用户名: 密码: 验证码:
大跨径悬索桥施工监控中若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近10年来我国的大跨径悬索桥建设飞速发展。随着悬索桥跨径的不断增大,为保证竣工后桥梁的受力和线型尽量与设计理想状态一致,施工过程中的监控工作显得越来越重要。我国在大跨径悬索桥施工监控方面的研究还处在起步阶段,亟待补充和完善。本文以宜昌长江公路大桥的施工过程为背景,对大跨径悬索桥施工监控中的若干问题进行了研究分析。
     以虚拟层合理论为基础建立了悬索桥施工阶段的三维有限元计算模型。在对钢箱梁吊装阶段的计算过程中,利用虚拟层合单元的优点,实现一次性建立全桥模型,然后通过材料参数的适当选取及模型的细部修正,达到对钢箱梁各吊装阶段的模拟。
     对钢箱梁吊装阶段的主缆、钢箱梁几何线形、索塔应力、主索鞍顶推量、顶推时机等进行了分析。首次提出大跨径悬索桥主梁吊装过程中塔顶主索鞍的顶推应遵循“小步快跑”原则,即适当增加顶推次数,减小每次顶推的顶推量。根据小步快跑原则制订的顶推方案与实际施工顶推方案及另一种假想的顶推方案的对比计算结果表明,小步快跑方案可使施工过程中的桥塔应力更加逼近理想受力状态,有利于增加桥塔施工安全裕度及全桥结构安全。
     结合大量现场试验,提出了符合工程实际的日照温差下带人行道翼缘的扁平钢箱梁温度梯度模式和竖向及横向的温度梯度曲线公式,其顶底板日照温差可达30℃。这对我国现行桥涵设计规范中温度梯度曲线等相关内容是个补充。同时,以钢箱梁节段为研究对象,分别采用中国公路桥涵规范、英国BS5400规范中的温度梯度与本文温度梯度进行了对比计算。说明本文提出的温度梯度模式更符合扁平钢箱梁的实际情况。
     对日照温差下钢箱梁的温度应力进行了分析研究。发现在顶底板温差30℃时,钢箱梁顶板温度应力普遍达到100MPa以上,局部可达135MPa(Q345-94钢材屈服强度345MPa)。可见温度应力有可能控制钢箱梁设计(不计锚箱部分),必须给予重视。对钢箱梁节段模型温度应力分析的边界条件确定问题,本文通过严格边界条件和固端边界条件的对比计算后认为,在分析大跨径悬索桥钢箱梁节段的温度应力时,可将全桥主梁视为近似无限长结构,取出一个节段做为研究对象,边界条件可以取为两端固结。其计算结果将与严格真实边界条件下的计算结果相差无几。
     以虚拟层合单元为基础建立全桥三维有限元模型,对宜昌桥荷载试验中的静载试验各工况下桥梁结构的响应进行了空间分析计算,结果与实测结果符合较好。说明模型正确。
     以解析法为基础分析了悬索桥主缆架设阶段施工监控中主缆无应力长度、基准索股线形
While span of suspension bridge is increased, the construction control is more and more important to make the structure stress and geometric shape close to design state. Taking the Yichang Changjiang highway bridge as an example, analysis of construction control of suspension bridge is completed.Based on virtual lamina element theory, a 3D finite element model of suspension bridge in construction period is build up for construction control analysis. Due to advantage of virtual lamina element theory, by adjusting properties of element materials, the finite element model can be simply modified to simulate the steel box beam lifting construction period.Analysis of tower stress and geometric shape of structure during steel box beam lifting construction period is completed. The frequent short steps saddle pushing principle is presented, it means saddle pushing is frequent and space of each pushing is short. Contrastively calculating result shows that frequent short steps saddle pushing scheme makes tower stress more close to perfect state and it is beneficial to safety of structure.Based on field measuring, a temperature field and temperature gradient curve of steel flat box beam are presented. In this temperature gradient curve, the sunshine temperature difference between roof and floor is high to 30℃. Contrastively calculating of temperature stress in steel box beam shows that this temperature field is more close to the actual situation.In the case of sunshine temperature difference between roof and floor is 30℃, the temperature stress in roof of steel box beam is high to 100MPa, even 135MPa (the yield strength of Q345-94 steel is 345MPa). It means that temperature stress maybe vital factor in steel box beam design. In temperature analysis of steel box beam segment, the boundary condition definition is important. Contrastively calculating between actual boundary condition and fixed end boundary condition shows that their calculating results are very close. Therefore, in temperature stress analysis of steel box beam of long span suspension bridge, the whole box beams can be deem as an approximate infinitely long beam, then take out one box beam segment as a subject with the fixed end boundary condition, the calculating result will be close to the actual situation.
