用户名: 密码: 验证码:
挖泥船泥浆管道输送系统效率优化与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挖泥船是现代疏浚工程中重要的疏浚工具。绞吸式挖泥船将土壤挖掘和输送的工序一次性完成,具有非常广泛的适应性和较高的工作效率,广泛应用于开发和维护航道、港口码头建设、海洋工程等方面。泥浆管道输送系统是挖泥船的重要组成部分,泥浆输送管道较长,管线上布设有一台或数台泥泵,其能耗占疏浚施工总能耗的80%以上,属于广地域分布的高能耗系统,具有很大的效率优化空间。挖泥船泥浆管道输送系统效率优化和自动控制是疏浚工程研究领域一个非常重要的课题,开展这方面的研究工作不仅可以达到节能降耗、提高系统效率、降低疏浚施工成本的目的,而且能够提高系统的安全性和减轻疏浚施工操作人员的工作强度。
     实际疏浚施工过程的动态特性非常复杂,泥浆管道输送设备的特性也随着疏浚施工条件和位置的不同而明显变化,使挖泥船泥浆管道输送系统的效率优化和控制变得非常困难。本文提出了一种挖泥船泥浆管道输送系统效率优化评价方法,可以对系统的工作状态进行连续的在线准确评价,有利于在系统安全的前提下对工况点进行在线优化调节,使系统效率趋于最优。对挖泥船泥浆管道输送系统的过程控制、工况点在线动态优化方法和多泵协调控制策略进行了相关的研究工作。
     工况点在线动态优化方法以系统比能耗最低为优化目标函数,以模糊推理决策和数据融合技术等智能手段为核心,将现有疏浚施工经验、领域专家知识和泥浆管道输送过程的实时数据结合在一起实现系统工况点的在线动态优化,使得在实际疏浚施工过程中,工况点能随着工况的变化而改变,动态地调节到最优,从而达到优化泥浆管道输送系统效率和提高系统安全性的目的。多泵协调控制以系统机组整体效率最高为优化目标函数,利用遗传算法对多台泥泵的转速进行在线优化协调,使得在实际泥浆管道输送过程中,在满足系统工况点动态优化的前提下,实现多台泥泵的协调优化控制,使系统机组的整体工作效率趋于最高。文中对工况点动态优化和多泵协调控制结构、约束条件、模糊推理机制等各方面都进行了比较详细的研究。在疏浚施工现场对系统效率优化和控制性能进行了测试,结果表明泥浆管道输送系统工况点在线动态优化方法和多泵协调控制策略能适应实际疏浚施工环境,可以较稳定地提高泥浆管道输送系统的安全性和工作效率,减少能耗,泥浆输送过程更加平稳。
     泥浆浓度和流速的稳定控制在挖泥船泥浆管道输送系统中具有至关重要的作用。对于泥浆远距离多泵输送系统,为了消除多台泥泵之间的耦合与相互牵制作用,采用主泵站进行泥浆流速控制而接力泵站进行扬程控制的综合控制方法。针对被控制系统的不同特性,对泥浆浓度、流速和接力泵扬程采用不同的控制方案。文中通过理论分析和现场试验等多种方式验证了各种控制方案的性能,并与以PID为代表的常规控制方案进行了比较。
     论文各章内容分述如下:
     第一章论述了挖泥船泥浆管道输送系统效率优化与控制的研究背景、目标和意义。介绍了国内外挖泥船泥浆管道输送系统效率优化的研究内容和研究现状。对挖泥船泥浆管道输送系统自动化控制的研究现状进行了分析。概述了本课题的研究内容及论文所进行的研究工作。
     第二章分析和介绍了挖泥船泥浆管道输送系统的构成。建立了包括土壤切削与吸口泥浆浓度、离心泥泵、吸泥管道和排泥管道等部分的数学模型,对泥泵的工作特性、管道系统的阻力损失和柴油机的负载特性等重要方面都进行了分析。为课题的深入研究奠定基础。
     第三章对挖泥船泥浆管道输送系统效率优化的影响因素进行了全面的分析。提出了一种挖泥船泥浆管道输送系统效率优化评价方法,该方法可以对系统的工作状态进行连续的在线准确评价,有利于在系统安全的前提下对工况点进行在线优化调节,使系统效率趋于最优。
     第四章针对疏浚施工过程中土质和泥浆管道输送系统特性易变的特点,提出了一种挖泥船泥浆管道输送系统工况点在线动态优化方法,使得在实际疏浚施工过程中,工况点能随着工况的变化而改变,动态地调节到最优,从而达到优化泥浆管道输送系统效率和提高系统安全性的目的。对工况点在线动态优化所必须的泥浆浓度测量、泥浆浓度和流速控制等方面进行了相关的研究工作。在疏浚施工现场对所提出的泥浆浓度和流速的控制算法以及工况点在线动态优化方法的有效性进行了试验验证。
     第五章针对挖泥船泥浆远距离多泵输送系统由于多台泥泵之间存在着很强的相互耦合牵制作用而导致柴油机泥泵机组的整体工作效率偏低的问题进行了研究,提出了一种多泵协调控制方法,该方法以系统机组整体效率本身作为优化目标,利用遗传算法对多台泥泵的转速进行在线协调优化,使系统机组的整体工作效率趋于最高。对多泵协调控制所必须的接力泵扬程控制进行了控制算法方面的研究。在疏浚施工现场对所提出的接力泵扬程控制算法和多泵协调控制方法的有效性进行了试验验证。
     第六章概括了论文的主要研究工作和研究成果,并展望了今后的研究工作和方向。
Cutter suction dredger is the most important dredging equipment and is widely used in dredging projects nowadays. Since it has the integrated function of cutting and transporting soil, it is very adaptable and efficient. It plays an important role in waterway reclamation and maintenance, port construction and ocean engineering projects. The slurry transport pipeline system (STPS) is the most important part of dredger, it has long slurry delivering pipeline set up with one or more pump-stations. STPS is a high energy consumption system, its energy consumption accounts for more than 80% of the total dredging project's, and there is much room for energy saving. Slurry pipeline transport optimization and automation is one of the most important subjects in the dredging researching area. Optimized slurry pipeline transport can reduce energy consumption and dredging cost, raise dredging production and efficiency remarkably. It can improve the reliability of the system and alleviate the work intensity of the dredging operators as well.
