用户名: 密码: 验证码:
基于格子玻耳兹曼方法的粘性泥沙絮凝机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粘性泥沙絮凝过程对粘性泥沙运动及河口海岸许多物理过程起着十分重要的作用,目前尚缺乏对絮凝机理进行有效描述的直接数值模拟手段。为此,本文建立了粘性泥沙运动的三维格子Boltzmann模型,对粘性泥沙絮凝过程进行数值模拟,研究了静水中与水流剪切作用下的絮团沉降规律,揭示了不等速沉降引起的粘性泥沙絮凝机理,对实际絮凝现象从微观角度进行了阐释。论文的具体研究内容和结论如下:
     1、建立了粘性泥沙运动全尺度模拟的三维格子Boltzmann模型。泥沙颗粒沉降引起的层流和过渡区流场的格子Boltzmann模拟结果与理论解比较吻合,说明本文建立的模型可以对层流和过渡区范围内颗粒沉降进行直接数值模拟。
     2、在格子Boltzmann方法中引入大涡模拟,对大粒径球体在静水中沉降引起的水流紊动进行了模拟。模拟结果与颗粒图像测速系统测定的颗粒沉降速度和紊动流场结果进行了比较,趋势基本一致,说明利用格子Boltzmann方法与大涡模拟技术相结合可以合理模拟紊流区泥沙沉降。
     3、利用扩散受限聚集体模型生成分形絮凝体近似代表河口海岸粘性泥沙絮团,应用格子Boltzmann方法对粘性泥沙三维分形絮团的静水沉降进行了模拟。模拟结果与得到广泛验证和应用的Winterwerp絮团沉速公式有较好的一致性,从微观角度揭示了三维分形絮团的静水沉降水动力特性。
     4、应用格子Boltzmann方法对粘性泥沙三维分形絮团在水流剪切作用下的沉降、破裂过程进行了模拟,结果表明:水流流速较小时,絮团将不发生破裂而沉积到海床;在水流流速较大的情况下,强度较小的絮团将在水流剪切作用下发生破裂,破裂后的单个泥沙颗粒或小絮团随着水流一起运动,不会沉降到床面,而强度较大的絮团在经受近底剪切变形后仍可沉降到床面。
     5、应用格子Boltzmann方法对粘性泥沙不等速沉降絮凝过程进行了全尺度模拟,结果表明:密度相同,大小不同,质心在同一铅垂线上的两个泥沙颗粒可以由于不等速沉降碰撞、粘结形成絮团;不等速沉降时不同泥沙浓度条件下形成的絮团若大小相近则沉降速度接近,但泥沙浓度对泥沙总体平均沉速有明显影响,泥沙浓度越高,泥沙平均沉速越大,主要是因为泥沙浓度越大,颗粒之间越容易发生碰撞而形成更大、更多的絮团,絮凝时间也越短。
     6、絮团在不等速沉降过程中会快速捕捉其他颗粒或小絮团而在较短时间内形成更大絮团,造成泥沙较快沉积,这种现象在潮流憩流期是有可能出现的。
The flocculation processes play an important role in cohesive sediment transport and some physical phenomena in estuaries and on coasts. There is few effective ways for direct numerical simulation of flocculation mechanism. Therefore, a three-dimensional numerical model of flocculation dynamics of cohesive sediment via the Lattice Boltzmann method was presented. The flocculation process and settling behavior of cohesive sediment were explored in still water and shear flow. The flocculation mechanism due to differential settling was disclosed. Some physical phenomena in the field were explained from the mesoscale view. The main results are summarized as follows:
     1. A fully resolved numerical model of flocculation dynamics of cohesive sediment via the Lattice Boltzmann method was developed. The simulated results of the laminar and transitional flows induced by single particle settling, agreed with those analytical solutions. It was shown that the present model could be applied to the simulation of the particles settling in the laminar and transitional flows.
     2. The turbulent flows induced by the large settling particle were obtained through the Lattice Boltzmann method combining with the large-eddy simulation method. The computational results were basically in accordance with the settling velocity and flow field measured by the Particle Imaging Velocimetry. It was concluded that the Lattice Boltzmann method and the large-eddy simulation could be used to simulate the turbulent flow induced by particle settling.
