用户名: 密码: 验证码:
尾加压素Ⅱ在糖尿病肾脏病变中作用及其分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尾加压素Ⅱ(UⅡ)是目前已知的体内最强的缩血管活性肽。近年来大量研究证据表明,除血流动力学作用外,UⅡ还具有非血流动力学效应,在多种疾病的发生发展中具有重要病理生理意义。糖尿病肾病(DN)是糖尿病最常见的慢性并发症之一,发病机制尚未完全阐明,且缺乏有效防治手段。有研究发现,UⅡ及其受体在DN患者肾组织中呈明显高表达,但UⅡ在DN发病中的作用及其分子机制目前尚不清楚。
     本研究应用免疫组织化学、细胞生物学、流式细胞术、酶联免疫吸附实验、RT-PCR和RNA干扰等技术,研究了UⅡ及其受体在DN肾组织中的表达,UⅡ对肾小球系膜细胞(MC)增殖及细胞外基质分泌的影响,UⅡ与某些致DN因素之间的关系等,旨在探讨UⅡ在DN发生发展中的作用及其可能的分子机制,为DN防治提供实验依据。
     本研究结果表明,链脲佐菌素(STZ)诱发大鼠糖尿病肾脏病变时,肾组织UⅡ及其受体GPR14 mRNA表达水平明显增加;一定浓度UⅡ对MC具有促增殖作用,UⅡ阻断药能抑制该效应;糖基化终产物(AGEs)、转化生长因子β1(TGF-β1)及血管紧张素Ⅱ(AngⅡ)能增强MC UⅡ及其受体GPR14 mRNA的表达。GPR14基因干扰可减轻UⅡ对TGF-β1 mRNA表达的刺激作用。这些结果提示,UⅡ在DN发生发展中具有一定作用,为研究DN防治措施提供了新的理论依据。
UrotensinⅡ(urotensinⅡ,UⅡ) is a cycic neuropeptide initially isolated from the caudal neurosecretory system of teleost fish, its human homolog (hUⅡ) has subsequently been cloned in 1998. UⅡis the most potent vasoconstrictive peptide ever identified, it widely exists in the brain, cardiovascular system, liver, kidney, and so on from mollusks to mammals. G-protein-couple receptor is its specific receptor, originally termed GPR14. UⅡexerts biological effects via interaction with its receptor GPR14. Accumulating evidences indicate that UⅡshows both hemodynamic effects and non-hemodynamic effects, such as stimulating cell proliferation and regulating endocrine and metabolic, etc. So UⅡplays an important pathophysiological role in the development and progression of some diseases.
     Especially, its non-hemodynamic effects have become the focus of attention. Diabetic nephropathy (DN) is one of important microvascular complications of diabetes, its pathogenesis is complex and the consequences could be serious. Because of the lack of effective prevention and treatment means, it has become the common cause of end-stage renal disease. DN can also increase the incidence of cardiovascular events and mortality, it is one of the important disabled and death reasons of patients with diabetes.
     The main pathological changes of diabetic nephropathy is glomerular hypertrophy, hyperfiltration and the accumulation of extracellular matrix in the initial stage and glomerular sclerosis in later stage. Mesangial cells (MC) is the central factor. Usually glomerular sclerosis is divided into nodular, exudative and diffuse three kinds of types, the nodular type is characteristic for DN. The pathogenesis of DN is complex and still not clear, it is generally considered that it has relations with genetic factors, high blood sugar-related metabolic disorders, etc. AGEs, TGF-β1 and AngⅡare the important factors in the development and progression of DN.
     The recent studies showed that expression of UⅡand GPR14 mRNA in kidney was exceptionally upregulated in patients with diabetic nephropathy. In addition, UⅡcan be secreted and excreted by kidney. Acts as a growth factor, UⅡcan promote the proliferation of mesangial cells. These suggest that UⅡmay be involved in the occurrence and development of DN. However, the role of UⅡin pathogenesis of diabetic nephropathy and its molecular mechanism have not been elucidated.
     In the present study, diabetic renal lesion was prepared in rats using streptozotocin by intraperitoneal injection, and cultured rat mesangial cells were utilized, and the following issuses were investigated:①the contents of both UⅡand its receptor in renal cortex of rat at different periods of diabetes (2~12 weeks);②effects of UⅡon proliferation in MC;③the relationship between AGEs, TGF-β1 and AngⅡwith UⅡ;④the effects of RNA interference of GPR14 on the expression of TGF-β1 mRNA caused by UⅡ.
     The main findings are as follows:
     1. It was detected that the body weight reduced, the kidney weight, the kidney volume and the kidney index significantly increased in rats at different periods of diabetes compared with the control group (P<0.05).