     The dynamics of practical dredging are very complicated, the characteristics of slurry pipeline transport equipment are continuously changing with working conditions and environment, which makes it very difficult to optimize and control for STPS. This paper presents an efficiency optimization evaluation method of STPS. On-line evaluation of the system's operation can be accurate using this method, which helps the on-line optimization of the working points while the system is safe, and thus making the system to be highly efficient. Studies have been carried out on process control, working point on-line dynamic optimization method and multi-pump coordinated control strategy of STPS.
     Using Specific Energy Consumption(SEC) as the objective function, and Fuzzy Reasoning and Decision Fusion Center as the key parts, the working point on-line dynamic optimization method makes the most of dredging experiences, expert's knowledge and the real-time data of dredging process to optimize the system's working points dynamically during slurry pipeline transportation. Accordingly, the system's working points can change with respect to working conditions to get dynamic optimization and the system's safety and efficiency can be improved. In multi-pump coordinated control, the total efficiency of multi-pump system is used as the objective function, the genetic algorithm is used to coordinate on-line working status of all the pumps in slurry transportation and make the total efficiency as high as possible. This paper emphasizes the structure of working point on-line dynamic optimization and multi-pump coordinated control, boundary conditions and fuzzy reasoning mechanism. Field experiments have been carried out to test the optimization and control performances of the proposed scheme. Experimental results show that the working point on-line dynamic optimization method and multi-pump coordinated control strategy can adapt to the continuous changing working conditions, safety and efficiency of STPS are steadily raised, the energy consumption is minimized, and the slurry pipeline transport process is much more stable.
     It's crucial to control the slurry concentration and speed in STPS. For the long-distance multi-pump system, to eliminate the coupling and interactions of pumps, slurry speed is controlled in the main pump-station while head is controlled in booster pump-station. In this paper, different control schemes are presented respectively for different control target. Theoretical and field experiments have been carried out to test the performance of each proposed control scheme, and experimental results are compared with those of the conventional control schemes, especially PID.