     3. The fractal mud flocs formed by using the diffusion limited cluster-cluster aggregation model resembled the mud flocs in the field. The simulated settling velocities of the fractal mud flocs via Lattice Boltzmann method agree with the calculated results of Winterwerp’s settling velocity formula adequately. The settling behaviour of three-dimensional fractal mud floc in still water was disclosed from the mesoscale view.
     4. The processes of settling and breakup of three-dimensional fractal mud flocs under the shear flows were simulated. Under low shear conditions, flocs will not break and deposit to the bed. Under high shear conditions, the flocculated aggregates with weak strength will break up, and the single particles and small flocs after breakup could be suspended in the flow without settling into the bed. However, the flocs with great strength could fall through the shear zone near the bed and deposited to the bed though undergoing large deformation.
     5. The flocculation processes due to the differential settling of cohesive sediment were fully simulated via Lattice Boltzmann method. Two particles of the same density and different sizes, located in the same vertical line, could collide and aggregate. For the differential settling, flocs with similar sizes formed in different sediment concentrations have similar settling velocities, which show that the sediment concentrations exert few effects on the settling velocities of flocs themselves. Otherwise, the sediment concentrations have obvious influences on the bulk mean settling velocity of suspended sediment. The higher is the sediment concentration, the larger the bulk mean settling velocity will be, which can be attributed that the particles in the higher concentration water are easy to collide and form larger flocs quickly.
     6. Flocs quickly capture other single particles or smaller flocs and aggregate into larger flocs during the process of the differential settling, which will lead to the fast deposition of suspended sediment. This phenomenon is likely to occur during the slack water.
引文
[1] 钱宁, 王兆惠. 泥沙运动力学[M]. 北京: 科学出版社, 2003.
    [2] 常青, 傅金镒, 郦兆龙. 絮凝原理[M]. 兰州: 兰州大学出版社, 1993.
    [3] 张庆河, 王殿志, 吴永胜等. 粘性泥沙絮凝现象研究述评(1):絮凝机理与絮团特性[J]. 海洋通报, 2001, 20(6): 80-90.
    [4] 杨铁笙, 熊祥忠, 詹秀玲等. 粘性细颗粒泥沙絮凝研究概述[J]. 水利水运工程学报, 2003, 2: 65-77.
    [5] 时钟, 李世森, 李艳红. 近海与河口粘性泥沙输移过程[J]. 泥沙研究, 2002, 6(3): 74-80.
    [6] 程 江, 何 青, 王元叶等. 长江河口细颗粒泥沙絮凝体粒径的谱分析[J]. 长江流域资源与环境, 2005, 14(4): 460-464.
    [7] 金鹰, 王义刚, 李宇. 长江口粘性细颗粒泥沙絮凝试验研究[J]. 河海大学(自然科学版), 2002, 30(3): 61-63.
    [8] 时钟. 长江口细颗粒泥沙过程[J]. 泥沙研究, 2000, 12(6): 72-81.
    [9] McAnally W H, Mehta A J. Aggregation rate of fine sediment[J]. Journal of Hydraulic Engineering, ASCE, 2000, 126(12): 883-892.
    [10] Wintersherp J C. On the dynamics of high-concentrated mud suspensions[D]. Ph.D Dissertation, Delft: Delft University of Technology, 1999.
    [11] Hunt J R. Self-similar particle-size distributions during coagulation: theory and experimental verification[J]. Journal of Fluid Mechanics, 1982, 122: 169-185.
    [12] Partheniades E. Turbulence, flocculation, and cohesive sediment dynamics[A]. Lecture Notes on Coastal and Estuaries Studies[C], American Geophysical Union, 1993, 40-57.
    [13] Owen M W. The effect of turbulence on the settling velocities of silt flocs[A]. Proceedings of 14th Congress of International Association for Hydraulic Research[C]. Paris, 27-32.
    [14] Manning A J. The observed effects of turbulence on estuarine flocculation[J]. Journal of Coastal Research, 2004, SI 41: 90-104.
    [15] 杨美卿, 钱宁. 紊动对细泥沙浆液絮凝结构的影响[J]. 水利学报, 1986, 8: 21-30.