     2. The GSP, Glu, Scr and 24 hour urinary protein contents were obviously increased in diabetic rats compared with the control group.
     3. Immunohistochemical detection showed that the area and intensity of immunological staining for UⅡ, GPR14, TGF-β1, FN and ColⅣwere increased in kidney of diabetic rats compared with the control group (P<0.05).
     4. Compared with the control group, the expression of UⅡand GPR14 mRNA in renal cortex of rats with DM2W and DM4W had no obviously change (P>0.05), but these were significantly increased in renal cortex of rats with DM8W and DM12W (P<0.05).
     5. UⅡat concentration 10~(-9) and 10~(-8) mol/L promoted the proliferation and DNA synthesis of mesangial cells, Treatment wih nicardipine, ethylene diaine tetraacetic acid (EDTA) and anti-UⅡantibody weakend the effect of UⅡ.
     6. The expression of UⅡand GPR14 mRNA in AGEs-, TGF-β1- or AngⅡ-treated MC was significantly increased, anti-TGF-β1 antibody reduced the effect caused by TGF-β1.
     7. UⅡat concentration 10-9 and 10-8 mol/L markedly increased the level of FN, ColⅣ, TGF-β1 and AngⅡin MC culture medium.
     8. UⅡpromoted the expressions of FN, ColⅣ, TGF-β1 and AngⅡ(AT1) (P<0.05). The increased expressions were significantly reduced by addition of nicardipine, ethylene diaine tetraacetic acid (EDTA) and anti-UⅡantibody.
     9. RNA interference of GPR14 suppressed the increased expression of TGF-β1 mRNA caused by UⅡ.
     The main conclusions are as follows:
     1. The expression of UⅡand GPR14 in renal cortex is significantly increased in diabetic rats prepared using streptozotocin by intraperitoneal injection.
     2. UⅡat certain concentrations can promote the proliferation of mesangial cells, the action may partly be mediated by calcium ion inflow.
     3. AGEs can significantly increase the expression of UⅡand GPR14 mRNA in MC.
     4. UⅡat certain concentrations can promote the secretion and mRNA expressions of FN, ColⅣ, TGF-β1 and AngⅡ. TGF-β1 and AngⅡcan also increase the expression of UⅡand GPR14 mRNA in MC. UⅡ,TGF-β1 and AngⅡmay have a synergistic effect in the occurrence and development of diabetic nephropathy.
     5. The effect of UⅡincreased TGF-β1 mRNA expression in MC is mediated by UⅡreceptor GPR14.
     This originality of dissertation lies in the following:
     It is demonstrated that the expressions of UⅡand GPR14 protein and mRNA in renal cortex in streptozotocin-induced diabetic rats are significantly increased; UⅡat certain concentrations can promote the proliferation and DNA synthesis of mesangial cells, and increase the secretion and mRNA expression of FN, ColⅣ, TGF-β1 and AngⅡ(AT_1). The findings suggest that UⅡmay directly or indirectly participate in the development and progression of diabetic nephropathy.
引文
[1] Coulouarn Y, Lihrmann I, Jegou S, et al. Cloning of cDNA encoding the urotensinⅡprecursor in frog and human reveals intense expression of the urotensinⅡgene in motoneurons of the spinal cord[J]. Proc Natl Acad Sci USA, 1998, 95(26): 15803-15808.
    [2] Ames RS, Sarau HM, Chambers JK, et al. Human urotensinⅡis a potent vasoconstrictor and agonist for the orphan receptor GPR14[J]. Nature, 1999, 401(6750): 282-286.
    [3] Alexandre BK, Almut HB, Evi KT, et al. Functional and binding characterizations of urotensinⅡ-related peptides in human and rat urotensinⅡ-receptor assay[J]. J Pharmacol Exp Ther, 2003, 306(3): 1200-1209.
    [4] Guerrini R, Camarda V, Marzola E, et al. Structure-activity relationship study on human urotensinⅡ[J]. J Pept Sci, 2005, 11(2): 85-90.
    [5] Coulouarn Y, Jegou S, Tostivint H, et al. Cloning, sequence analysis and tissue distribution of the mouse and rat urotensinⅡprecursors[J]. FEBS Lett, 1999, 457(1): 28-32.
    [6] Russell FD, Kearns P, Toth I, et al. UrotensinⅡconverting enzyme activity of furin and trypsin in human cells in vitro[J]. J Pharmacol Exp Ther, 2004, 310(1): 209-214.
