用户名: 密码: 验证码:
TrxA-EstB1融合蛋白的表达、纯化与活性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农药的大量施用不仅对环境造成严重污染,而且使大量害虫产生抗药性。其中抗性库蚊产生大量酯酶对农药起代谢作用是其产生抗药性的主要原因,抗药性的产生加大了农药治虫的难度,加剧了农药对环境的污染。然而,将抗性蚊虫产生的解毒酶用于农药污染的生物治理是环境污染治理的新思路、新方向,有较好的应用前景。本文旨在将解毒酶酯酶B1基因融合高效表达,为其实际应用创造条件。
     本文将从抗性库蚊(Culex pipiens)中分离出的解毒酶基因和硫氧还蛋白融合表达载体pThioHisA用限制性内切酶EcoRI消化,用低熔点胶回收消化片段并纯化,纯化后的载体脱磷,在T4 DNA连接酶作用下将二者进行体外连接,将连接产物转化大肠杆菌DH5α,在100μg/L氨苄青霉素平板上筛选Ampr转化子,将重组质粒分别经BglⅡ、BamHI单酶切,电泳分析获得酯酶基因插入方向正确的融合表达质粒,命名为pThioHisA-B1。
     挑取鉴定正确的单菌落,接种于2ml含氨苄青霉素(50μg/ml)的LB培养基中,37℃,180rpm培养过夜,次日按5%接种量转接1次,同样条件下培养至OD550达0.5左右,加入IPTG至浓度1mmol/L,诱导12h。12% SDS-PAGE电泳检测出工程菌可表达分子量约63KD的TrxA-EstB1融合蛋白,将胶体进行薄层扫描确定诱导7h后目的蛋白表达量最高,占菌体总蛋白的48.7%。
     菌体在样品提取液中超声、冻融破壁后,4℃,10000rpm离心20min,分别取离心后的上清液和沉淀进行SDS-PAGE电泳鉴定,发现TrxA-EstB1融合蛋白大部分以包涵体形式存在,少部分以可溶形式存在。为了提高目的蛋白的可溶性表达,本实验在低温下(34℃、32℃、30℃、28℃、25℃)进行目的蛋白表达,最终确定28℃下诱导,可溶性目的蛋白表达量最高,占目的蛋白总数的65%,占菌体总蛋白的30%左右;IPTG浓度在常规用量1mmol/L的基础上降低至0.4mmol/L时,目的蛋白的表达量无显著差异。
     以α-NA为底物对所构建工程菌进行酯酶活性测定,结果表明该工程菌能高效降解α-NA,具有较强的酯酶活性,融合伴侣硫氧还蛋白促进了酯
    
    酶B1的正确折叠,形成了天然的蛋白质构象。本研究将工程菌以2.5%海藻酸钠、3% CaCl2进行包埋固定,以α-NA为底物测定固定化工程菌的酯酶活性,结果表明工程菌固定化后,酶活虽有所降低,但仍有一定的解毒能力。
    将最适条件下诱导的工程菌发酵液离心,收集菌体,加样品提取液超声、冻融法将菌体破壁,4℃,10000rpm离心收集上清液,获得粗提蛋白。将粗提蛋白经硫酸铵分级盐析,DEAE-Sepharose CL-6B离子交换层析,Sephadex G-150分子筛层析后,用聚乙二醇包埋浓缩,SDS-PAGE电泳检测提取物纯度,表明TrxA-EstB1融合蛋白已被提纯。对该融合蛋白进行酶活性测定表明它具有酯酶B1的解毒活性,最适反应条件为40℃, pH 7.5。
The use of insecticides does not only bring benefit to human beings but also cause serious environmental pollution. Many insects including Culex pipiens can product detoxificase that can catalyze and degrade many xenobiotic agents besides pesticides, so it becomes harder to kill them. But the use of insect detoxificase provides a novel method in bioremediation of pesticides contamination ,so this thesis is aimed at fusion expressing the detoxificase(esterase B1) at high level. It will pave the way for utilization of esterase B1 in reality.