    [16] 张幸农. 水流紊动对泥沙絮凝的影响[J]. 水科学进展, 1996, 7(1): 54-59.
    [17] Winterwerp J C. A simple model for turbulence induced flocculation of cohesive sediment[J]. Journal of Hydraulic Research, IAHR, 1998, 36(3): 309-326.
    [18] Stolzenbach K D, Elimelich M. The effect of density on collisions between sinking particles: implications for particle aggregation in the ocean[J]. Deep-Sea Research, 1994, 41(3): 469-483.
    [19] Eisma D. Particle size of suspended matter in estuaries[J]. Geo-Marine Letters 1991, 11: 147-153.
    [20] Lick W, Huang H-N, Jepsen R. Flocculation of fine-grained sediments due to differential settling[J]. Journal of Geophysical Research, 1993, 98(C6): 10279-10288.
    [21] Partheniades E. The dynamic of flocculation as related to cohesive sediment transport processes[A]. 4th International Conf. on Coastal and Port Engineering in Developing Countries[C], 1995, 14-27.
    [22] Partheniades E. Estuarine sediment dynamics and shoaling processes. Handbook of Coastal and Ocean Engineering[M]. Houston: Gulf Publishing Company, 1992, 985-1071.
    [23] Kim A S, Stolzenbach K D. Aggregate formation and collision efficiency in differential settling[J]. Journal of Colloid and Interface Science, 2004, 271: 110-119.
    [24] Krone R B. Aggregation of suspended particles in estuaries. Estuarine Transport Processes[M]. Columbia: University of South Carolina Press, 1978, 177-190.
    [25] Edzwald J K, Upchurch J B, O' Melia C R. Coagulation in estuaries[J]. Environmental Science and Technology, 1974, 8: 58-63.
    [26] Gibbs R J. Estuarine flocs: their size, settling velocity, and density[J]. Journal of Geophysical Research, 1985, 90(C2): 3249-3251.
    [27] Adler P M. Heterocoagulation in shear flow[J]. Journal of Colloid and Interface Science, 1981, 83(1): 106-115.
    [28] O’Melia C R. The influence of coagulation and sedimentation on the fate of particles, associated pollutants, and nutrients in lakes. Chemical Processes in Lakes[M]. New York: Wiley-Interscience, 1985, 207-224.
    [29] ten Brinke W B M. Settling velocities of mud aggregates in the Oosterschelde todal basin (the Netherlands), determined by a submeasible video system[J]. Etuarine, Coastal and Shelf Science, 1994, 39: 549-564.
    [30] McAnally W H. Aggregation and deposition of estuarial fine sediment[R]. U. S. Army Engineer Research and Development Center: Coastal and Hydraulics Laboratory, 2000.
    [31] Tsai C H, Hwang S C. Flocculation of sediment from Tanshui River estuary[J]. Marine & Freshwater Research, 1995, 46(1): 383-392.
    [32] Fennessy M J, Dyer K R, Huntley D A. INSSEV: an instrument to measure the size and settling velocity of flocs in-situ[J]. Marine Geology, 1994, 117: 107-117.
    [33] Manning A J. Observations of the properties of flocculated cohesive sediment in three western European estuaries[J]. Journal of Coastal Research, 2004, 41: 70-81.
    [34] Fennessy M J, Dyer K R. Floc population characteristics measured with INSSEV during the Elbe estuary intercalibration experiment[J]. Journal of Sea Research, 1996, 36(1/2): 55-62.
    [35] 关许为, 陈英祖. 长江口泥沙絮凝体的现场显微观[J]. 泥沙研究, 1992, 9(3): 54-59.
    [36] 关许为, 陈英祖. 长江口泥沙絮凝静水沉降动力学模式的试验研究[J]. 海洋工程, 1995, 13(1): 46-50.
    [37] Hoffmann K, Reuter C, K?ngeter J. Direct settling velocity detection of activated sludge flocs using DPIV[J]. Journal of Sea Research, 1998, 39: 227-241.
    [38] Manning A J, Dyer K R. A laboratory examination of floc characteristics with regard to turbulent shearing[J]. Marine Geology, 1999, 160: 147-170.