    [7] Sugo T, Murakami Y, Shimomura Y, et al. Identification of urotensinⅡ-related peptides as the urotensinⅡ-immunoreactive molecule in the rat brain[J]. Biochem Biophys Res Commun, 2003, 310(3): 860-868.
    [8] Mori M, Fujno M. UrotensinⅡ-related peptide, the endogenous ligand for the urotensinⅡreceptor in the rat brain[J]. Peptides, 2004, 25(10): 1815 -1818.
    [9] Conlon JM, Yano K, Waugh D, et al. Distribution and molecular forms of urotensinⅡand its role in cardiovascular regulation in vertebrates[J]. J Exp Zool, 1996, 275(2-3): 226-238.
    [10]丛柏林,张春雨,杜军保,等.人类尾加压素Ⅱ在胎儿肺脏中分布的免疫组化研究[J].临床儿科杂志, 2005, 23(3): 140-142.
    [11] Totsune K, Takahashi K, Arihara Z, et al. Increased plasma urotensinⅡlevels in patients with diabetes mellitus[J]. Clin Sci,2003, 104(1): 1-5.
    [12] Matsushita M, Shichiri M, Imai T, et al. Co-expression of urotensinⅡand its receptor (GPR14) in human cardiovascular and renal tissues[J]. J Hypertens, 2001, 19(12): 2185-2190.
    [13] Tal M, Ammar DA, Karpuj M, et al. A novel putative neuropeptide receptor expressed in neural tissue, including sensory epithelia[J]. Biochem Biophys Res Commun, 1995, 209(2): 752-759.
    [14] Totsune K, Takahashi K, Arihara Z, et al. Role of urotensinⅡin patients on dialysis[J]. Lancet, 2001, 358(9284): 810-811.
    [15] Douglas SA, Ohlstein EH. Human urotensinⅡ, the most potent mammalian vasoconstrictor identified to date, as a therapeutic target for the management of cardiovascular disease [J]. Trends Cardiovasc Med, 2000, 10(6): 229-237.
    [16] Behm DJ, Harrison SM, Ao Z, et al. Deletion of the UT receptor gene results in the selective loss of urotensin-Ⅱcontractile activity in aortae isolated from UT receptor knockout mice[J]. Br J Pharmacol, 2003, 139(2): 464-472.
    [17] Davenport AP, Maguire JJ. UrotensinⅡ: fish neuropeptide catches orphan receptor[J]. Trends Pharmacol Sci, 2002, 21(3): 80-82.
    [18] Bottrill FE, Douglas SA, Hiley CR, et al. Human urotensinⅡis an endothelium-dependent vasodilator in rat small arteries[J]. Br J Pharmacol, 2000, 130(8): 1865-1870.
    [19] Benett RT, Jones RD, Morice AH, et al. Vasoconstrictive effects of endothelin-1, endothelin-3, and urotensinⅡin isolated perfused human lungs and isolated human pulmonary arteries[J]. Thorax, 2004, 59(5): 401-407.
    [20] Maclean MR, Alexander D, Stirrat A, et al. Contractile responses to human urotensin-Ⅱin rat and human pulmonary arterise: effect of endothelial factors and chronic hypoxia in the rat[J]. Br J Pharmacol, 2000, 130(2): 201-204.
    [21] Douglas SA, Sulpizio AC, Piercy V, et al. Differential vasoconstrictor activity ofhuman urotensinⅡin vascular tissue isolated from the rat, mouse, dog, pig, mannoses and cymonolgus monkey. Br J Pharmacol, 2000, 131(7): 1262-1274.
    [22] Sondermeijer B, Kompa A, Komesaroff P, et al. Effect of exogenous urotensin-Ⅱon vascular tone in skin microcirculation of patients with essential hypertension [J]. Am J Hypertens, 2005, 18: 1195-1199.
    [23] Lim M, Honisett S, Sparkes CD, et al. Differential effect of urotensinⅡon vascular tone in normal subjects and patients with chronic heart failure[J]. Circulation, 2004, 109: 1212-1214.
    [24] Gibson A. Complex effects of Gillichthys urotensinⅡon rat aortic strips[J]. Br J Pharmacol, 1987, 91(1): 205-212.
    [25] Zhu YC, Zhu YZ, Moore PK. The role of urotensinⅡin cardiovascular and renal physiology and diseases[J]. Br J Pharmacol, 2006, 148: 884-901.
    [26]夏春芳,徐少平,张勇刚,等.大鼠主动脉球囊成形术后尾加压素Ⅱ受体的变化[J].中国病理生理杂志, 2001, 17(7): 593-597.