    The DNA fragment of esterase B1 is cloned to MCS of plasmid pThioHisA to construct the thioredoxin(TrxA) and esterase B1 fusion expression vector . The new recombinant plasmid is named pThioHisA-B1. The process is as follows : first, the plasmid pRL-B1 and pThioHisA are digested with restriction endonuclease EcoRI. Then retrieve and purify the 1.33Kb fragment of pRL-B1 and 4.4Kb fragment of pThioHisA through low-melting-point agarose gel electrophoresis. After the purified expression vector fragment is dephosphorylated , link up the two fragments with T4DNA ligase in vitro . After transferring the new recombinant plasmid pThioHisA into the host E.coli DH5αthe positive clones are screened on LB+AMP medium plate with BglⅡand BamHI.
    The engineering strain E.coli DH5α/pThioHisA-B1 is cultured in LB +Amp medium to an OD550 of 0.5 at 37℃,180rpm ,then add IPTG to a final concentration of 1mmol/L, 12 hours for induction . Higher levels of expression of TrxA-EstB1 is obtained 7 hours after induction . The expressed fusion protein with molecular weight of about 63KD is about 48.7% of the total bacterial protein as detected by SDS-PAGE and thin-layer gel scanning analysis.
    The bacterial pellet is sonicated and centrifuged at 10000rpm for 20 minutes at 4℃ to pellet cell debris and insoluble matter .The SDS-PAGE confirms that the TrxA-EstB1 fusion protein exists in both inclusion body and soluble protein in the cells. The amount of the soluble target protein increases along with decrease of induction temperature and amounts to more than 30% of the total bacterial proteins at 28℃.Under shake incubator the IPTG
    
    concentration is studied ,The result shows:0.4mmol/L IPTG can induce the E.coli express fusion protein and has no obvious difference when which is 1.0mmol/L.
    The results of detoxifing experiment indicate that the TrxA-ExtB1 fusion in engineering bacterial of E.coli DH5α/pThioHisA-B1 exhibit a high detoxificase activity in degrading the specific substrate such as α-naphthyl acetate(α-NA).This result shows that the achieved fusion protein keeps the enzyme activity of esterase B1 because the fusion chaperon of TrxA can promote the correct fold of esterase B1 and its soluble expression . We have immobilized the bacterials in 2.5% algmate and 3% CaCl2 in order to make more practical use of the engineering bacterial .It is found that the immobilized cell can work well in degradingα-NA also .
    The fermented broth is centrifugated at 10000rpm to collect cell pellet, then the pellet is sonicated in lysate buffer and centrifugated to separate the crude fusion protein. The crude fusion protein is purified with ammonium sulphate precipitation,DEAE-sepharose CL-6B anion-exchange and SephadexG-150 gel filtration chromatographies. The purified TrxA-EstB1 protein is demonstrated to be one single protein band by SDS-PAGE. With respect to optimal temperature and optimal pH,substrate specificity,the purified fusion esteraseB1 exhibited properties similar to those of the wild -type esteraseB1. The optimal reaction temperature and pH are 40℃ and 7.5 ,respectively.
引文
[1] D. R. 马歇克等著,朱厚础等译. 蛋白质纯化与鉴定实验指南. 北京:科学出版社,1999
    [2] 安乃莉,张智清,王嵩等.应用硫氧还蛋白促进外源蛋白在大肠杆菌的可溶性表达. 病毒学报,1999,15(2):130-135
    [3] 陈敏,罗启芳. 聚乙烯醇包埋活性炭与微生物的固定化技术及其对水胺硫磷降解的研究. 环境科学,1994,15(3):11-14
    [4] 陈铭,周晓云. 固定化细胞技术在有机废水处理中的应用与前景.水处理技术,1997,23(2):98-104
    [5] 陈曙阳.1992-1996年我国农村农药中毒报告发病情况.农药科学与管理,1997,(4):40-43
    [6] 程喧生等.我国菊酯类杀虫剂的研究与开发.农药,1991,30(1):1-6
    [7] 丁鸣,余建法,丁仁瑞.融合表达载体的研究进展.生物技术1998,8(4):5-8
    [8] 葛晓春,陈继超,王文漪等.非特异性脂质转移蛋白突变体的构建及在两种硫氧还蛋白表达载体中的表达比较.生物工程学报,2002,18(2):167-171
    [9] 顾夏声,李献文,竺建荣.编,水处理微生物学, 第三版. 北京:中国建筑工业出版社,1988
    [10] 华小梅,单正军.我国农药的生产、使用状况及其污染环境因子分析. 环境科学进展,1996,4(2):33-44
    [11] 华小梅,江希流.我国农药环境污染与危害的特点及控制对策.环境科学研究,2000,13(3):40-43
    [12] 黄菁,乔传令.昆虫解毒酶解毒机理及其在农药污染治理中的应用,农业环境保护,2002,21(3):285-287
    [13] 李慧蓉.白腐真菌的研究进展..环境科学进展,1996,4(6):69-77
    [14] 李文清,徐柏年,朱坚等.GST-EGF融合蛋白在大肠杆菌中的表达与纯化.中山大学学报(自然科学版),1998,37(1):13-16
    [15] 林力,杨惠芳.生物整治技术进展.环境科学,1997,18(3):67-71
    [16] 林玉锁,龚瑞忠,朱忠林.农药与生态环境保护.化学工业出版社 ,2000
    [17] 刘广民.农药在包气带内迁移规律及污染的微生物治理方法初步研究.吉林大学博士学位论文.