    [39] Van der Lee W T B. Temporal variations of floc size and settling velocity in the Dollard Estuary[J]. Continental Shelf Research, 2000, 20(12/13): 1495-1511.
    [40] 程江, 何青, 王元叶. 利用 LISST 观测絮凝体粒径、有效密度和沉速的垂线分布[J]. 泥沙研究, 2005, 2(1): 33-39.
    [41] Shi Z. Behaviour of fine suspended sediment at the north passage of the Changjiang Estuary, China[J]. Journal of Hydrology, 2004, 293(1-4): 180-190.
    [42] Shi Z, Zhou H J. Controls on effective settling velocities of mud flocs in the Changjiang Estuary, China[J]. Hydrological Processes, 2004, 18: 2877-2892.
    [43] Shi Z, Zhou H J, Eittreim S L, et al. Settling velocities of fine suspended particles in the Changjiang Estuary, China[J]. Journal of Asian Earth Sciences, 2003, 22(3): 245-251.
    [44] Richardson J F, Zaki W N. Sedimentation and fluidization-Part I[J]. Transactions of the Institution of Chemical Engineers, 1954, 32: 35-53.
    [45] 王家生, 陈立, 王志国等. 含离子浓度参数的粘性泥沙沉速公式研究[J]. 水科学进展, 2006, 17: 1-6.
    [46] Lagvankar A L, Gemmell R S. A size-density relationship for flocs[J]. Journal of the American Water Works Association, 1968, 60: 1040-1046.
    [47] Hawley N. Settling velocity distribution of natural aggregations[J]. Journal of Geophysical Research, 1982, 87(C12): 9489-9498.
    [48] Burban P Y, Lick W, Lick J. The flocculation of fine-grained sediments in estuarine waters[J]. Journal of Geophysical Research, 1989, 94(C6): 8323-8330.
    [49] Matsuo T, Unno H. Forces acting on floc and strength of floc[J]. Journal of Environmental & Engineering Geophysics, ASCE, 1981, 107: 527-545.
    [50] Kranenburg C. Effects of floc strength on viscosity and deposition of cohesive sediment suspensions[J]. Continental Shelf Research, 1999, 19: 1665-1680.
    [51] Parker D S, Kaufman W J, Jenkins D. Floc breakup in turbulent flocculation processes[J]. Journal of the Sanitary Engineering Division, ASCE, 1972, 98(SA1): 79-99.
    [52] Lu C F, Spielman L A. Kinetics of flocs breakage and aggregation in agitated liquid suspensions[J]. Journal of Colloid and Interface Science, 1985, 103: 95-105.
    [53] Hunter R J, Frayne J. Flow behavior of coagulated colloidal sols[J]. Journal of Colloid and Interface Science, 1980, 76: 107-115.
    [54] Sonntag R C, Russel W B. Structure and breakup of flocs subjected to fluid stresses III. Converging flow[J]. Journal of Colloid and Interface Science, 1987, 115: 390-395.
    [55] Higashitani K, Iimura K, Sanda H. Simulation of deformation and breakup of large aggregates in flows of viscous fluids[J]. Chemical Engineering Science, 2001, 56: 2927-2938.
    [56] Serra T, Colomer J, Casamitjana X. Aggregation and breakup of particles in a shear flow[J]. Journal of Colloid and Interface Science, 1997, 187: 466-473.
    [57] Smoluchowski M. Drei vortr?ge über diffusion, brownsche molekularbewegung und koagulation von kolloidteilchen[J]. Physik Zeitschrift 1916, 17: 585-599.
    [58] Smoluchowski M. Versuch einer Mathematischen Theorie der Koagulations- kinetik Kolloider Losunge[J]. Zeitschrift fur Physikalische Chemie, 1917, 92: 129-168.
    [59] Argamann Y,Kaufman W J. Turbulence and flocculation[J]. Journal of Sanitary Engineering Division, Proceedings of the American Society of Civil Engineering, 1970, 96(SA2): 223-241.
    [60] Lee D G, Bonner J S, Garton L S, et al. Modeling coagulation kinetics incorporating fractal theories: a fractal rectilinear approach[J]. Water Research, 2000, 34(7): 1987-2000.