    [27] Giebing G, Tolle M, Jurgensen J, et al. Arrestin-independent internalization and recycling of the urotensin receptor contribute to long-lasting urotensinⅡmediated vasoconstriction[J]. Circ Res, 2005, 97: 707-710.
    [28] Gibson A, Conyers S, Bern HA. The influence of urotensinⅡon calcium flux in rat aorta[J]. J Pharmacol, 1988, 40(12): 893-895.
    [29] Wang YX, Ding YJ, Zhu YZ, et al. Role of PKC in the novel synergistic action of urotensinⅡand angiotensinⅡand in urotensinⅡinduced vasoconstriction[J]. Am J Physiol Heart Circ Physiol, 2007, 292(1): H348-H359.
    [30] Gray GA, Jones MR, Sharif I. Human urotensinⅡincreases coronary perfusion pressure in the isolated rat heart potentiation by nitric oxide synthase and cyclooxygenase inhibition[J]. Life Sci, 2001, 69(2): 175-180.
    [31] Stirrat A, GallagherM, Douglas SA, et al. Potent vasodilator responses to human urotensin-Ⅱin human pulmonary and abdominal resistance arteries[J]. Am J Physiol Heart Circ Physiol, 2001, 280(2): H925-H928.
    [32] Lacza Z, Busija WD. Urotensin-Ⅱis a nitric oxide-dependent vasodilator in the pial arteries of the newborn pig[J]. Life Sci, 2006, 78(23): 2763-2766.
    [33] Bottill FE, Douglas SA, Hiley CR, et al. Human urotensinⅡis an endothelium- dependent vasodilator in rat small arteries[J]. Eur J Pharmacol, 2000, 130(8): 1865-1870.
    [34] Lin Y, Tsuchihashi T, Marsumura K, et al. Central cardiovascular action of urotensinⅡin conscious rats[J]. J Hypertens, 2003, 21(1): 159-165.
    [35] Bottrill FF, Douglas SA, Hiley CR, et al. Human urotensin-Ⅱis an endothelium-dependent vasodilator in rat small arteries[J]. Br J Pharmacol, 2000, 130(8): 1865-1870.
    [36] Ong KL, Wong LY, Man YB, et al. Haplotypes in the urotensinⅡgene and urotensinⅡreceptor gene are associated with insulin resistance and impaired glucose tolerance[J]. Peptides, 2006, 27(7): 1659-67.
    [37]李莉,孙俐俐,李彬,等.老年心衰患者血浆尾加压素的浓度及运动的影响[J].心血管康复医学杂志, 2006, 15(5): 424.
    [38] Katano Y, Ishihata A, Aita T, et al. Vasodilator effect of urotensinⅡ, one of the most potent vasoconstricting factors, on rat coronary arteries[J]. Eur J Pharmacol, 2000, 402(1-2): R5-R7.
    [39]孙德俊,杨敬平,孙艳宏,等.缺氧性肺动脉高压大鼠尾加压素Ⅱ、一氧化氮和C型利钠肽的表达及意义[J].中华结核和呼吸杂志, 2006, 29: 185-188.
    [40] Krum H, Kemp W. Therapeutic potential of blockade of the urotensinⅡsystem in systemic hypertension[J]. Curr Hypertens Rep, 2007, 9(1): 53-58.
    [41] Le Mevel JC, Olson KR, Conklin D, et al. Cardiovascular actions of trout urotensinⅡin the conscious trout, oncorhynchus mykiss[J]. Am J Physiol, 1996, 271(5Pt2): R1335-R1343.
    [42] Zhu YZ, Wang ZJ, Zhu YC, et al. UrotensinⅡcauses fatal circulatory collapse in anesthesized monkeys in vivo: a“vasoconstrictor”with a unique hemodynamic profile[J]. Am J Physiol Heart Circ Physiol, 2004, 286(3): H830-H836.
    [43] Tzanidis A, Hannan RD, Thomas WG, et al. Direct action of urotensinⅡon the heart: implications for cardic fibrosis and hypertrophy[J]. Circ Res, 2003, 93(3): 246-253.
    [44] Zhang YG, LiY G, Liu BG, et al. UrotensinⅡaccelerates cardiac fibrosis and hypertrophy of rats induced by isoproterenol[J]. Acta Pharmacol Sin, 2007, 28(1): 36-43.
    [45] Zou Y, Nagai R, Yamazaki T. UrotensinⅡinduces hypertrophic responses in cultured cardiomyocytes from neonatal rats[J]. FEBS Lett, 2001, 508(1): 57-60.
    [46] Onan D, Pipolo L, Yang E, et al. UrotensinⅡpromotes hypertrophy of cardiacmyocytes via mitogen-activated protein kinases[J]. Mol Endocrinol, 2004, 18(9): 2344-2354.