    [18] 刘玉焕,钟英长.甲胺磷降解真菌的研究.中国环境科学.1999,19
    
    (2):172-175
    [19] 刘玉焕,钟英长.真菌降解有机磷农药乐果的研究.环境科学学报,2000,20(1):95-99
    [20] 卢圣栋主编.现代分子生物学实验技术.高等教育出版社,1993
    [21] 罗红良,严维耀,郑兆鑫.鼠心钠素基因在大肠杆菌中的融合表达及产物的分离纯化.复旦学报(自然科学版),1998,37(4):428-432
    [22] 马雪梅,黄秉仁,蔡良婉.ThioHisA表达系统—大肠杆菌中表达可溶性蛋白的重大突破.生命的化学,1995,15(3):35-37
    [23] 马雁冰,杜瑞鹃,李鸿钧等.Persephin基因克隆及在大肠杆菌中的表达.中国生化药物杂志,2000,21(3):109-111
    [24] 沈萍.微生物学. 北京:高等教育出版社[第一版],2001。
    [25] 施国涵.土壤微生物对灭幼脲3号杀虫剂代谢作用的研究.环境科学学报,1990,10(3):296-303
    [26] 孙紫青,乔传令.库蚊中抗性相关酯酶的研究进展.昆虫知识,1998,35(6):373-375
    [27] 唐振华.昆虫抗药性中的酯酶基因扩增研究进展.昆虫知识,1993,30(1):53-56
    [28] 汪建沃,潘柳清,刘益民.农药与生态.中国工业大学出版社,1992
    [29] 王保军,刘志培,杨惠芳.单假脒农药的微生物降解代谢研究.环境科学学报,1998,18(3):296-302
    [30] 王家玲 .环境微生物学[M] . 北京:高等教育出版社 , 1988
    [31] 王永杰,李顺鹏,沈标等. 有机磷农药降解菌的紫外诱变育种. 应用与环境生物学报,1999,5(6):635-637
    [32] 王毓秀,张利民.化学农药与环境激素.农村生态环境,1999,15(4):37-41
    [33] 吴军见,朱延美,王栋等.固定化细胞技术在废水治理中的应用及降解动力学研究进展.辽宁化工,2002,31(1):20-25
    [34] 吴纬,陈静娴,宋宁等.几种因素对重组大肠杆菌目标蛋白表达的影响.四川大学学报(自然科学版),2002,39(增刊):149-151
    [35] 吴文君,刘惠霞.对农药的几点看法,农药,1998,37(9):1-5
    [36] 吴小阳,郑伟娟,华子春等. 人ERCC1在大肠杆菌中的表达研究.南京大学学报(自然科学),2001,37(2):208-211
    [37] 武东亮,郭三堆.融合基因研究进展,生物技术通报,2001(2):5-7
    
    
    [38] 邢建民,乔传令,黄菁等. 解毒酶基因cDNA克隆和高效表达.生物工程学报,2001,17(2):98-101
    [39] 许泳峰 译.农药污染.农业出版社,1983
    [40] 须藤隆一著[日].水环境净化及废水处理微生物学[M]. 俞辉群,全浩编译.北京:中国建筑工业出版社,1988。
    [41] 许云平.有机农药DDVP在大气中的降解研究.北京大学硕士论文,2001。
    [42] 闫艳春,乔传令. 解毒酶基因的克隆及其在大肠杆菌和蓝藻中的表达(英文). Entomologia Sinica, 2000(2):161-168
    [43] 闫艳春,乔传令,尚宏宇等. 抗性库蚊酯酶基因在大肠杆菌中的克隆和表达.微生物学报2000,40(2):126-131
    [44] 杨文利,钟肖芬,彭立胜等. 平赅海蛇碱性磷脂酶A2的融合表达、纯化及活性特征.中国生物化学与分子生物学报, 2001,17(4):436-441
    [45] 杨喆,李太华.大肠杆菌中外源基因表达的研究进展.微生物学免疫学进展,2000,28(2):69-71
    [46] 虞云龙,陈鹤鑫,樊德方等.一硫代磷酸酯杀虫剂的酶促降解.环境科学,1998,19(2):58-61
    [47] 虞云龙,樊德方,陈鹤鑫.农药微生物降解的研究现状与发展策略.环境科学进展,1996,4(3):28-35
    [48] 张甲耀,李静,夏威林. 生物修复技术研究进展.应用与环境生物学报,1996,2(2):193-199
    [49] 张柯,叶镇清,乔传令.库蚊羧酸酯酶研究进展.生命的化学,2002,22(1):65-66
    [50] 张立新,李春海,孙丽亚.肿瘤MUC1/Y 的克隆及其胞外段在大肠杆菌中的可溶性表达、纯化和鉴定.中国生物化学与分子生物学报,2001,17(5):579-584
    [51] 张蔚文,张灼. 固定化微生物技术在废水处理中的应用与研究.上海环境科学,1991,10(10):20-24
    [52] 张毅,屈贤铭,杨胜利.融合蛋白基因工程应用及研究.生物工程进展,2000,20(3):13-17
    [53] 张志祥,姚其正. 融合蛋白—一种新的生物工程技术.药物生物技术,2001,8(1):58-60
    
    
    [54] 郑和辉,叶常明.甲草胺和丁草胺等除草剂在介质环境中环境行为综述.环境科学进展,1999,7(3):1-10
    [55] 郑重.农药的微生物降解[J] . 环境科学,1991,11(2):68-72
    [56] 周群英,高廷辉. 环境工程微生物学[第二版].北京:高等教育出版社,2001
    [57] Anja Wiese, Burhard Wilms, Christoph Syldatk. et al.Cloning, nucleotide sequence and expression of a hydantoinase and carbamoylase gene from Arthobacter aurescens DSM 3745 in Escherichia coli and comparison with the corresponding genes from Arthrobacter aurescens DSM 3745.
