a BRIDGE for the integration of heterogeneous data from functional genomics into a plat form for systems biology. J. Biotech.,2003,106(2-3):157-167.
    [6]Stevens C.F. Systems biology versus molecular biology. Current Biology,2004,14(2):51-52.
    [7]Wolkenhauer O. Systems biology:the reincarnation of systems theory applied in biology? Briefings in Bioinformatics,2001,2(3):258-270.
    [8]Werner E. Systems biology:the new darling of drug discovery? Drug Discovery Today, 2002,7:947-949.
    [9]Hood L. Systems Biology:integrating technology, biology, and computation. Mecha-nisms of Aging and Development,2003,124:9-16.
    [10]Auffray C., Imbeaud S., Roux-Rouquie M., Hood L. From functional genomics to systems biology:concepts and practices. C. R. Biologies,2003,326:879-892.
    [11]Chuang H.Y., Hofree M., Ideker T. A Decade of Systems Biology. Annu. Rev. Cell Dev. Biol.,2010,26:721-744
    [12]Wolkenhauer O. Mathematical modeling in the post genome era:understanding genome expression and regulation-a system theoretic approach. Biosystems,2002,65:1-18.
    [13]Albert R., Barabasi A.L. Statistical mechanics of complex networks. Review of Modern Physics,2002,74:47-97.
    [14]Norbert W. Cybernetics or Control and Communication in The Animal and The Ma-chine. Cambridge, Massachusetts:MIT Press,1948.
    [15]Friedman A., Perrimon N. Genome-wide high-throughput screens in functional genomics. Curr. Opin. Genet. Devel.,2004,14(5):470-476.
    [16]Roberts N.J., Vogelstein J.T., Parmigiani G., et al. The predictive capacity of personal genome sequencing. Sci. Transl. Med.,2012,4(133):133ra58.
    [17]Quackenbush J. Microarray analysis and tumor classification. New Engl. J. Med.,2006, 354:2463-2472.
    [18]Cheang M.C.U., van de Rijn M., Nielsen T.O. Gene expression profiling of breast cancer. Annu. Rev. Pathol. Mech. Dis.,2008,3:67-97.
    [19]Menashe I., Maeder D., Garcia-Closas M., et al. Pathway analysis of breast cancer genome-wide association study highlights three pathways and one canonical signaling cascade. Cancer research,2010,70(11):4453-4459.
    [20]Chuang H.Y., Lee E., Liu Y.T., Lee D., Ideker T. Network-based classification of breast cancer metastasis. Mol. Syst. Biol.,2007,3:140.
    [21]Chuang H.Y., Rassenti L., Salcedo M., et al. Subnetwork-based analysis of chronic lym-phocytic leukemia identifies pathways that associate with disease progression. Blood, 2012,120(13):2639-2649.
    [22]Taylor I.W., Linding R., Warde-Farley D., Liu Y., Pesquita C., et al. Dynamic modu-larity in protein interaction networks predicts breast cancer outcome. Nat. Biotechnol., 2009,27:199-204.
    [23]Chen L.N., Liu R., Liu Z.P., Li M.Y., Aihara K. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Scientific Reports,2012,2,342.
    [24]Vidal M., Cusick M.E., Barabasi A.L. Interactome networks and human disease. Cell, 2011,144(6):986-998.
    [25]Costanzo M., Baryshnikova A., Bellay J., Kim Y., Spear E.D., et al. The genetic land-scape of a cell. Science,2010,327:425-431.
    [26]Dixon S.J., Fedyshyn Y., Koh J.L.Y., Prasad T.S.K., Chahwan C., et al. Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc. Natl. Acad. Sci.,2008,105:16653-16658.
    [27]Michod D., Widmann C. DNA-damage sensitizers:potential new therapeutical tools to improve chemotherapy. Crit. Rev. Oncol. Hematol.,2007,63:160-171.
    [28]Luo J., Emanuele M.J., Li D., Creighton C.J., Schlabach M.R., et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell, 2009,137:835-848.
    [29]Scholl C., Frohling S., Dunn I., Schinzel A., Barbie D., et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell,2009,137:821-834.
    [30]Tong A.H.Y., Lesage G., Bader G.D., Ding H., Xu H., et al. Global mapping of the yeast genetic interaction network. Science,2004,303:808-813.