    [47] Johns DG, Ao Z, Naselsky D, et al. UrotensinⅡ-mediated cardiomyocyte hypertrophy: effect of receptor antagonism and role of inflammatory mediators[J]. Naunyn Schmiedebergs Arch Pharmacol, 2004, 370(4): 238-250.
    [48] Maguire JJ, Kuc RE, Wiley KE, et al. Cellular distribution of immunoreactive urotensinⅡin human tissues with evidence of increased expression in atherosclerosis and a greater constrictor response of small compared to large coronary arteries[J]. Peptides, 2004, 25(10): 1767-1774.
    [49] Bousette N, Patel L, Douglas SA, et al. Increased expression of urotensinⅡand its cognate receptor GPR14 in atherosclerotic lesions of the human aorta[J]. Atherosclerosis, 2004, 176(1): 117-123.
    [50] Hassan GS, Douglas SA, Ohlstein EH, et al. Expression of urotensinⅡin human coronary atherosclerosis[J]. Peptides, 2005, 26(12): 2464-2472.
    [51]张丽芳,丁文惠,柯元南.尾加压素Ⅱ与动脉粥样硬化[J].中华心血管病杂志, 2007, 35(5): 491-493.
    [52] Watanabe T, Takahashi K, Kanome T, et al. Human urotensinⅡpotentiates the mitogenic effect of mildly oxidized low-density lipoprotein on vascular smooth muscle cells: comparison with other vasoactive agents and hydrogen peroxide[J]. Hypertens Res, 2006, 29(10): 821-831.
    [53] Wang H, Mehta JL, Chen K, et al. Human urotensinⅡmodulates collagen synthesis and the expression of MMP-1 in human endothelial cells[J]. J Cardiovasc Pharmacol, 2004, 44(5): 577-581.
    [54] Sauzeau V, Le Mellionnec E, Bertoglio J, et al. Human urotensinⅡinduced contraction and arterial smooth muscle cell proliferation are mediated by Rho A and Rho-kinase[J]. Circ Res, 2001, 88(11): 1102-1104.
    [55] Takahashi K, Totsune K, Murakami O, et al. Expression of urotensinⅡand its receptor in adrenal tumors and stimulation of proliferation of cultured tumor cells by urotensinⅡ[J]. Peptides, 2003, 24(2): 301-306.
    [56]张勇刚,陈亚红,马春艳,等.尾加压素Ⅱ的促丝裂作用[J].中国动脉硬化杂志, 2001, 9(1): 14-16.
    [57] Watanabe T, Pakala R, Katagiri T, et al. Synergistic effect of urotensinⅡwith mildly oxidized LDL on DNA synthesis in vascular smooth muscle cells[J]. Circulation, 2001, 104(1): 6-8.
    [58] Watanabe T, Pakala R, Katagiri T, et al. Synergistic effect of urotensinⅡwith serotonin on vascular smooth muscle cell proliferation [J]. J Hypertens, 2001, 19(12): 2191-2196.
    [59] Chen YH, Zhao MW, Yao WZ, et al. The signal transduction pathway in the proliferation of airway smooth muscle cells induced by urotensinⅡ[J]. Chin Med J (Engl), 2004, 117: 37-41.
    [60] Ziltener P, Mueller C, Haenig B, et al. UrotensinⅡmediates ERK1/2 phosphorylation and proliferation in GPR14 transfected cell lines[J]. J Recept Signal Transduct Res, 2002, 22(1-4): 155-168.
    [61] Russell FD. Emerging roles of urotensinⅡin cardiovascular disease[J]. Pharmacol Ther, 2004, 103(3): 223-243.
    [62] Matsusaka S, Wakabayashi I. Enhancement of vascular smooth muscle cell migration by urotensinⅡ[J]. Naunyn Schmiedebergs Arch Pharmacol, 2006, 373(5): 381-386.
    [63] Watanabe T, Suguro T, Miyazaki A, et al. Human urotensinⅡaccelerates foam cell formation in human monocyte derived macrophages[J]. Hypertension, 2005, 46(4): 738-744.
    [64] Segain JP, Rolli-Derkinderen M, Gervois N, et al. UrotensinⅡis a new chemotactic factor for UT receptor expressing monocytes[J]. J Immunol, 2007,179(2): 901-909.
    [65] Matsumoto Y, Abe M, Watanabe T, et al. Intracerebroventricular administration of urotensinⅡpromotes anxiogenic like behaviors in rodents[J]. Neurosci Lett, 2004, 358(2): 99-102
    [66] Gartlon J, ParkerF, Harrisonb DC, et al. Central effects of urotensinⅡfollowing ICV administration in rats. Psychopharmacology(Berl), 2001, 155: 426-433.