     There are six chapters in this paper.
     Chapter 1 presents the research background, targets and significance of efficiency optimization and control of STPS. It introduces briefly the contents and status quo of efficiency optimization research domestically and abroad. Furthermore, it analyses the automation of STPS and summarizes our studies.
     Chapter 2 analyses the components of STPS. It sets up models of soil cutting andslurry concentration of the suction, of centrifugal slurry pump, slurry suction pipeline and delivery pipeline. It analyses the important aspects as the working properties of slurry pump, the resistance loss of the pipeline system and the load properties of the diesel engine, thus provides a basis for further study.
     Chapter 3 is a comprehensive analysis on factors influencing efficiency optimization of STPS. It puts forward an efficiency optimization evaluation method of STPS, which makes accurate continuous on-line evaluation of the system's working state, benefits the safe on-line adjustment of the system working points and leads to the optimal system efficiency.
     As the properties of cutting soil and STPS are volatile in dredging, Chapter 4 suggests the working point on-line dynamic optimization method. In practical dredging , the working points change with the working state and approach the optimum by dynamic adjustment, thus to improve the efficiency as well as safety of STPS. Prerequisites for working point on-line dynamic optimization, such as slurry concentration measurement, control of slurry concentration and velocity, have been studied accordingly. Experiments have been carried out on the dredging spot to verify the control algorithms of slurry concentration and velocity and the method of working points on-line dynamic optimization.
     Chapter 5 explores the integrated low efficiency of the unit of diesel engine and slurry pump, mainly caused by the mutual coupling and interactions among the pumps of the long distance multi-pump transportation system. It presents a multi-pump coordinated control method, which aims at optimizing the integrated efficiency of the unit, uses genetic algorithm to make on-line rotation speed coordination and optimization of the pumps, thus to approach the highest working efficiency of the unit. The necessary head control algorithm of the booster pumps for multi-pump coordinated control are studied. The control algorithm and the coordinated control method have also been verified by experiments on the dredging spot.
     The last chapter, Chapter 6, summarizes our studies, the relative results and the prospects of researches in future.
引文
[1]疏浚工程施工技术规范.中华人民共和国水利水电行业标准.SL17-90
    [2]天津航道局.疏浚技术发展动向及对策.水运工程,1996(2):38-42.
    [3]察惠礼.国内外挖泥船—现状与趋势.国际船艇,2002(3):20-24.
    [4]韩明,刘厚恕.浅述中国疏浚工业的发展道路.船舶,2002(2):6-1.
    [5]周一之.挖泥船的应用与发展.水利电力施工机械,1993(4):5-6.
    [6]包元平.提高绞吸式挖泥船生产效率的探讨.水运工程,2000(6):27-32.
    [7]Thomas M.Turner.Fundamentals of Hydraulic Dredging.Cambridge Maryland:Cornell Maritime Press,1984.
    [8]IHC.Advanced Measurement,Automation and Control Systems for Mining.Ports and Dredging,Holland,2004.E 162.
    [9]Osman,M.S.The Mechanics of Soil Cutting Blades.J.A.E.R.,1964,9(4):313-328.
    [10]Wismer,R.D.,Luth,H.J.Performance of Plane Soil Cutting Blades in Sand.Trans.ASEA,1969:69-115.
    [11]Wismer,R.D.,Luth,H.J.Rate Effects in Soil Cutting.Journal of Terramechanics,1972,8(3):119-21.
    [12]Os,A.G.van.Behaviour of Soil when Excavated Underwater.International Course Modern Dredging,1977.6.
    [13]Derks,J.C.M.Model Tests in Relation with Mixture Formation in a Dredge Wheel.1984.
    [14]Miedema,S.A.The Application of a Cutting Theory on a Dredging Wheel.Proc.WODCON XI,Brighton,1986.
    [15]Joanknecht,L.W.F.Cutting Forces in Submerged Soils.T.H.Delft,1974.
    [16]Miedema,S.A.Derivation of the Differenctial Equation for Sand Pore Pressures.Dredging &Port Construction,1985(9):35-46.
    [17]Miedema,S.A.Methematicai Modelling of the Cutting of Densely Compacted Sand Underwater.Dredging & Port Construction,1985(7):22-26.