    [31]Bakal C., Linding R., Llense F., Heffern E., Martin-Blanco E., et al. Phosphorylation networks regulating JNK activity in diverse genetic backgrounds. Science,2008,322:453-
    [32]Lehner B., Crombie C., Tischler J., Fortunato A., Eraser A.G. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat. Genet.,2006,38:896-903.
    [33]Roguev A., Wiren M., Weissman J.S., Krogan N.J. High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe. Nat. Meth.,2007,4:861-866.
    [34]Rommens J., Iannuzzi M., Kerem B., Drumm M., Melmer G., et al. Identification of the cystic fibrosis gene:chromosome walking and jumping. Science,1989,245:1059-1065.
    [35]Harding A.1983. Classification of the hereditary ataxias and paraplegias. Lancet,1983, 321:1151-1155.
    [36]Myers R.H. Huntington's disease genetics. NeuroRx,2004,1:255-262.
    [37]Goh K.I., Cusick M.E., Valle D., Childs B., Vidal M., Barab'asi A.L. The human disease network. Proc. Natl. Acad. Sci.,2007,104:8685-8690.
    [38]Oti M., Brunner H.The modular nature of genetic diseases. Clin. Genet.,2007,71:1-11.
    [39]Lee I., Blom U.M., Wang P.I., et al. Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome research,2011,21(7):1109-1121.
    [40]Amit I., Garber M., Chevrier N., Leite A.P., Donner Y., et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science,2009, 326:257-263.
    [41]Wang K., Saito M., Bisikirska B.C., Alvarez M.J., Lim W.K., et al. Genome-wide iden-tification of posttranslational modulators of transcription factor activity in human B cells. Nat. Biotech.,2009,27:829-837.
    [42]Mani K.M., Lefebvre C., Wang K., Lim W.K., Basso K., et al. A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lym-phomas. Mol. Syst. Biol.,2008,4:169.
    [43]Ergiin A., Lawrence C., Kohanski M., Brennan T., Collins J. A network biology approach to prostate cancer. Mol. Syst. Biol.,2007,3:82.
    [44]Steven B. Biology from the botton up. Nature,2008,452(7188):692-696.
    [45]Mathur D., Danford T.W., Boyer L.A., et al. Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-chip and ChIP-PET. Gen Biol.,2008,9(8):126-138.
    [46]Wang J., Rao S., Chu J., et al. A protein interaction network for pluripotency of em-bryonic stem cells. Nature,2006,444(7117):364-432.
    [47]Bernstein B.E., Mikkelsen T.S., Xie X., et al. A bivalent chromatin structure marks key development genes in embryonic stem cells. Cell,2006,125(2):315-341.
    [48]Miiller F.J., Laurent L.C., Kostka D., et al. Regulatory networks define phenotypic classes of human stem cell lines. Nature,2008,455(7211):401-406.
    [49]Hanna J., Saha K., Pando B., et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature,2009,462(7273):595-601.
    [50]Segal E., Friedman N., Koller D., et al. A module map showing conditional activity of expression modules in cancer. Nat Genet.,2004,36(3):1090-1098.
    [51]Ben-Porath I., Thomson M.W., Carey V.J., et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet.,2008, 40(5):499-507.
    [52]Charles J., Travers P., Walport M., Shlomchik M. Immunobiology, Fifth Edition. New York and London:Garland Science,2001.
    [53]Bruce A., Johnson A., Lewis J., Raff M., Roberts K., Walters P. Molecular Biology of the Cell, Fourth Edition. New York and London:Garland Science,2002.
    [54]Litman G., Cannon J., Dishaw L. Reconstructing immune phylogeny:new perspectives. Nat. Rev. Immunol.,2005,5(11):866-879.
    [55]Watkins L.R., Maier S.F., Goehler L.E. Immune activation:the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain,1995, 63(3):289-302.
    [56]Gardy J.L., Lynn D.J., Brinkman F.S., Hancock R.E. Enabling a systems biology ap-proach to immunology:Focus on innate immunity. Trends Immunol.,2009,30:249-262.
    [57]Munk C., Sommer A.F.R., Konig R. System-Biology Approaches to Discover Anti-Viral Effectors of the Human Innate Immune Response. Viruses,2011,3:1112-1130.