    [61] Spicer P T, Pratsinis S E. Coagulation and fragmentation: Universal steady-state particle-size distribution[J]. American Institute of Chemical Engineers, 1996, 42(6): 1612-1620.
    [62] Serra T, Casamitjana X. Effect of the shear and volume fraction on the aggregation and break-up of particle[J]. American Institute od Chemical Engineers, 1998, 44(8): 1724-1730.
    [63] Doi M, Chen D. Simulation of aggregating colloids in shear flow[J]. Journal of Chemical Physics, 1989, 90: 5271-5279.
    [64] Bossis G, Brady J F. Dynamic simulation of sheared suspensions I. General method[J]. Journal of Chemical Physics, 1984, 80: 5141-5154.
    [65] Potanin A A. On the computer simulation of the deformation and breakup of colloidal aggregates in shear flow[J]. Journal of Colloid and Interface Science, 1993, 157: 399-410.
    [66] Rahmani N H G, Masliyah J H. Characterization of asphaltenes aggregation and fragmentation in a shear flied[J]. Journal of Colloid and Interface Science, 2003, 49(7): 1645-1655.
    [67] Higashitani K, Iimura K. Two-dimensional simulation of the breakup process of aggregation in shear and elongational flows[J]. Journal of Colloid and Interface Science, 1999, 204: 320-327.
    [68] Krone R B. The significance of aggregate properties to transport process[A]. Estuarine Cohesive Sediment Dynamics [C], Springer-Verlag, 1986, 66-84.
    [69] Partheniades E A. A fundamental framework for cohesive sediment dynamics[A]. Estuarine Cohesive Sediment Dynamics[C], Springer-Verlag, 1986, 219-250.
    [70] Mandelbrot B B. The fractal geometry of nature[M]. New York: Freeman W H Company, 1983.
    [71] Witten T A, Sander L M. Diffusion limited aggregation, a kinetic critical phenomenon[J]. Physical Review Letters, 1981, 47: 1400-1403.
    [72] Meakin P. Formation of fractal clusters and networks by irreversible diffusion-limited aggregation[J]. Physical Review Letters, 1983, 51: 1119-1122.
    [73] Meakin P. Cluster-particle aggregation with fractal (Levy flight) particle trajectories[J]. Physical Review Letters, 1984, B29(6): 3722-3725.
    [74] Rage T, Frette V, Wagner G, et al. Construction of a DLA cluster model[J]. European Journal of Physics, 1996, 17: 110-115.
    [75] Vicsek T. Fractal growth phenomena[M]. Singapore: World Scientific Co Pte Ltd, 1992, 215-257.
    [76] 金同轨, 高湘, 张建锋. 黄河泥沙的絮凝形态学和絮体构造模型问题[J]. 泥沙研究, 2003, 5: 69-73.
    [77] 杨铁笙, 李富根, 梁朝皇. 粘性细颗粒泥沙静水絮凝沉降生长的计算机模拟[J]. 泥沙研究, 2005, 4: 14-20.
    [78] 洪国军, 杨铁笙. 黏性细颗粒泥沙絮凝及沉降的三维模拟[J]. 水利学报, 2006, 37(2): 172-177.
    [79] Huang H. Fractal properties of flocs formed by fluid shear and different settling[J]. Physics of Fluids, 1994, 36(10): 3229-3234.
    [80] Kranenburg C. The fractal structure of cohesive sediment aggregate.[J]. Estuarine,Coastal and Shelf Science, 1994, 39: 451-460.
    [81] Dyer K R,Manning A J. Observation of the size, settling velocity and effective density of flocs, and their fractal dimensions[J]. Journal of sea research, 1999, 41: 87-95.
    [82] 李冬梅, 施周, 梅胜. 絮凝条件对絮体分形结构的影响[J]. 环境科学, 2006, 27(3): 488-492.
    [83] 李冬梅, 李志生, 谭万春等. 高分子絮凝剂下泥沙絮凝体结构的分形特性[J]. 泥沙研究, 2006, 5: 40-44.
