用户名: 密码: 验证码:
抚顺万新大桥施工控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自锚式悬索桥以其优美的造型和对地形地质适应性强等种种优点越来越受到工程界的青睐,尤其是在城市中小跨径桥梁中更是一种极具竞争力的方案。抚顺万新大桥是目前世界上跨径最大的混凝土自锚式悬索桥,并首次采用钢丝绳主缆环形绕过锚固体,故本桥的施工控制存在跨度大、拉力大、变形大、允许误差小等特点和难点。本文结合万新大桥的施工控制,研究了自锚式悬索桥施工控制的理论与方法。主要内容如下:
     (1) 研究了自锚式悬索桥的计算理论和方法,包括最初的弹性理论到现在的有限位移理论,分析了锚固区环形主缆的平面简化计算。自锚式悬索桥的主缆受力图可简化为承受沿弧长均布荷载加吊索处集中力的柔性索,故主缆视为分段悬链线比抛物线更为精确,采用分段悬链线理论计算了成桥主缆线形,推算了主缆的索股无应力长度、吊索长度、空缆状态线形及索鞍偏移量,确定了索夹的安装位置,采用无猫道架设主缆方案,节省了施工费用且提前了工期,主缆架设过程中考虑了索长变化、温度变化等误差因素对主缆架设线形的影响,施工精度进一步提高。
     (2) 由于结构承载力等多种条件限制,自锚式悬索桥的吊索必须经过多次逐步张拉才能达到设计值,本文考虑了吊索张拉过程中混凝土收缩徐变、主缆弹性模量的变化等多种非线性因素的影响,针对吊杆张拉这一复杂的非线性过程,利用有限元程序,研究了在结构承载力和张拉设备能力等约束条件下,吊索反复张拉次数和接长杆数量的计算以及脱模状态的确定方法,理论上可以通过三轮张拉达到满足要求的实际脱模状态,四轮张拉可以达到理想的脱模状态。
     (3) 吊杆张拉过程中对塔顶位移、塔底应力、主梁控制截面的内力位移及主缆线形、吊杆力的大小等影响结构安全的因素实施了即时观察测量,每张拉完一遍都及时测量数据并与计算值进行比较分析,调整下一轮的张拉方案并指导下一轮张拉。实际中经过六轮张拉(部分吊索只需张拉两到三轮)达到脱模要求,但索力不太均匀,通过以最小二乘法为基础的有限元程序给出了不均匀索力误差的调整方案,最终成功解决了自锚式悬索桥施工控制中体系转换这一关键问题,本张拉方案只需四台千斤顶同时对称张拉,张拉次数少,且吊索接长杆数量少,张拉效率高,对同类桥型的施工控制有重要的参考价值。
Self-anchored suspension bridges are increasingly appreciated by engineers for their merits such as aesthetic appearance and high adaptability to the land form and geology. It has become a more competitive design scheme in middle-, and small-span in cities. Fushun Wanxin Bridge has the largest span in concrete self-anchored suspension bridges in the world at present. It first adopts annular steel rope main cable to wind the anchorage, so the construction control has the following feature and difficulty: large span, large force, large deformation and small permissible error. Based on Wanxin Bridge construction control, this paper studies the theory and method of self-anchored suspension bridge construction control. The main content covers the following aspects:(1) This paper studies the calculation theory and method, including initial elastic theory and finite displacement theory at present. It analyses the plane simplified calculation of the annular main cable anchorage. Main cable force figure can be simplified as flexible cable with even load and focus force at the hanger, so main cable is more precise seen as segmental catenary than seen as parabola. Main cable configuration of completed bridge is calculated by segmental catenary theory, and the free length of each main cable, the hanger length, free main cable configuration, the saddle p re-offset are also calculated, and the position of each rope clip is determined. No passage is adopt in main cable construction. So money and time is in advance. The influence of error factors such as cable length change, temperature change to the main cable erection configuration, so the precision is much higher.(2) Hanger of self-anchored suspension bridges must be stretched many times because of many factors such as load-bearing of structure. For the complicated nonlinear process of tensioning hangers, considering many nonlinear factors, such as the concrete shrinkage and creep, Young's modulus of main cable ,making use of the finite element program, the method of calculating the times of repetition of tension and the number of extension bars and the method of determining the state of the removing framework are studied under the constraint condition of the bearing c apacity of the structure and the c apacity o f the tensioning machine. Three times can attain the satisfying state of removing framework away and four times of tension can attain the ideal state of removing the framework away in theory.(3) The saddle displacement on the top of the tower, the stress of the tower bottom and the main girder control section, the main cable configuration and the hanger force are observed and measured, and all the data should be analyzed and compared with the calculation data after every tension in order to guide the next tension. Six times later(some hangers only two to three times) the framework can be move away but the hanger force is not homogeneous, the method of nonlinear error adjustment based on the least squares method is presented to adjust the hanger force errors. So the key problem of system transition in construction control of self-anchored suspension bridge is solved. This tension scheme is very efficient because of needing only four jacks to tension in-step at the same time, and needs few extension bar. It has some important reference value to the same bridges.