    [58]Zak D.E., Aderem A. Systems biology of innate immunity. Immunol. Rev.,2009,227:264-282.
    [59]Shapira S.D., Gat-Viks I., Shum B.O., Dricot A., de Grace M.M., Wu L., Gupta P.B., Hao T., Silver S.J., Root D.E., et al. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell,2009,139:1255-1267.
    [60]Konig R., Chiang C.Y., Tu B.P., Yan S.F., DeJesus P.D., Romero A., Bergauer T., Orth A., Krueger U., Zhou Y., et al. A probability-based approach for the analysis of large-scale RNAi screens. Nat. Methods,2007,4:847-849.
    [61]Bushman F.D., Malani N., Fernandes J., D'Orso I., Cagney G., Diamond T.L., Zhou H., Hazuda D.J., Espeseth A.S., Konig R., et al. Host cell factors in HIV replication, meta-analysis of genome-wide studies. PLoS Pathog.,2009,5:e1000437.
    [62]Watanabe T., Watanabe S., Kawaoka Y. Cellular networks involved in the influenza virus life cycle. Cell Host Microbe,2010,7:427-439.
    [63]Konig R., Stertz S., Zhou Y., Inoue A., Hoffmann H.H., Bhattacharyya S., Alamares J.G., Tscherne D.M., Ortigoza M.B., Liang Y., et al. Human host factors required for influenza virus replication. Nature,2010,463:813-817.
    [64]Tai A.W., Benita Y., Peng L.F., Kim S.S., Sakamoto N., Xavier R.J., Chung R.T. A functional genomic screen identifies cellular cofactors of hepatitis C virus replication. Cell Host Microbe,2009,5:298-307.
    [65]Zhou H., Xu M., Huang Q., Gates A.T., Zhang X.D., Castle J.C., Stec E., Ferrer M., Strulovici B., Hazuda D.J., et al. Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe,2008,4:495-504.
    [66]Kint G., Fierro C., Marchal K., Vanderleyden J., De Keersmaecker S.C. Integration of 'omics' data:Does it lead to new insights into host-microbe interactions? Future Microbiol.,2010,5:313-328.
    [67]Amit I., Garber M., Chevrier N., Leite A.P., Donner Y., Eisenhaure T., Guttman M., Grenier J.K., Li W., Zuk O., et al. Unbiased reconstruction of a mammalian transcrip-tional network mediating pathogen responses. Science,2009,326:257-263.
    [68]Chen R., Mias G.I., Li-Pook-Than J., et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell,2012,148(6):1293-1307.
    [69]Pache L., Konig R., Chanda S.K. Identifying HIV-1 host cell factors by genome-scale RNAi screening. Methods,2011,53:3-12.
    [70]Stertz S., Shaw, M.L. Uncovering the global host cell requirements for influenza virus replication via RNAi screening. Microbes Infect,2011,13:516-525.
    [71]Echeverri C.J., Beachy P.A., Baum B., Boutros M., Buchholz F., Chanda S.K., Down-ward J., Ellenberg J., Eraser A.G., Hacohen N., et al. Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat. Methods,2006,3:777-779.
    [72]Nagano Y., Kojima Y. Immunizing property of vaccinia virus inactivated by ultraviolets rays. C. R. Seances Soc. Biol. Fil.,1954,148:1700-1702.
    [73]Roberts R.M., Liu L., Guo Q., Leaman D., Bixby J. The evolution of the type I inter-ferons. J. Interferon Cytokine Res.,1998,18:805-816.
    [74]Isaacs A., Lindenmann J. Virus interference. I. the interferon. Proc. R. Soc. Lond. B Biol. Sci.,1957,147:258-267.
    [75]Randall R.E., Goodbourn S. Interferons and viruses:an interplay between induction, signalling, antiviral responses and virus countermeasures. Journal of General Virology, 2008,89:1-47.
    [76]Vilcek J. Novel interferons. Nat. Immunol.,2003,4(1):8-9.
    [77]Kotenko S.V., Gallagher G., Baurin V.V., et al. IFNAs mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. Nature Inmunol., 2003,4:69-77.
    [78]Sheppard P., Kindsvogel W., Xu W., et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nature Immunol.,2003,4:63-68.