    For study of static load test of Yichang Changjiang highway bridge, a 3D virtual lamina element model of suspension bridge is build up. Theoretical calculation result accord with measure value.Based on analytic method, several controls parameter such as non-stress length of cable and datum strand shape in main cable erection period are analysed. The elevation of strand is changed in main cable erection period. So the elevation of datum strand in cable finished stage is different with that in main cable erection stage. Subsection linear function is used in temperature field of strand. The effect to strand shape caused by temperature is analysed.A method of length amending of straddle suspender cable in main cable clip is presented. Analytic expressions was offered to calculate the tangent point and its corresponding angle. Series expansion and numerical integral method were also investigated to calculate the accurate length of ellipse arc. Analysis results show that the method have high precision and rapidity of convergence.
引文
[1] 铁道部大桥工程局桥梁科学研究所.悬索桥.北京:科学技术文献出版社,1996.
    [2] 小西一朗编,戴振藩译.钢桥(第五分册).北京:人民铁道出版社,1981.
    [3] 金增洪.1823~1940年悬索桥的设计理论与历史(上).国外公路,1995(6):20-24.
    [4] 金增洪.1823~1940年悬索桥的设计理论与历史(下).国外公路,1995(8):29-35.
    [5] ASCE. Long span suspension bridges: history and performance. Proc, ASCE National Convention, Boston, 1979.
    [6] Latimer M, et al. Bridge to the future: a celebration of the Brooklyn Bridge. New York Academy of Sciences, 1984, Vol.424: 247-263.
    [7] M.S.Troitsky. Planning and Design of Bridges. John Wiley & Sons, Inc, New York, 1994.
    [8] 陈仁福.大跨悬索桥理论.成都:西南交通大学出版社,1994.
    [9] Pugsley A. The theory of suspension bridges. Edward Arnold LTD, London, 1957.
    [10] Amman OH, et al. George Washington bridge. Trans, ASCE, 1993, Vol.97, 43-62.
    [11] 钱冬生,陈仁福.大跨悬索桥的设计与施工(修订版).成都:西南交通大学出版社,1999.
    [12] D.Johnson Victor. Essentials of Bridge Engineering. Oxferd & Ibh Publishing Co, 1980.
    [13] 小西一郎编,戴振藩译.钢桥(第十分册).北京:人民铁道出版社,1981.
    [14] Scruton C. Experimental investigation of aerodynamic stability of suspension bridges with special reference to proposed Seven Bridge. Proc, ICE, Part.1, 1952, Vol.1(3): 189-222.
    [15] Walshe D E. A resume of the aerodynamic investigations for the Forth Road and Severn Bridges. Proc, ICE, 1967, Vol.37(5):87-108.
    [16] Frazer R A, Scruton C. A summarized account of the Severn Bridge aerodynamic investigation. NPL/Aer/222, National Physical Laboratory, UK, 1952.
    [17] 郑凯锋,唐继舜.大跨悬索桥流线箱梁技术.公路,1994(1):22-33.
    [18] 郝育森.日本明石海峡大桥设计概要.国外桥梁,1992(1):22-34.
    [19] 雷俊卿,郑明珠,徐恭义.悬索桥设计.北京:人民交通出版社,2002.
    [20] Timoshenko S. The stiffness of suspension bridges. Tans, ASCE, 1930, Vol.92: 1464-1478.
    [21] Fukuda T. Analysis of multispan suspension bridges. ASCE, 1967,Vol.93(ST3): 63-68.
    [22] Brotton D, M. A general computer program for the solution of suspension bridge problems. Structural Engineering, 1966, Vol.44(5).
    [23] Saafan A. Theoretical analysis of suspension bridges. ASCE, 1966, Vol.92(ST4): 1-14.
    [24] 刘健新,胡兆同.大跨度吊桥.北京:人民交通出版社,1996.
    [25] 李国豪.桥梁与结构理论研究.上海:上海科学技术文献出版社,1983,
    [26] Moisseiff L, S, Lienhard F.Suspension bridges under the action of lateral force. Trans, ASCE, 1933,Vol.98: 1080-1095,1096-1141.
    [27] Irvine H, M. Torsion analysis of boxgirder suspension bridges. ASCE, 1974, Vol. 100(12): 2528-2529.
    [28] Shimada S. Programming for digital computation of suspension bridges under vertical, horizontal and torsional loadings. Trans, JSCE, 1964(102).