    [18]薛晓飞.土壤切削实验台车的设计及力学分析.硕士学位论文,河海大学,2005.
    [19]Bree S.E.M.de.Centrifugal Dredgepumps.Holland:IHC Company,1977.
    [20]Burgess,K.E.,Reizes,J.A.The Effect of Sizing,Specific Gravity and Concentration on the Performance of Centrifugal Slurry Pumps.Proc.Inst.Mech.1976,190(36):391-399.
    [21]Sellgren,A.Performance of Centrifugal Pump when Pumping Ores and Industrial Minerals.Proc.16~(th) International Conference on the Hydraulic Transort of Solids in Pipes,BHRA Fluid Engineering,Cranfield,Bedford,UK,1979:291-304.
    [22]Sellgren,A.,Addie,G.R.Effect of Solids on Large Centrifugal Pump Head and Efficiency.Paper presented at CEDA Dredging Day,Amsterdam,The Netherlands,1989.
    [23]Sellgren,A.,Vappling,L.Effect of Highly Concentrated Slurries on the Performance of Centrifugal Pumps.Proc.International Symposium on Slurry Flows,FED,ASME,USA,1986(38):143-148.
    [24]Sellgren A.,Addie,G.R.,Turner,T.M.Determination of the Effect of Solids on Centrifugal Slurry Pumps.Paper presented at 5~(th) Annual AIME Regional Phosphate Conference,Lakeland, Florida,USA,1990.
    [25]Tahsin Engin,Mesut Gut.Performance Characteristics of a Centrifugal Pump Impeller With Running Tip Clearance Pumping Solid-Liquid Mixtures.Journal of Fluids Engineering,2001(123):532-538.
    [26]Tahsin Engin,Mesut Gur.Comparative Evaluation of Some Existing Correlations to Predict Head Degradation of Centrifugal Slurry Pumps.Journal of Fluids Engineering,2003(125):149-157.
    [27]Tahsin Engin,Akif Kurt.Prediction of Centrifugal Slurry Pump Head Reduction An Artificial Neural Networks Approach.Journal of Fluids Engineering,2003(125):199-202.
    [28]Gahlot,V.K.,Seshadd,V.,Malhotra,R.C.Effect of Density,Size Distribution,and Concentration of Solids on the Characteristics of Centrifugal Pumps.Journal of Fluids Engineering,ASME,1992(114):386-389.
    [29]Kazim,K.A.,Maiti,B.,Chand,P.A Correlation to Predict the Performance Characteristics of Centrifugal Pumps Handling Slurries.Proc.Instn.Mech.Engrs,1997(21A):147-157.
    [30]倪福生,徐立群,Vlasblom,W.J.等.泥沙粒径对泥浆泵性能影响的实验研究.水动力学研究与进展,2001,16(4):399-406.
    [31]魏进家.密相液固两相湍流KET模型和数值计算及离心泵叶轮两相流场实验研究.博士学位论文,西安交通大学,1998.
    [32]戴江.离心泵叶轮内固液两相紊流流动规律研究.博士学位论文,清华大学,1994.
    [33]朱玉才,吴玉林,潘爱先等.离心式固液两相流泵叶片形状对流体动力特性影响研究.机械工程学报,2004,40(8):67-71.
    [34]李新军.绞吸式挖泥船泥泵与绞刀功率的匹配设计.湖南交通科技,1996,22(4):67-69.
    [35]吴小富.绞吸式挖泥船泥泵与柴油机性能匹配探讨.船舶设计通讯,1997,(1):14-17.
    [36]孙长林,黎大江.采用双速泥泵装置提高绞吸式挖泥船施工作业性能.船海工程,2001,(6):17-21.
    [37]黎大江.绞吸式挖泥船泥泵装置特性分析.船海工程,2001,(4):32-35.
    [38]Durand,R.The Hydraulic Transportation of Coal and Solid Materials in Pipes.Colleq of National Coal Board,London,1952.
    [39]Givor,G.W.,Aziz,K.The Flow of Complex Mixture in Pipes.Canada:Van Nostrand Reihold Co.,1972.