    [79]Pestka S., Karause C.D., Walter M.R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev.,2004,202(1):8-32.
    [80]Platanias L.C., Fish E.N. Signaling pathways activated by interferons. Experimental Hematology,1999,27:1583-1592.
    [81]Mantovani A., Bussolino F., Introna M. Cytokine regulation of edothelial cell function: from molecular level to the beside. Immunol. Today,1997,18(5):231-239.
    [82]Heinrich R., Schuster S. The Regulation of Cellular Systems. London, England. Chap-man Hall,1996.
    [83]Fell D. Understanding the Control of Metabolism. London. Portland Press,1997.
    [84]Hilborn, R.C. (2000). Chaos and Nonlinear Dynamics. Oxford University Press,2000.
    [85]Hale J. Theory of Functional Differential Equations. New York:Springer-Verlag Press, 1977.
    [86]Dorf R.C., Bishop R.H. Modern Control Systems.9th Edition. Prentice Hall Press,2001.
    [87]Poincare J. Memoire sur les courbes definies par une equation differentielle. J de Math Pures et Appl,1881,7(3):375-422.
    [88]Poincare J. Memoire sur les courbes definies par une equation differentielle. J de Math Pures et Appl,1882,8:251-296.
    [89]Poincare J. Memoire sur les courbes definies par une equation differentielle. J de Math Pures et Appl,1885, 1(4):167-224.
    [90]Poincare J. Memoire sur les courbes definies par une equation differentielle. J de Math Pures et Appl,1886,2:151-217.
    [91]Kawai T., Akira S. Innate immune recognition of viral infection. Nat. Immunol.,2006, 7:131-137.
    [92]Akira S., Takeda K. Toll-like Receptor Signaling. Nature Reviews Immunology,2004, 4(7):499-511.
    [93]Shapira S.D., Hacohen N. Systems biology approaches to dissect mammalian innate immunity. Curr. Opin. Immunol.,2011,23:71-77.
    [94]Bazhan S.I., Belova O.E. Interferon-induced Antiviral Resistance:A Mathematical Mod-el of Regulation of Mxl Protein Induction and Action. J. theor. Biol.,1999,198:375-393.
    [95]Adler E.M., Gough N.R., Ray L.B.2005:Signaling breakthroughs of the year. Sci. STKE,2006, eg1.
    [96]Chou S., Zhao S., Song Y., Liu H., Nie Q. Fus3-triggered Tecl degradation modulates mating transcriptional output during the pheromone response. Mol. Syst. Biol.,2008, 4:212.
    [97]Li H., Ung C.Y., Ma X.H., Li B.W., Low B.C., Cao Z.W., Chen Y.Z. Simulation of crosstalk between small GTPase RhoA and EGFR-ERK signaling pathway via MEKK1. Bioinformatics,2009,25:358-364.
    [98]Zou X., Peng T., Pan Z. Modeling specificity in the yeast MAPK signaling networks. Journal of Theoretical Biology,2008,250:139-155.
    [99]Beirer S., Hofer T. Control of signal transduction cycles:general results and application to the JAK-STAT pathway. Genome Inform.,2006,17:152-162.
    [100]Li Y., Li C., Xue P., Zhong B., Mao A.P., Ran Y., Chen H., Wang Y.Y., Yang F., Shu H.B. ISG56 is a negative-feedback regulator of virus-triggered signaling and cellular antiviral response. Proc. Natl. Acad. Sci. USA,2009,106:7945-7950.
    [101]Smieja J. Model based analysis of signaling pathways. Int. J. Appl. Math. Comput. Sci., 2008,18:139-145.
    [102]Soebiyanto R.P., Sreenath S.N., Qu C.K., Loparo K.A., Bunting K.D. Complex systems biology approach to understanding coordination of JAK-STAT signaling. Biosystems, 2007,90:830-842.
    [103]Taniguchi T., Takaoka A. The interferon-alpha/beta system in antiviral responses:a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr. Opin. Immunol.,2002,14:111-116.
    [104]Yamada S., Shiono S., Joo A., Yoshimura A. Control mechanism of JAK/STAT signal transduction pathway. FEBS Lett.,2003,534:190-196.