    [58] Arisoy M.Biodegradation of chlorinated organic compounds by white-rot fungi.Bull. Environ. Contam. Toxicol,1998,60:872-876
    [59] Bachmann A. et al. Aerobic biomineralization of alpha- hexacyclorocyclohexane in contaminated soil.Applied And Environmental Microbiology, 1988(54):2-6
    [60] Baud-Grasset F, Vogel T M.Bioaugmentation:Biotreatment of contaminated soil by adding adapted bacteria. In Bioaugmentation For Site Remediation,ed[M] . Hinchee R E.. Fredrickson .J .Alleman B C. Bettelle Press, Columbus, Ohio, 1995,PP.39-48
    [61] Behki R. M. and Khans.Degradation of atrazin, propazine, and simazine by Rhodococcus strains B-30.J. Agric. Food.Chem., 1994(42):1237-1241
    [62] Chakraborty S K, Anjan Bhattacharyya. Degradation of butachlor by two fungi. Chemosphere,1991,23(1):99-105
    [63] Don R. H, Weightman A. J, Kanckmuss H. J. et.al.Transposon mutagenesis and cloning analysis of the phthways for degradation of 2,4-Dichlorophenoxyacetic acid and 3-Chlorobenzoate in alcaligenes eutrophus JMP134(PJP4).Bacteriology,1985,161(1):85—90
    [64] France S.Degradation of atrazine in soil by streptomyces.Environ. Sci. Health,1998,33(1):37-49
    [65] Francis GL, Ross M, Ballard F J, Milner S J, Senn C. Novel recombinant fusion protein analogues of insulin -like growth factor (IGF)-I indicate the telative importance of IGF-binding protein and
    
    receptor binding for enhanced biological potency,.J. Mol. Endocrinol , 1992,8(2):213-223
    [66] Frangioni J V, Neel B C.Solubilization and purification of enzymatically active glutathione S-transferase(pGEX)fusion protein.Anal Biochsm 1993,210(1):179-187
    [67] Georghiou G P, Pasteur N, Hawley M K.Linkage relationships between organophosphate resistance and a highly active esterase B in Culex pipiens quinquefasciatus say from California.J. Econ. Entomol., 1980,73(3):301-305
    [68] Gleason F K , Holmgren A.Thioredoxin and the related protein in prokaryotes .FEMS Microbiol Rev, 1988,4(2):271-297
    [69] Gordon R K, Feaster S R, Russel A J, et al.Organophosphate skin decontamination using immobilized enzymes,Chem Biol Interact,1999,119-120:463-470
    [69] Grigg B C, Assaf N A, Turco R T. Removal of atrazine comtamination in soil and liquid system using bioaugmentation.Pestic. Sci., 1997,45:4481-4486
    [70] Grigg B C, Bischoff M, Turco R F.Cocontaminant effects on degradation of triazine herbicides by a mixed microbial culture.Agric.Food chem., 1997,45:995-1000
    [71] Haugland R A, et al.Degradation of the chlorinate phenoxyacetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures.Appl. Environ. Microbiol. ,1990(56):1357-1362