    [67] Lijnen PJ, Petrov VV, Fagard RH. Induction of cardiac flbrosis by angiotensinⅡ[J]. Methods Find Exp Clin Pharmacol, 2000, 22(10): 709-723.
    [68] Sehnee JM, Hsueh WA. AngiotensinⅡ, adhesion and cardiac fibrosis[J]. Cardiovasc Res, 2000, 46(2): 264-268.
    [69] Grohe C, Kahlert S, Lobbert K, et al. AngiotensinⅡconverting enzyme inhibition modulates cardiac fibroblast growth[J]. J Hypertens, 1998, 16(3): 377-384.
    [70] Hoeher B, George L, Rebstoek J, et al. Endothelin system-dependent cardiac remodeling in renovascular hypertension[J]. Hypertension, 1999, 33(3): 816-822.
    [71] Takuwa N, Takuwa Y, Yanagisawa M, et al. A novel vasoactive peptide endothelin stimulates mitogenesis through inositol lipid turnover in Swiss 3T3 fibroblasts[J]. J Biol Chem, 1989, 264(14): 7856-7861.
    [72] Silvestre RA, Egido EM, Hernandez R, et al. UrotensinⅡis present in pancreatic extracts and inhibits insulin release in the perfused rat pancreas[J]. Eur J Endocrinol, 2004, 151(6): 803-809.
    [73] Djordjevic T, Belaiba RS, Bonello S, et al. Human urotensinⅡis a novel activator of NADPH oxidase in human pulmonary artery smooth muscle cells[J]. Arterioscle Thromb Vasc Biol, 2005, 25(3): 519-525.
    [74] Hay DW, Lutmann MA, Douglas SA. Human urotensinⅡis a potent spasmogen of primate airway smoothmuscle[J]. Br J Pharmacol, 2000, 131(1): 10-12.
    [75]李红.糖尿病微血管病变发病机制和治疗靶点[J].浙江大学学报, 2006, 35(3): 232-237.
    [76] Fogarty DG, Rich SS, Hanna L, et al. Urinary albumin excretion in families with type 2 diabetes is heritable and genetically correlated to blood pressure[J]. Kidney Int, 2000, 57(1): 250-257.
    [77]向红丁.糖尿病肾脏病变[J].国外医学内分泌学分册, 2004, 24(2): 125-136.
    [78] Park HK, Ahn CW, Lee GT, et al. Polymorphism of aldose reductase gene and diabetic microvascular complications in type 2 diabetes mellitus[J]. Diabetes Res Clin Pract, 2002, 55(2): 151-157.
    [79] Hudson BI, Schmdt AM. RAGE: a novel target for drug intervention in diabetic vascular disease[J]. Pharmaceutical Res, 2004, 21(7): 1079-1086.
    [80] Oldfield MD, Bach LA, Forbes JM, et al. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE)[J]. J Clin Invest, 2001, 108(12): 1853-1863.
    [81] Thomas MC, Forbes JM, Cooper ME. Advanced glycation end products in diabetic nephropathy[J]. Am J Ther, 2005, 12: 562-572.
    [82] Body-White J, Williams JC. Effect of cross-linking on matrix permeability: a model for AGE-modified basement membranes[J]. Kidney Int, 1996, 46(3): 348-353.
    [83] Ceriello A. New insights on oxidative stress and diabetic complications may lead to“causal”antioxidant therapy[J]. Diabetes Care, 2003, 26(5): 1589-1596.
    [84] Sivitz WI. Lipotoxicity and glucotoxicity in type 2 diabetes. Effects on development and progression[J]. Postgrad Med, 2001, 109(4): 55-59.
    [85] Rosario RF, Prabhakar S. Lipids and diabetic nephropathy. Curr Diab Rep, 2006, 6(6): 455-462.
    [86] Hung CC, Jinn YG, Shyi JS, et al. Insulin and heparin suppress superoxide prodution in diabetic rat glomeruli stimulated with low density lipoprotein[J]. Kidney Int, 2001, 59(Suppl): S124.
    [87]刘东方,严钟德,沈鼎明,等.糖尿病自主神经病变和糖尿病肾病关系探讨.中国糖尿病杂志, 1998, 6(2): 111-112(114).
    [88] Michimata T, Murakami M, Iriuchijima T. Nitric oxide-dependent soluble guanylate cyclase activity is decreased in platelets from male NIDDM patient[J]. Life Sci, 1996, 59: 1463-1471.