    [105]Zi Z., Cho K.H., Sung M.H., Xia X., Zheng J., Sun Z. In silico identification of the key components and steps in IFN-gamma induced JAK-STAT signaling pathway. FEBS Lett.,2005,579:1101-1108.
    [106]Zou X., Xiang X., Chen Y., Peng T., Luo X., Pan Z. Understanding inhibition of viral proteins on type ⅠIFN signaling pathways with modeling and optimization. Journal of Theoretical Biology,2010,265:691-703.
    [107]Cirit M., Haugh J.M. Quantitative models of signal transduction networks:How detailed should they be? Communicative & Integrative Biology,2011,4:353-356.
    [108]Hassard B.D., Kazarinoff N.D., Wan Y.H. Theory and applications of Hopf bifurcation. Cambridge:Cambridge Uninersity Press,1981.
    [109]Nikolov S., Petrov V. Time delay model of RNA Silencing. Journal of Mechanics in Medicine and Biology,2007,7(3):297-314.
    [110]Ruan S., Wei J. On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion. IMAJ Math. Appl. Med. Biol.,2001,18:1-52.
    [111]Khan Q.J.A. Hopf bifurcation in multiparty political systems with time delay in switch-ing. Appl. Math. Lett.,2000,13(7):43-52.
    [112]Arnheiter H., Haller O., Lindenmann J. Host gene influence on interferon action in adult mouse hepatocytes:specificity for influenza virus. Virology,1980,103(1):11-20.
    [113]Vitale G., van Koetsveld P.M., de Herder W.W., et al. Effects of type I interferons on IGF-mediated autocrine/paracrine growth of human neuroendocrine tumor cells. Am. J. Physiol. Endocrinol. Metab.,2009,296(3):E559-E566.
    [114]Janzen C., Kochs G., Haller O. A monomeric GTPase-negative MxA mutant with an-tiviral activity. J. virol.,2000,74(17):8202-8206.
    [115]Haller O., Staeheli P., Kochs G. Interferon-induced Mx proteins in antiviral host defense. Biochimie,2007,89(6):812-818.
    [116]Stewart W.E., Vilcek J. The interferon system. Berlin Heidelberg New York:Springer, 1981.
    [117]Von Wussow P., Jakschies D., Hochkeppel H.K., et al. The human intracellular Mx-homologous protein is specifically induced by type I interferons. Eur. J. Immunol.,1990, 20(9):2015-2019.
    [118]Ronni T., Melen K., Malygin A., et al. Control of IFN-inducible MxA gene expression in human cells. J. Immunol.,1993,150(5):1715-1726.
    [119]Broquet A.H., Hirata Y., McAllister C.S., Kagnoff M.F. RIG-I/MDA5/MAVS are re-quired to signal a protective IFN response in rotavirus-infectedintestinal epithelium. J. Immunol.,2011,186(3):1618-1626.
    [120]Xu L.G., Wang Y.Y., Han K.J., Li L.Y., Zhai Z., et al. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol. Cell,2005,19(6):727-740.
    [121]Korns J.D., Homann D. Accelerated and Improved Quantification of Lymphocytic Chori-omeningitis Virus (LCMV) Titers by Flow Cytometry. PLoS One,2012,7(5):e37337.
    [122]Grigorov B., Rabilloud J., Lawrence P., Gerlier D. Rapid titration of measles and other viruses:Optimization with determination of replication cycle length. PLoS One,2011, 6(9):e24135.
    [123]Weng G., Bhalla U.S., Iyengar R. Complexity in biological signaling systems. Science, 1999,284:92-96.
    [124]Chen W.W., Schoeberh B., Jasper P.J., Niepel M., Nielsen U.B., et al. Inputoutput behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol Syst Biol,2009,5:239.
    [125]Ferrell J.J., Tsai T.Y., Yang Q. Modeling the Cell Cycle:Why Do Certain Circuits Oscillate? Cell,2011,144:874-885.
    [126]Lei J., He G., Liu H., Nie Q. A Delay Model for Noise-Induced Bi-Directional Switching. Nonlinearity,2009,22:2845-2859.
    [127]Monk N. Oscillatory expression of Hesl, p53, and NF-kB driven by transcriptional time delays. Curr. Biol.,2003,13:1409-1413.