    [40]Wasp,E.J.,Kenny,J.P.,Gandhi,B.L.Solid-liquid Flow Slurry Pipeline Transportation.Clausthal:Trans.Tech.Publication,1977.
    [41]倪晋仁,王光谦,廖谦.高浓度周液两相流泥沙分布修正公式.泥沙研究,1999(5):18-21.
    [42]倪晋仁,王光谦,张红武.固液两相流基本理论及其最新应用.北京:科学出版社,1991.
    [43]倪晋仁,周东火.低浓度固液两相流中泥沙对紊动水流结构的影响.水利学报,1999(6):1-5.
    [44]倪晋仁,梁林.水流沙中的泥沙悬浮(Ⅰ).泥沙研究,2000(1):7-12.
    [45]倪晋仁,梁林.水流沙中的泥沙悬浮(Ⅱ).泥沙研究,2000(1):13-19.
    [46]倪晋仁.高浓度恒定固液两相流运动机理探析(Ⅰ).水利学报,2000(5):22-26.
    [47]倪晋仁.高浓度恒定固液两相流运动机理探析(Ⅱ).水利学报,2000(5):27-32.
    [48]倪晋仁,周东火.低浓度固液两相流中泥沙垂直分布的摄动理论解析.水利学报,1999(5):1-5.
    [49]许振良,张永吉,孙宝铮.水平管道沉降兴浆体速度分布与浓度关系的研究.水力采煤与管道运输,1997(9):21-27.
    [50]许振良.管道内非均质流速度分布与水力坡度的研究.煤炭学报,1998,23(1):91-96.
    [51]张兴荣.高浓度浆体在管道输送中水流结构及运动机理的研究.水力采煤与管道运输,1997(4):20-28.
    [52]Ni,F.S.,Matousek,V.Flow of Aqueous Mixture of Sand Composed of Fractions of Different Particle Size.Proceeding Hydrotansport 14,The Netherlands BHR Group,1999.
    [53]Matousek,V.Flow Mechanism of Sand-water Mixtures in Pipelines.Doctoral Thesis,The Netherlands,Delft University Press,1997.
    [54]Ni,F.S.Labortory Investigation on Sand-water Flow in a Pipeline and Characteristics of a Slurry Pump with High Solids Concentration.Dredging Technology,The Netherlands,1999.
    [55]白晓宁,胡寿根,张道方等.固体物料管道水力输送的研究进展与应用.水动力学研究与进展,2001,16(3):303-311.
    [56]钱宁,万兆惠.泥沙运动力学.北京:科学出版社,1983.
    [57]费祥俊.浆体的物理特性与管道输送流速.管道技术与设备,2000(1):1-4.
    [58]郑永刚,谢翠丽.圆管中分层层流流动的新模型及减阻规律.水利学报,1999(1):36-40.
    [59]申焱华,毛纪陵,凌胜.混合液管道输送的能耗分析.中国矿业,2000(3):41-44.
    [60]费祥俊.高浓度与中浓度煤浆管道输送的比较分析.煤炭学报,1996(1):79-84.
    [61]Durand,R.,Condolios,E.Transport Hydraulique et Decantation Des Materiaux Solids.Deuxiemes Journees del Hydraulique,1952:27-55.
    [62]Wilson,K.C.A Unified Physically-based Analysis of Solid-liquid Pipeline Flow.Pproceedings Hydro.Transport,4 BHRA,Cranfield,UK,1976:1-16.
    [63]Matousek,V.Flow Mechanism of Sand Water Mixtures in Pipelines.Doctoral Thesis,Delft University Press,1997.
    [64]徐桂萍,张建隆.高浓度水煤浆流变特性试验研究.武汉水利电力大学学报,1996(3):102-105.
    [65]李培芳.水煤浆管道输送特性的研究.水力采煤与管道运输,1996(3):4-9.
    [66]谭幼嫒.高浓度浆体输送特性的研究.矿业研究与开发,1995(2):9-13.
    [67]陈建国.绞吸挖泥船施工工况点的测试与选择.上海航道科技,1991(4):45-50.
    [68]胡翼元,强耀明.利用计算机设算绞吸式挖泥船施工工况.水运工程,1994(1):43-48.