    [84] Li X Y, Passow U, Logan B E. Fractal dimensions of small (15-200μm) particles in Eastern Pacific Coastal Waters[J]. Deep-Sea Research, 1998, I(45): 115-131.
    [85] Gardner K H, Theis T L, Young T C. Colloid aggregation: numerical solution and measurements[J]. Colloids and Surfaces A: Physico-chemical and Engineering Aspects, 1998, 141(2): 237-252.
    [86] Gonzalez E A, Hill P S. A method for estimating the flocculation time of monodispersed sediment suspensions[J]. Deep-Sea Research I, 1998, 45: 1931-1954.
    [87] Nikora V, Aberle J, Green M. Sediment Flocs: Settling velocity, flocculation factor, and optical backscatter[J]. Journal of Hydraulic Engineering, ASCE, 2004, 130(10): 1043-1047.
    [88] Winterwerp J C, Manning A J, Martens C, et al. A heuristic formula for turbulence-induced flocculation of cohesive sediment[J]. Estuarine, Coastal and Shelf Science, 2006, 68: 195-207.
    [89] Gardner K H, Theis T L, Young T C. Colloid aggregation:numerical solution and measurements[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 141: 237-252.
    [90] Tang S, Ma Y, Shiu C. Modelling the mechanical strength of fractal aggregates[J]. Colloids and Surfaces A: Physico-chemical and Engineering Aspects, 2001, 180(1): 7-16.
    [91] 王兴勇, 索丽生, 刘德有等. Lattice Boltzmann 方法理论和应用的新进展[J]. 河海大学学报(自然科学版), 2002, 30(6): 61-66.
    [92] Ancona M G. Fully Lagrangian and lattice Boltzmann methods for solving systems of conservation equations[J]. Journal of Computational Physics, 1994, 115: 107-120.
    [93] Dupuis A. From a lattice Boltzmann model to a parallel and reusable implementation of a virtual river[D]. Ph.D. Dissertation, Switzerland: University of Geneva, 2002.
    [94] 孙亚斌. 格子 Boltzmann 方法及其对振荡层流边界层的模拟[D]. 天津: 天津大学, 2005.
    [95] 李元香, 康立山, 陈毓屏. 格子气自动机[M]. 北京: 清华大学出版社, 1994.
    [96] Qian Y, d’Humeieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17: 479-484.
    [97] Chen H, Chen S, Matthaeus WH. Recovery of the Navier-Stokes equations using a lattice gas Boltzmann method[J]. Physical Review A, 1992, 45: R5339-R5342.
    [98] Chen S, Doolen G. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30: 329-344.
    [99] Heemels M W. Computer simulations of colloidal suspensions - using an improved lattice-Boltzmann scheme [D]. Ph.D Dissertation, Delft: Delft University of Technology, 1999.
    [100] Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation[J]. Journal of Fluid Mechanics, 1994, 271: 285-309.
    [101] Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results[J]. Journal of Fluid Mechanics, 1994, 271: 311-339.
    [102]Ladd A J C, Verberg R. Lattice-Boltzmann simulations of particle-fluid suspensions[J]. Journal of Statistical Physics, 2001, 104: 1191-1251.
    [103]Behrend O. Solid-fluid boundaries in particle suspension simulations via the lattice Boltzmann method[J]. Physical Review Letters, 1995, 52(1): 1164-1175.
    [104]Aidun C K, Lu Y, Ding E J. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation[J]. Journal of Fluid Mechanics , 1998, 373: 287-311.
    [105]Qi D. Lattice Boltzmann simulations of particles in non-Reynolds number flows[J]. Journal of Fluid Mechanics, 1999, 385: 41-62.
    [106]Qi D. Lattice Boltzmann simulations of rectangular particles[J]. International Journal of Multiphase Flow, 2000, 26: 421-433.
    [107]Heemels M W, Hagen M H J, Lowe C P. Simulating solid colloidal particles using the lattice-Boltzmann method[J]. Journal of Computational Physics, 2000, 164: 48-61.
    [108]Nguyen N –Q,Ladd A J C. Lubrication correction for lattice-Boltzmann simulations of particle-fluid suspensions[J]. Physical Review Letters, 2002, E66: 046708-1-11.