    [128]Milo R., Shen-Orr S., Itzkovitz S., Kashtan N., Chklovskii D., Alon U. Network motifs: simple building blocks of complex networks. Science,2002,298:824-827.
    [129]Ferrell J. Self-perpetuating states in signal transduction:positive feedback, double neg-ative feedback and bistability. Curr. Opin. Cell Biol.,2002,14:140-148.
    [130]McMillen D., Kopell N., Hasty J., Collins J.J. Synchronizing genetic relaxation oscilla-tors by intercell signaling. Proc. Natl. Acad. Sci.,2002,99:679-684.
    [131]Pomerening J., Kim S., Ferrell J. Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell,2005,122:565-578.
    [132]Iranfar N., Fuller D., Loomis W. Transcriptional regulation of post-aggregation genes in Dictyostelium by a feed-forward loop involving GBF and LagC. Dev. Biol.,2006, 290:460-469.
    [133]Song H., Smolen P., Av-Ron E., Baxter D., Byrne, J. Dynamics of a minimal mod-el of interlocked positive and negative feedback loops of transcriptional regulation by cAMPresponse element binding proteins. Biophys. J.,2007,92:3407-3424.
    [134]Pfeuty B., Kaneko K. The combination of positive and negative feedback loops confers exquisite flexibility to biochemical switches. Phys. Biol.,2009,6:046013.
    [135]Elowitz M., Leibler S.. A synthetic oscillatory network of transcriptional regulators. Nature,2000,403:335-338.
    [136]Gardner T., Cantor C., Collins J. Construction of a genetic toggle switch in Escherichia coli. Nature,2000,403:339-342.
    [137]Thomas R. The role of feedback circuits:positive feedback circuits are a necessary condition for positive real eigenvalues of the Jacobian matrix. Intersc.,2010,98:1148-1151.
    [138]Snoussi E. Necessary conditions for multistationarity and stable periodicity. J. Biol. Syst.,1998,6:3-9.
    [139]Novak B., Tyson J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol.,2008,9:981-991.
    [140]Siiel G., Garcia-Ojalvo J., Liberman L., Elowitz M. An excitable gene regulatory circuit induces transient cellular differentiation. Nature,2006,440:545-550.
    [141]Guantes R., Poyatos J. Dynamical principles of two-component genetic oscillators. PLoS Comput. Biol.,2006,2:0188-0197.
    [142]Cinquin O., Demongeot J. Positive and negative feedback:Striking a balance between necessary antagonists. J. Theor. Biol.,2002,216:229-241.
    [143]Song H., Smolen P., Av-Ron E., Baxter D., Byrne J. Dynamics of a minimal mod-el of interlocked positive and negative feedback loops of transcriptional regulation by cAMPresponse element binding proteins. Biophys. J.,2007,92:3407-3424.
    [144]Zhang J.J., Yuan Z.J., Li H.X., Zhou T.S. Architecture-dependent robustness and bista-bility in a class of genetic circuits. Biophys. J.,2010,99:1034-1042.
    [145]Strieker J., Cookson S., Bennett M., Mather W., Tsimring L., Hasty J. A fast, robust and tunable synthetic gene oscillator. Nature,2008,456:516-519.
    [146]Tian X., Zhang X., Liu F., Wang W. Interlinking positive and negative feedback loops creates a tunable motif in gene regulatory networks. Phys. Rev. E.,2009,80:011926.
    [147]Tsai T., Choi Y., Ma W., Pomerening J., Tang C., Ferrell, J. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science,2008,321:126-129.
    [148]Qiu H.H., Zhou T.S. Feedback-induced complex dynamics in a two-component regula-tory circuit. International Journal of Bifurcation and Chaos,2012,22(3):1250059.
    [149]Volterra V. Variazione e fluttuazini del numero d'individui in specie animali conviventi. Mem Accad Nazionale Lincei.,1926,6(2):31-113.
    [150]Borisuk M.T., Tyson J.J. Bifurcation analysis of a model of mitotic control in frog eggs. J. Theor. Biol.,1998,195:69-85.
    [151]Chen K.C., et al. Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell,2000,11:369-391.
    [152]Lei J., Mackey M. Multistability in an age-structured model of hematopoiesis:Cyclical neutropenia. Journal of Theoretical Biology,2011,270:143-153.