    [89] Coll E, Cormand B, Campos B, et al. Association of TGFβ1 polymophisms with chronic renal disease[J]. J Nephrol, 2004, 17(6): 794-799.
    [90] Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signaling[J]. Nature, 2003, 425(6958): 577-584.
    [91] Fukami K, Ueda S, Yamagishi S, et al. AGEs activate mesangial TGF beta-Smad signaling via an angiotensinⅡtype I receptor interaction[J]. Kidney Int, 2004, 66(6): 2137-2147.
    [92] Studer RK, Craven PA, Derubertis FR. Antioxidant inhibitor of potential kinase C signaled increases in transforming growth factor-beta in mesangial cells[J]. Metabolism, 1997, 46(8): 918-925.
    [93] Iwano M, Knbo A, Nishino T, et al. Quantification of glomerular TGF-beta 1 mRNA in patients with diabetes mellitus[J]. Kidney Int, 1996, 49: 1120-1126.
    [94] Hoffman BB, Sharma K, Zhu Y, et al. Transcriptional activation of transforming growth factor-beta1 in mesangial cell culture by high glucose concentration[J]. Kidney Int, 1998, 54(4): 1107-1116.
    [95] Akai Y, Sato H, Ozaki H, et al. Association of transforming growth factor beta1 T29C polymorphism with the progression of diabetic nephropathy[J]. Am J Kidney Dis, 2001, 38(4S1): S182-185.
    [96] Wong TY, Poon P, Chow KM, et al. Association of transforming growth factor-beta (TGF-beta) T869C (Leu10 Pro) gene polymorphisms with type 2 diabetic nephropathy in Chinese[J]. Kidney Int, 2003, 63(5): 1831-1835.
    [97] Rosmond R, Chagnon M, Bouchard C, et al. Increased abdominal obesity, insulin and glucose levels in nondiabetic subjects with a T29C polymorphism of the transforming growth factor-beta1 gene[J]. Horm Res, 2003, 59(4): 191-194.
    [98] Riser BL, Cortes P. Connective tissue growth factor and its regulation: a new element in diabetic glomerulosclerosis[J]. Ren Fail, 2001, 23(3-4): 459-470.
    [99] Duh E, Nello LP. Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox [J]. Diabetes, 1999, 48(10): 1899-1909
    [100] Parving HH, LehnertH, Brochner-Mortensen J, et al. Effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes[J]. UgeskrLaeger, 2001, 163(40): 5519-5524.
    [101] Wolf G. Link between angiotensinⅡand TGF-beta in the kidney[J]. Miner Electrolyte Metab, 1998, 24(2-3): 174-180.
    [102] David JL, Ashok KS, Nahid A, et al. Role of angiotensinⅡin diabetic nephropathy[J]. Kidney Int, 2000, 58(Suppl.77): S93-S98.
    [103] Mumtaz FH, Dshwood MR, Khan MR, et al. Down-regulation of nitric oxide synthase in the diabetic rabbit kidney: potential relevance to the early pathogenesis of diabetic nephropathy [J]. Curr Med Res Opin, 2004, 20(1): 1-6.
    [104] Erdely A, Freshour G, Maddox DA, et al. Renal disease in rats with type 2 diabetes associated with decreased renal nitric oxid production[J]. Diabetologia, 2004, 4(10): 1672-1676.
    [105] Prabhakk, SS. Role of nitric oxide in diabetic nephropathy[J]. Semin Nephrol, 2004, 24(4): 333-344.
    [106] Koo JR, Vaziri ND. Effects of diabetes insulin and antioxidants on NO synthas abundance and NO interaction with reactive oxygen species [J]. Kidney Int, 2003, 63(1): 195-201.
    [107]孙红霞,杜玮南,左瑾,等.蛋白激酶Cζ亚基基因及urotensinⅡ基因中各有一个单核苷酸位点与中国北方汉族人2型糖尿病相关[J].中国医学科学院学报, 2002, 24(3) 223-227.
    [108]祝方,纪立农,罗斌.硬骨鱼紧张素Ⅱ基因多态性与中国人2型糖尿病遗传易感性的关系[J].中华医学杂志, 2002, 2002, 82(21): 1473-1475.
    [109] Wenyi Z, Suzuki S, HiraiM, et al. Role of urotensinⅡgene in genetic susceptibility to Type 2 diabetes mellitus in Japanese subjects[J]. Diabetologia, 2003, 46(7): 972-976.
    [110] Suzuki S, Wenyi Z, Hirai M, et al. Genetic variations at urotensinⅡandurotensinⅡreceptor genes and risk of type 2 diabetes mellitus in Japanese[J]. Peptides, 2004, 25(10): 1803-1808.