引文
[1] 周孟波.恳索桥手册[M].北京:人民交通出版社,2003
    [2] 石磊.混凝土自锚式悬索桥设计理论研究.博士毕业论文,2003.7
    [3] 雷俊卿,郑明珠,徐恭义.悬索桥设计[M].北京:人民交通出版社,2002
    [4] 颜娟 编译.自锚式悬索桥[J].国外桥梁,2002,No.1:19-22
    [5] Kim, Ho-Kyung, Lee, Myenong-Jae, etc. Non-linear shape-finding analysis of a self anchored suspension bridges[J]. Engineering Structures, 2002, Vol. 12,No.24:1547-1559
    [6] 林荫岳译,世界上第一座自锚体系斜吊杆悬索桥—日本此花大桥[J].国外桥梁,1993 No.1:1-4
    [7] H. Gil, C. Cho, Korea. Yongjong Grand Suspension Bridge[J]. 国际桥协(IABSE) Structural Engineering International SEI, Vol. 8, No. 2, 1998
    [8] 张元凯,肖汝诚,金成棣.自锚式悬索桥概念设计[J].公路,2002,No.11:46-49
    [9] 史佩杰,戴利民.一座造型新颖别致的自锚式悬索桥,苏州市政工程设计院文章交流,2003
    [10] J.F.Klein.瑞士日内瓦湖上的新型悬索桥方案.哥本哈根IABSE学术会议论文集[C],1996
    [11] 大连理工大学土木建筑设计研究院桥梁研究所.金石滩金湾大桥施工图设计,2002.12
    [12] 刘建新,胡兆同 编著.大跨度吊桥[M].人民交通出版什,1996
    [13] 华孝良,徐光辉 主编.桥梁结构非线性分析[M].人民交通出版社,1995
    [14] 徐岳等.悬索桥施工控制方法的研究[J].西安公路交通大学学报,Vol.17 No.4,1997.12,46~50页
    [15] 杜蓬娟.PC斜拉桥施工过程控制理论研究.博十毕业论文,2003。
    [16] 张新军等.悬索桥施工理想初态及成桥状态计算方法研究[J].上海铁道大学学报,Vol.20 No.4,1999.6,43~48页
    [17] 陈伟,李明主编.桥梁施工临时结构设计[M].中国铁道出版社,2002
    [18] 窦鹏.混凝土自锚式悬索桥设计计算及箱形加劲梁的受力研究.硕土毕业论文,2003.3
    [19] 徐君兰 主编.项海帆 主审.大跨度桥梁施工控制[M].人民交通出版者,2002.8
    [20] 钱冬生,陈仁福 编著.大跨:悬索桥的设计与施工[M].西南交通大学出版社,1999
    [21] 楼庄鸿,严文彪.自锚式悬索桥[A].中国公路学会桥梁和结构工程学会,2002年全国桥梁学术会议论文集,2002.10
    [22] 项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001
    [23] 石磊,张哲,刘春城,檀永刚.混凝土自锚式悬索桥设计及其力学性能分析[J].大连理工大学学报,2003,vol.43,No.2:202-206
    [24] 楼庄鸿,严文彪.自锚式恳索桥[A].中国公路学会桥梁和结构工程学会2002年全国桥梁学术会议论文集,2002.10
    [25] 钱冬生,陈仁福.大跨悬索桥的设计与施工[M].成都:西南交通大学出版社,1999
    [26] 严国敏.现代悬索桥[M].北京:人民交通出版社,2002
    [27] 唐茂林,沈锐利,强士中.大跨度悬索桥非线性静动力分析与软件开发[J].桥梁建设,2000,NO.1:9-12
    [28] 邱文亮.自锚式悬索桥非线性分析与试验研究.博士毕业论文,2004.2
    [29] 张哲,石磊,刘春城,黄才良.混凝土自锚式悬索桥结构内力分忻[J].哈尔滨工业大学学报,2003,vol.35,N0.5:625-627张元凯,肖汝诚,金诚棣.自锚式悬索桥的设计[J].桥梁建设,2002年第五期,30~32页
    
    [30] 雷俊卿,郑明珠,徐恭义编著.杨进主审.悬索桥设计[M].人民交通出版社,2002
    [31] 张元凯,肖汝诚,金诚棣.自锚式悬索桥的设计[J].桥梁建设,2002年第五期,30~32页
    [32] 孙立刚.抚顺万新大桥的锚固跨研究.硕士毕业论文,2004.3
    [33] Zhe Zhang, Yonggang Tan, Lei Shi and Bin Tian, A NEW SEARCHING APPROACH ON THE CALCULATION OF THE TARGET CONFIGURATION OF CABLES FOR SUSPENSION BRIDGES[A]. 2003-10-1 International Meeting of Shanghai
    [34] Yonggang Tan, Zhe Zhang, Cailiang Huang, Analytical method for the configuration of the main cables of self-anchored suspension bridges[J]. Computer & Structure
    [35] 王勖成,邵敏 编著.有限元法基本原理与数值方法[M].清华大学出版社,1996
    [36] 大连理工大学土木建筑设计研究院桥梁研究所.延吉市布尔哈通河局子街桥施工图设计,2002.12
    [37] 张哲,石磊,刘春城,黄才良.混凝土自锚式悬索桥结构内力分析[J].哈尔滨工业大学学报.2003,vol.35,No.5,625~627页
    [38] 石磊,张哲,刘春城,檀永刚.混凝土自锚式悬索桥设计及其力学性能分析[J].大连理工大学学报,2003,vol.43,No.2,202~206页
    [39]华孝良,徐光辉.桥梁结构非线性分析[M].北京:人民交通出版社,1997
    [40] J.F.Klein.瑞士日内瓦湖上的新型恳索桥方案[A].哥本哈根IABSE学术会议论文集,1996
    [41] 甘科等.广西桂林丽君桥主缆、吊杆安装施工技术[J].建筑施工,2002年第三期,221~223页
    [42] 潘永仁,范立础,杜国华.悬索桥架设过程中吊索长度调整的计算方法[J].同济大学学报,Vol.27 No.2,1999,4,239~242页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700