    [153]Haurie C., Dale D., Rudnicki R., et al. Modeling complex neutrophil dynamics in the grey collie. Journal of Theoretical Biology,2000,192:167-181.
    [154]Mahaffy J., B'elair J, Mackey M. Hematopoietic model with moving boundary con-dition and state dependent delay:application in erythropoiesis. Journal of Theoretical Biology,2000,206:585-603.
    [155]Santillan M., Mahaffy J., B'elair J., et al. Regulation of platelet production:the normal response to perturbation and cyclical platelet disease. Journal of Theoretical Biology,2000,206:585-603.
    [156]Ermentrout B. Simulating, Analyzing, and Animating Dynamical Systems:A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia,2002.
    [157]Sussmann H.J., Willems J.C.300 Years of Optimal Control:From the Brachystochrone to the Maximum Principle. IEEE Control Systems,1997,7:32-44.
    [158]Blayneh K., Gumel A.B., Lenhart S., Clayton T. Backward bifurcation and optimal con-trol in transmission dynamics of west nile virus. Bulletin of Math. Biol.,2010,72:1006-1028.
    [159]Blayneh K., Cao Y., Kwon H.D. Optimal control of vector-borne diseases:Treatment and prevention, Discrete and Cont. Dyn. Sys. Series B.,2009,11(3):587-611.
    [160]Jung E., Lenhart S., Feng Z. Optimal control of treatments in a twostrain tuberculosis model. Discrete and Continuous Dynamical Systems Series B.,2002,2(4):473-482.
    [161]Lenhart S., Workman J.T. Optimal Control Applied to Biological Models, Mathematical and Computational Biology Series. Chapman and Hall/CRC Press, London-Boca Raton, 2007.
    [162]ReVelle C.S., Lynn W.R., Feldmann F. Mathematical models for the economic allocation of tuberculosis control activities in developing nations. American Review of Respiratory Disease,1967,96(5):893-910.
    [163]Taylor H.M. Some models in epidemic control. Mathematical Biosciences,1968,3:383-395.
    [164]Hethcote H.W., Waltman P. Optimal vaccination schedules in a deterministic epidemic model. Mathematical Biosciences,1973,18(3-4):365-381.
    [165]Swan G.W., Vincent T.L. Optimal control analysis in the chemotherapy of multiple myeloma. Mathematical Medicine and Biology,1977,39(3):317-337.
    [166]Morton R., Wickwire K.H. On the optimal control of a deterministic epidemic. Adv. Appl. Prob.,1974,6(4):622-635.
    [167]Marsoian N.F., Rudd W.G. Modeling and optiaml control of insect pest population. Math. Biosciences,1976,30(3-4):231-244.
    [168]Sethi S.P., Staats P.W. Optimal control of some simple deterministic epidemic models. J. Oper. Res. Soc.,1978,29(2):129-136.
    [169]Sethi S.P. Optimal quarantine programmes for controlling an epidemic spread. J. Oper. Res. Soc.,1978,29(3):265-268.
    [170]Goh B.S. Management and analysis of biological population. New York:Elsevier Scien-tific Publishing Company,1980.
    [171]Stengel R.F., Ghigliazza R., Kulkarni N., Lapalace O. Optimal control of innate immune response. Optimal control applications and methods,2002,23:91-104.
    [172]Culshaw R.V., Ruan S., Spiteri R.J. Optimal HIV treatment by maximising immune response. J. Math. Biol.,2004,48:545-562.
    [173]Pinho M.R., Ferreira M.M., Ledzewicz U., Schaettler H. A model for cancer chemother-apy with state-space constraints. Nonlinear Analysis,2005,63(5-7):e2591-e2602.
    [174]Lee S., Chowell G., Castillo-Chavez C. Optimal control for pandemic influenza:The role of limited antiviral treatment and isolation. Journal of Theoretical Biology,2010, 265:136-150.
    [175]Pontryagin L.S., Boltyanskii V.C., Gamkrelidze R.V., Mishchenko E.F. The Mathemat-ical Theory of Optimal Processes. Wiley, New Jersey,1962.
    [176]Fleming W.H., Rishel R.W. Deterministic and Stochastic Optimal Control. Springer Verlag, New York,1975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700