    [111] Totsune K, Takahashi K, Arihara Z, et al. Elevated plasma levels of immunoreactive urotensinⅡand its increased urinary excretion in patients with type 2 diabetes mellitus: association with progress of diabetic nephropathy[J]. Peptides, 2004, 25(10): 1809-1814.
    [112] Watson AM, Lambert GW, Smith KJ, et al. UrotensinⅡacts centrally to increase epinephrine and ACTH release and cause potent inotropic and chronotropic actions[J]. Hypertension, 2003, 42(3): 373-379.
    [113] Langham RG, Kelly DJ, Gow RM, et al. Increased expression of urotensinⅡand urotensinⅡreceptor in human diabetic nephropathy[J]. Am J Kidney Dis, 2004, 44(5): 826-831.
    [114] Clozel M, Binkert C, Birker-Robaczewska M, et al. Pharmacology of the urotensin-Ⅱreceptor antagonist palosuran: first demonstration of a pathophysiological role of the urotensin system[J]. J Pharmacol Exp Ther, 2004, 311(1): 204-212.
    [115] Tamaki K, Okuda S. Role of TGF-βin the progression of renal fibrosis[J]. Contrib Nephrol, 2003, 139: 44-65.
    [116] Maguire JJ, Kuc RE, Davenport AP. Orphan receptor ligand human urotensinⅡ: receptor localization in human tissues and comparison of vasoconstrictor responses with endothelin-1[J].Br J Pharmacol, 2000, 131(3): 441-446.
    [117] Yoshimoto T, Matsushita M, Hirata Y, et al. Role of urotensinⅡin peripheral tissue as an autocrine/paracrine growth factor[J]. Peptides, 2004, 25(10): 1775-1781.
    [118]田琳,李才,赵岩,等.尾加压素Ⅱ对大鼠近端肾小管上皮NRK-52E细胞增殖和细胞周期的影响[J].中国生物制品学杂志, 2008, 21(2): 69-72.
    [119] Shi L, Ding W, Li D, et al. Proliferation and anti-apoptotic effects of human urotensinⅡon human endothelial cells[J]. Atherosclerosis, 2006, 188(2): 260- 264.
    [120]刘志红,陈朝红,李颖健,等. 2型糖尿病肾病患者肾小球系膜细胞表型及功能改变[J].中华医学杂志, 2001, 81(22): 1369-1373.
    [121]徐勇,黄永丽,黄颂敏,等.糖尿病肾病肾小球系膜细胞增殖、分泌功能和细胞内[Ca2+]i的研究[J].中国现代医学杂志, 2002, 12(18): 16-18.
    [122] Monnier VM, Vishwanath V, Frank KE, et al. Relation between complications of type Idiabetes mellitus and collagen-linked fluorescence[J]. N Engl J Med, 1986, 314(7): 403-408.
    [123] Kim YS, Kim BC, Song CY, et al Advanced glycosylation end products stimulate collagen mRNA synthesis in mesangial cells mediated by protein kinase C and transforming grow factor-beta[J].Lab Clin Med, 2001, 138(1): 59-68.
    [124] Twigg SM, Joly AH,Chen MM, et.al. Connective tissue growth factor/ IGF-binding protein related protein is amediator in the induction of fibronectin by advanced glycosylation end products in human dermal fibroblasts[J]. Endocrinology, 2002, 143: 1260-1269.
    [125] Janicki JS, Brower GL, Gardner JD, et al.The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling[J].Heart Fail Rev, 2004, 9: 33-42.
    [126]田琳,李才,于晓艳,等.糖基化终产物对大鼠肾小管上皮细胞NRK-52E尾加压素ⅡmRNA表达的影响[J].中国老年病学杂志, 2007, 27(15): 1436-1438.
    [127] Wang S, Denichilo M, Brubaker C. Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy[J]. Kidney Int, 2001, 60(1): 96-105
    [128] Claesson Welsh L. Signal transduction by vascular endothelial growth factor receptors[J]. Biochem Soc Trans, 2003, 31(Pt1): 20-24.
    [129] Katovich MJ, Grobe JL, Huentelman M, et al. Angiotensin-converting enzyme 2 as a novel target for gene therapy fhypertension[J]. Exp Physiol, 2005, 90(3): 299-305.
    [130] Fontes-Sousa AP, Pires AL, Monteiro-Cardoso VF, et al. Urotensin II-induced increase in myocardial distensibility is modulated by angiotensin II and endothelin-1[J]. Physiol Res, 2008, Epub ahead of print

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700