    [29] S, G, Arzoumenidis and M, P, Bieniek. Finite element analysis of suspension bridges, Computer & Structures. 1985, Vol.21:1237-1253.
    [30] 唐茂林,沈锐利,强士中.大跨度悬索桥非线性静动力分析与软件开发.桥梁建设,2000(1):9-12.
    [31] 沈锐利.悬索桥主缆系统设计及架设计算方法研究.土木工程学报,1996,Vol.29(2):3-9.
    [32] 贾丽君,肖汝诚等.大跨径悬索桥的三维应力分析方法.中国公路学报,2000,Vol.13(3):33-40.
    [33] 肖汝诚,项海帆.大跨径悬索桥结构分析理论及其专用程序系统的研究.中国公路学报,1998,Vol.11(4):42-50.
    [34] 向中富.桥梁施工控制技术.北京:人民交通出版社,2001.
    [35] S, S, Law, T, H, T, Chan and D, Wu. Super-element with semi-rigid joints in model updating. Journal of Sound and Vibration, 2001, Vol.239: 19-39.
    [36] 曹志远.复杂结构分析的超级元法.力学与实践,1992,Vol.14(4):10-14.
    [37] 曹志远,刘永仁,周汉斌.超级有限元法在结构工程中的应用.计算力学学报,1994,Vol.11(4):454-460.
    [38] 吕建鸣.大跨度悬索桥施工控制分析.公路交通科技,1994(01).
    [39] 张新军,王刚.悬索桥施工理想初态及成桥状态计算方法研究.上海铁道大学学报(自然科学版),1999,Vol.20(6):43-48.
    [40] 黄平明,梅葵花.大跨径悬索桥主缆系统施工控制计算.西安公路交通大学学报,2000,Vol.20(4):19-22.
    [41] 李小珍,胡大琳.大跨度悬索桥施工状态的计算机仿真分析.中国公路学报,1998,Vol.11(4):43-48.
    [42] 潘永仁,范立础.大跨度悬索桥加劲梁架设过程的倒拆分析方法.同济大学学报(自然科学版),2001,Vol.29(5):510-514.
    [43] 胡利平,韩大建.悬索桥施工控制分析.工程设计CAD与智能建筑,2002(3).
    [44] 唐茂林,沈锐利,强士中.大跨度悬索桥丝股架设线形计算的精确方法.西南交通大学学报,2001,Vol.36(3):303-307.
    [45] 李正.悬索桥主缆线计算的一种新方法.江苏交通工程,2001(5).
    [46] 尼尔斯J.吉姆辛著,姚玲森,林长川译.缆索承重桥梁—构思与设计.北京:人民交通出版社,1992.
    [47] West H, H, Robinsion A, R. Continuous method of suspension bridge analysis. ASCE, 1968, Vol.94(ST12): 2725-2737.
    [48] O, C, Zeinkiewicz. The Finite Element Method (third edition). McGraw-Hill, 1977.
    [49] X, Xu, R, F, Cai. A new plat shell element of 16 nodes 40 degrees of freedom by relative displacement method. Communications in Numerical Methods in Engineering, 1993(9): 15-20.
    [50] 徐兴,凌道盛.实体退化单元系列.固体力学学报(计算力学专辑),2001,Vol.22:1-12.
    [51] 凌道盛,张金江,项贻强,徐兴.虚拟层合单元法及其在桥梁工程中的应用.土木工程学报,1998,Vol.31(3):22-29.
    [52] 丁皓江,谢贻权,何福保,徐兴.弹性和塑性力学中的有限单元法(第2版).北京:机械工业出版社,1989.
    [53] 徐兴,郭乙木,沈永兴.非线性有限元及程序设计.杭州:浙江大学出版社,1993.
    [54] 王勖成,邵敏.有限单元法基本原理及数值方法(第2版).北京:清华大学出版社,1997.
    [55] 朱伯芳.有限单元法原理与应用(第2版).北京:中国水利水电出版社,1998,
    [56] 谢贻权,林钟样,丁皓江.弹性力学.杭州:浙江大学出版社,1988.
    [57] 刘正光.香港青马大桥的设计.土木工程学报,1992,Vol.25(2):77-80.
    [58] 戴竞.虎门大桥设计与施工.土木工程学报,1997,Vol.30(4):3-13.
    [59] 杨进.西陵长江大桥-我国首座大跨度全焊接钢箱梁现代悬索桥.土木工程学报,1997,Vol.30(4):14-18.
    [60] 李小珍,强士中.悬索桥主缆空缆状态的线形分析.重庆交通学院学报,1999,Vol.18(3):7-13.