    [109]Ding E J,Aidun C K. Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact[J]. Journal of Statistical Physics, 2003, 112(314): 685-707.
    [110]Nguyen N –Q,Ladd A J C. Sedimentation of hard-sphere suspensions at low Reynolds number[J]. Journal of Fluid Mechanics, 2005(225): 73-104.
    [111]吴锤结,周菊光. 悬浮颗粒运动的格子 Boltzmann 数值模拟[J]. 力学学报, 2004, 36(2): 151-162.
    [112]Nguyen H P, Chopard B, Stoll S. Lattice-Boltzmann method to study hydrodynamic properties of 2D fractal aggregates[J]. International Conference on Computational Science, 2003, 2657: 947-956.
    [113]Ladd A J C. Short-time motion of colloidal particles: numerical simulation via a fluctuating lattice Boltzmann equation[J]. Physical Review Letters, 1993, 70: 1339-1342.
    [114]Segre P N, Behrend O P, Pusey P N. Short-time Browain motion in colloidal suspensions: experiment and simulation[J]. Physical Review Letters, 1995, E52: 5070-5083.
    [115]Ladd A J C. Sedimentation of homogeneous suspensions of non-Brownian spheres[J]. Physics of Fluids, 1997, 9: 491-499.
    [116]Usta O B, Ladd A J C, Butler J E. Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries[J]. The Journal of Chemical Physics, 2005, 122: 094902-1-11.
    [117]Mei R, Shyy W, Yu D, et al. Lattice Boltzmann method for 3-D flows with curved boundary[J]. Journal of Computational Physics, 2000, 161: 680-699.
    [118]Iglberger K. Lattice Boltzmann simulation of flow around moving particles[Z]. http://www10.informatik.uni-erlangen.de/~klaus/, 2005
    [119]Fang H P, Chen S. Lattice Boltzmann method for three-dimensional moving particles in a Newtonian fluid[J]. Chinese Physics, 2004, 13(1): 47-53.
    [120]Cate A T, Derksen J J, Portela L M. Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence[J]. Journal of Fluid Mechanics, 2004, 519: 233-271.
    [121]Verberg R, Ladd A J C. Lattice-Boltzmann Model with Sub-Grid-Scale Boundary Conditions[J]. Physical Review Letters, 2000, 84(10): 2148-2151.
    [122]Lallemand P, Luo Li-Shi. Lattice Boltzmann method for moving boundaries[J]. Journal of Computational Physics, 2003, 184: 406-421.
    [123]Chopare B, Droz M. Cellular automata modeling of physical systems[M]. UK: Cambridge University Press, 1998.
    [124]Frisch U, d’Humieres D, Hasslacher B, et al. Lattice gas hydrodynamics in two and three dimensions[J]. Complex Systems, 1987, 1: 647-707.
    [125]郭照立, 郑楚光, 李青等. 流体动力学的格子 Boltzmann 方法[M]. 湖北: 湖北科学技术出版社, 2002.
    [126]Abe T. Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation[J]. Journal of Computational Physics, 1997, 131: 241-246.
    [127]Ziegler D P. Boundary conditions for lattice Boltzmann simulations[J]. Journal of Statistical Physics, 1993, 71(5/6): 1171-1177.
    [128]Noble D R, Chen S, Georgiadis J G, et al. A consistent hydrodynamic boundary condition for the lattice Boltzmann method[J]. Physics of Fluids, 1995, 7: 203-209.
    [129]Maier R S, Bernard R S, Grunau D W. Boundary conditions for the lattice Boltzmann method[J]. Physics of Fluids 1996, 8: 1788-1801.
    [130]Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9(6): 1591-1597.
    [131]Chen S, Martinez D, Mei R. On boundary conditions in lattice Boltzmann methods[J]. Physics of Fluids, 1996, 8(9): 2527-2536.
    [132]Feng Z -G, Michaelides E E. Particle motion and interparticle forces close to a solid boundary using the Lattice-Boltzmann method[J]. Physics of Fluids, 2002, 14: 49-60.
    [133]Lowe C P, Frenkel D, Masters A J. Long-time tails in angular momentum correlations[J]. Journal of Chemical Physics, 1995, 103(4): 1582-1587.