    [69]俞孟蕻,李彦,吴晨.绞吸挖泥船综合工况监测系统的研究.江苏船舶,2004,21(6):5-8.
    [70]范世东,刘正林,朱汉华.疏浚作业优化研究及系统实现.武汉理工大学学报(交通科学与工程版),2002,26(2):1-6.
    [71]铃木正明等.绞吸式挖泥船挖泥自动化系统.船舶,1991(1):30-36.
    [72]张翔.绞吸式挖泥船疏浚作业过程的建模与仿真.博士学位论文,武汉理工大学,2002.
    [73]李人宪.车用柴油机.北京:中国铁道出版社,1999.
    [74]Miedema,S.A.Modelling and Simulation of the Dynamic Behavior of a Pump/Pipeline System.17~(th) Annual Meeting & Technical Conference of the Western Dredging Association,New Orleans,1996.
    [75]Wilson,K.C.,Addie,G.R.,Sellgren,A.,et al.Slurry Transport Using Centrifugal Pumps.2~(nd) Edition.London,Blackie Academic and Professional(Chapman & Hall),1997.
    [76]Matousek,V.Flow Mechanism of Sand Water Mixtures in Pipelines.Doctoral Thesis,Delft University Press,1997.
    [77]Matousek,V.Flow Friction of Mixture Composed of Fine Sand and Coarse Sand.Proc.The 4th Int.Conf.On Multiphasc Flow,New Orleans,2001.
    [78]丁宏锴.绞吸式挖泥船疏浚动态特性数学模型建立与仿真系统设计.硕士学位论文,河海大学,2002.
    [79]Brown,G.O.The History of the Darcy-Weisbach Equation for Pipe Flow Resistance.Environmental and Water Resources History,ASCE Civil Engineering Conference and Exposition 2002,Washington D.C.,USA,2002:34-43.
    [80]Cheng N.S.Simplified Settling Velocity Formula for Sediment Particle.Journal of Hydraulic Engineering,ASCE,1997a,123(2):149-152.
    [81]化学工业部编.管道压力降计算.化学工业部标准,HG/T 20570.7-95.
    [82]何中杰,汪昆,汪雄海.污水排放系统优化控制机理及策略.电工技术学报,2006,21(5):117-121.
    [83]Matousek,V.Internal Structure of Slurry Flow in Horizontal Pipe,Observations in Field Dredging Pipeline and in Laboratory Loop.Pulc.Univ.of Miskolc,Series A mining,Process Engineering Fasc.2.1995(50):79-89.
    [84]Matousek,V.Non-stationary Solids Flow in a Long Slurry Pipeline with Pumps in Series-process of Material Aggregation.Proc.8~(th) International Conference on Transport and Sedimentation of Solid Particles,Prague,1995,D5:1-10.
    [85]Matousek,V.Solids Transportation in a Long Pipeline Connected with a Dredge.Proc.WodCon Conference,1995:55-73.
    [86]Matousek,V.On the Amplification of Density Waves in Long Pipelines Connected with a Dredge.Proc.16~(th) World Dredging Conference,Malaysia,2001.
    [87]Talmon,A.M.Mathematical Analysis of the Density Variations in Long-distance Sand Transport Pipeline.Hydromechanics 14,Maastdcht,Netherlands,1999:3-20.
    [88]Shook,C.A.Slurry Flow.Butterworth-Heinemann,1991.
    [89]Miedema,S.A.,Lu,Z.,Matousek,V.Numerical Simulation of a Development of a Density Wave in a Long Slurry Pipeline.Hydrotransport,2003.
    [90]阎惠芳,李社宗,黄跃青等.常用相似性判据的检验和综合相似系数的使用.气象科技,2003,31(4):211-215.
    [91]李开乐.相似离度及其使用技术.气象学报,1986,44(2):174-182.
    [92]Langford,W.M.The Use of an Elbow in a Pipe Line for Determining the Rate of Flow in the Pipe.Engineering Experiment Station,University of Illinois,Bulletin No.289,1936.
    [93]Addison,H.The Use of Pipe Bends as Flow Meter.Engineering,1938(145):227-229.
    [94]李志,张金锋,周振江等.弯管流量计的研究和应用.河北理工学院学报,2003,25(1):50-56.