    [61] 周世忠.悬索桥的总体设计.中国土木工程学会桥梁及结构工程学会第十四届年会论文集.上海:同济大学出版社,2000,14-19.
    [62] 潘家英,程庆国.大跨度悬索桥有限位移分析.土木工程学报,1994,Vol.27(1):1-10.
    [63] 项海帆.沿海高等级公路上的跨海大桥工程.同济大学学报,1998,Vol.26(2).
    [64] 朱虹.墨西拿海峡联络桥.市政工程国外动态,1994(1):8-10.
    [65] 严国敏.墨西拿海峡大桥的设计近况.国外桥梁,1993(2):94-97.
    [66] 王英.支布罗陀海峡桥的桥隧道通道方案.世界隧道,1997(5):36-41.
    [67] 肖时多.超长跨度的海峡桥.铁道知识,1994(1):33-33.
    [68] 严国敏.6000m海峡通道采用的两个悬索桥方案.国外公路,1998(1):26-30.
    [69] D.Johnson Victor. Essentials of Bridge Engineering. Oxferd & Ibh Publishing Co, 1980.
    [70] 陈德荣,娄有原.悬索桥综述(3).东北公路,1992(3):93-99.
    [71] M.Ito etc., Cable-Stayed Bridges Recent Development and Their Future. Tokyo, Yokohama, 1991(13):33-35.
    [72] Frank P.B., Richard M.D. Inspection and Rehabilitation of the John A.Roebling Suspension Bridge. Proceedings 6th Annual International Bridge Conference. Pittsburgh Pennsylvania, 1989.
    [73] D.L.Narasimha Rao. Bridges and Flyovers, Proceedings of the International Conference on Bridges and Flyovers, Tata McGraw-Hill, New Delhi, 1991.
    [74] D.S.Bulson, etc. Engineering Structures Development in the Twentieth Century. The University of Bristol Press, 1983.
    [75] Klaus H.Ostenfeld. Innovative Structural Systems for the Gibraltar Strait Crossing Project, Innovative Large Span Structures. IASS CSCE International Congress, Toronto, 1992.
    [76] 周念先.桥梁方案比选.上海:同济大学出版社,1997.
    [77] 杨进,黄铁生.汕头海湾悬索桥的结构特色及设计要点.桥梁建设,1993(3):2-8.
    [78] 吴寿昌,王立新,彭德运.润扬长江公路大桥总体设计.铁道标准设计,2003(3):1-5.
    [79] 陈德荣,娄有原.悬索桥综述(2).东北公路,1992(2):75-85.
    [80] Pugsley, A.G. A flexibility coefficient approach to suspension bridge theory. Proc. ICE, 1949, Vol.32.
    [81] Pugsley, A.G.A simple Theory of Suspension Bridges. Structural Engineering, 1953,Vol.31 (3);Discussion, 1953, Vol.31(9).
    [82] Bowen,C.E, Charlton, T.M.. A Note on the Approximate Analysis of Suspension Bridges. Structural Engineering, 1967, Vol.45(7):241-250.
    [83] Brotton D,M,.The Solution of Suspension Bridge Ploblems by Digital Computers, Part Ⅰ. The Structural Engineering 1966, Vol.41(3): 200-208.
    [84] Brotton D,M,.The Solution of Suspension Bridge Ploblems by Digital Computers, Part Ⅱ. The Structural Engineering, 1966, Vol.41(7): 213-222.
    [85] 李映.悬索桥侧向风载下的空间非线性分析.全国桥梁结构学术大会论文集.1992:941-947.
    [86] 宜昌长江公路大桥施工图设计,第一册(第一分册).湖北省交通规划设计院,1998.
    [87] 蔡金标.大跨度悬索桥空间分析的组合单元法.浙江大学博士学位论文,2002.
    [88] 牛和恩.虎门大桥工程·悬索桥.北京:人民交通出版社,1998.
    [89] 交通部公路科学研究所,广东省公路工程总公司,重庆交通学院.虎门大桥悬索桥关键技术研究报告.1998.
    [90] 吕建鸣.32位Windows环境下桥梁有限元结构分析软件开发.公路.1997(9):37-42.
    [91] 王敬平,周昌栋,黄平明等.大跨径悬索桥主缆施工监控系统研究.宜昌:宜昌长江公路大桥建设开发公司;西安:长安大学,2001.
    [92] 潘永仁,范立础,杜国华.悬索桥架设过程中吊索长度调整的计算方法.同济大学学报.1999,Vol.27(2):239-242.
    [93] 西南交通大学土木工程学院.海沧大桥施工监控总报告.2000.Vol.18 No.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700