    [134]Hausmann S. Optimization and Performance Analysis of the Lattice Boltzmann Method on x86-64 based Architectures[D]. Bachelor Thesis, Germany: University of Erlangen, 2005.
    [135]Pohl T, Kowarschik M, Wilke J, et al. Optimization and profiling of the cache performance of parallel Lattice Boltzmann codes[J]. Parallel Processing Letters,2003, 13(4): 549-560.
    [136]都志辉. 高性能计算之并行编程技术——MPI 并行程序设计[M]. 北京: 清华大学出版社, 2001.
    [137]窦国仁. 论泥沙起动流速[J]. 水利学报, 1960, (4): 44-60.
    [138]Feng J, Hu H H, Joseph D D. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows[J]. Journal of Fluid Mechanics, 1994, 277: 271-301.
    [139]王福军. 计算流体动力学分析-CFD 软件原理及应用[M]. 北京: 清华大学出版社, 2004. 116-117.
    [140]王玲玲. 大涡模拟理论及其应用综述[J]. 河海大学学报(自然科学版), 2004, 32(3): 261-265.
    [141]Smagorinsky J. General circulation experiments with the primitive equations: I. the basic experiment[J]. Monthly Weather Reviev, 1963, 91(3): 99-164.
    [142]Hou S, Sterling J, Chen S, et al. A lattice subgrid model for high Reynolds number flows[J]. Fields Institute Communications, 1996, 6: 151-166.
    [143]Dupuis A, Chopard B. Lattice Gas modeling of scour formation under submarine pipelines[J]. Journal of Computational Physics, 2002, 178: 167-174.
    [144]Yu H, Girimaji S S, Luo Li-Shi. DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method[J]. Journal of Computational Physics, 2005, 209: 599-616.
    [145]Ten Cate A, Derksen J J, Kramer H J M, et al. The microscopic modelling of hydrodynamics in industrial crystallisers[J]. Chemical Engineering Science, 2001, 56: 2495-2509.
    [146]孙霞, 吴自勤, 黄畇. 分形原理及其应用[M]. 合肥 中国科学技术大学出版社, 2004. 44-45.
    [147]Maggi F, Manning A J, Winterwerp J C. Image separation and geometric characterisation of mud flocs[J]. Journal of Hydrology 2006, 326: 325-348.
    [148]Stone M, Krishnappan B G. Floc morphology and size distributions ofcohesive sediment in steady-state flow[J]. Water Research, 2003, 37: 2739-2747.
    [149]Feder J. Fractals[M]. New York: Plenum, 1988. 237-252.
    [150]Succi S. The Lattice Boltzmann equation for fluid dynamics and beyond [M]. New York: Oxford University Press, 2001.
    [151]Qi D, Luo Lishi, Aravamuthan R, et al. Lateral migration and orientation of elliptical particles in poiseuille flows[J]. Journal of Statistical physics, 2002, 107(1/2): 101-120.
    [152]格拉夫,阿廷拉卡著, 赵文谦, 万兆惠译. 河川水力学[M]. 成都: 成都科技大学出版社, 1997, 32-33.
    [153]刘春晶, 李丹勋, 王兴奎. 明渠均匀流的摩阻流速及流速分布[J]. 水利学报, 2005, 36(8): 1-8.
    [154]孙东坡, 王二平, 董志慧等. 矩形断面明渠流速分布的研究及应用[J]. 水动力学研究与进展, 2004, 19(2): 144-151.
    [155]Kim S, Karrila S J. Microhydrodynamics: principles and selected applications [M]. United States: Butterworth-Heinemann, 1991.
    [156]Chun B, Ladd A J C. The electroviscous force between charged particles: beyond the thin-double-layer approximation[J]. Journal of Colloid and Interface Science, 2004, 274: 687-694.
    [157]稲室隆二,飯井 忠臣. 剪断流中における微粒子凝集体の分散化シミュレーション[A]. 第 18 回数値流体力学シンポジウ[C], 2004, 1-6.
    [158]王尚毅. 细颗粒泥沙在静水中的沉降运动[J]. 水利学报, 1964, (5): 20-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700