    [95]郑建光,梁国伟,程远贵.弯管流量计的特性实验研究.中国计量学院学报,1999(2):39-44.
    [96]Catelsni,M.,Fort,A.Fault Diagnosis of Electronic Analog Circuit Using a Radial Basis Function Networks Classifier.Measurement,2002(28):147-148.
    [97]赵望达,刘勇求,贺毅.基于RBF神经网络提高压力传感器精度的新方法.传感技术学报,2004,17(4):640-642.
    [98]廖明燕,罗万象,杜鹃.弯管流量计流量系数的研究.自动化仪表,1999,20(11):5-8.
    [99]肖建.现代控制系统综合与设计.北京:中国铁道出版社,2000.
    [100]李言俊,张科.系统辨识理论及应用.北京:国防工业出版社,2003.
    [101]陶永华.新型PID控制及其应用.北京:机械工业出版社,2002.
    [102]刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业出版社,2003.
    [103]哈里斯,C.J.(Harris,C.J.),比林斯,S.A.(Billings,S.A.),李清泉.自校正和自适应控制:理论与应用.北京:科学出版社,1986.
    [104]谢新民,丁锋.自适应控制系统.北京:清华大学出版社,2002.
    [105]王顺晃,舒迪前.智能控制系统及其应用.北京:机械工业出版社,1995.
    [106]李锡雄.微型计算机控制技术.北京:科学出版社,1999.
    [107]邵家骧.柴油机调速系统仿真与设计.中国内燃机学会首届学术年会论文选集,上海,1985.
    [108]Marsik,J.,Strejc,V.Application of Identification-free Algorithms for Adaptive Control.Automatica,1989,25(2):273-277.
    [109]江青茵.无辨识自适应控制预估算法及应用.自动化学报,1997,23(1):107-111.
    [110]Ljung,L.System Identification:Theory for the User(2~(nd) Editon).Beijing:Tsinghua University Press,2002.
    [111]Zadeh,L.A.Fuzzy Sets.Information and Control,1965(8):338-353.
    [112]李士勇.模糊控制.神经控制和智能控制.哈尔滨:哈尔滨工业大学出版社,1998.
    [113]Chen,L.Z.,Shi,W.K.,et al.A New Fusion Approach Based on Distance of Evedences.Journal of Zhejiang University SCIENCE,2005,6A(5):476-482.
    [114]钟章队,蒋文怡,李红君等.GPRS通用分组无线业务.北京:人民邮电出版社,2001.
    [115]Kraft,L.G.,Campagna,D.P.A Comparison Between CMAC Neural Network Control and Two Traditional Adaptive Control Systems.IEEE Control Systems Magazine.Apr.1990:36-43.
    [116]Ellison,D.On the Convergence of the Multidimensional Albus Perceptron.Int.J.Robotics Research,1991,10(4):338-357.
    [117]Lin,C.,Chiang,C.Selection of Learning Parameters for CMAC-based Adaptive Critic Learning.IEEE Trans.Neural Networks,1995,6(3):642-647.
    [118]Lin,C.,Chiang,C.Learning Convergence of CMAC Technique.IEEE Trans.Neural Networks,1997,8(6):1281-1292.
    [119]Fogel,D.B.An Introduction to Simulated Evolutionary Optimization.IEEE Trans.on Neural Networks,1994,5(1):3-13.
    [120]Leitch,P.J.New Techniques for Genetic Development of a Class of Fuzzy Controllers.IEEE Trans.on Systme,Man and Cybernetics:Part C,1998,28(1):112-123.
    [121]Belarbi,K.,Titel,F.Genetic Algorithm for the Design of a Class of Fuzzy Controllers:an Alternative Approach.IEEE-Trans.on Fuzzy System,2000,8(4):398-405.
    [122]Kim,J.H.,Myung,H.Evolutionary Programming Techniques for Constrained Optimization Problems.IEEE Trans.on Evolutionary Computation,1997,1(2):129-140.
    [123]Srinivas,M.,Patnaik,L.M.Adaptive Probabilities of Crossover and Mutation in Gas.IEEE Trans.on System,Man and Cybernetics,1994,24(4):656-667.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700