    [72] Head Lan M.Bioremediation: towards a credible technology. Micrology, 1998,144:599-608
    [73] Hockney R C.Recent developments in heterologous protein production in Escherichia Coli.Trends in Biotech, 1994,12(11):456-463
    [74] Hojae Shim, Shang-Tian Yang.Biodegradation of benzene, toluene,ethylbenzene, and o-xyleneby a coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor.Journal of Biotechnology,1999,67(1):99-112
    [75] J Beuuink et al.Synchronous anaerobic and aerobic degradation of
    
    DDT by an immobilized mixed culture system.Appl. Microbio. Biotechnol, 1988,29(1):72-80
    [76] Jamet Hemingway, Nicola Hawkes, La-aied Prapanthadara.The role of gene splicing gene amplification and regulation in mosquito insecticide resistence. Phil. R soc. Lond B ,1998,353:1695-1699
    [77] K T O Reilly et al.Degradation of Pentachlorophenol by Polyurethane-Immobilized Fiavobacterium cells.Appl. Environ. Microbiol., 1989,55(9):2113-2118
    [78] Kaake R H, Roberts D J, Stevens T O, et al. Bioremediation of soils contaminated with the herbicide 2-sec-butyl-4,6dinitrophenol(dinoseb). Appl. Environ. Microbial,1992,58:1683-1689
    [79] Kellogy S T. , Chatterjee D K, Chakrabarty A M.Plasmid-assisted molecular breeding: new techniqe for enhanced biodegradation of persistent toxic chemicals.Science,214,1133-1135
    [80] LaVallie E R, DiBlasio E A, Kovacic S, et al .A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E.coli cytoplasm.Biotechnology, 1993,11(2):187-193
    [81] Li YF, Bidlmen TF and Barrie LA.Global hexacyclorocyclohexane use trends and their impact on the arctic atmosphere environment.Geophysical Research Lerrers,1998,25(1):39-41
    [82] Lorenzo Bertin ,et al.An aerobic fixed-phase biofilm reactor system for the degradation of the low-molecular weight aromatic compounds occuring in the effluents of anaerobic digestors treating olive mill wastewaters.Journal of Biotechnology, 2001,87(1):161-177
    [83] M. Arisoy.Biodegradation of Chlorinated Organic Compounds by White-Rot Fungi. Bull. Environ. Contam. Toxicol, 1998(60):872-876
    [84] Makrides S. Strategies for achieving high-level expression of genes in Escherichia coli.Microbiological Review 1996,60(3):512-538
    [85] Mallick K, Bharati K, Banerji A, et al. Bacterial degradation of chlorpyrifos in pure cultures and in soil. Bull.Environ.Contam.Toxicol , 1999,62:48-54
    [86] Mandeibaum R. T.et al..Mineralization of the s-Triazine ring of atrazine by stable bacterial mixed cultures. Appl. Envron. Microbiol.,
    
    1993(59):1695-1701
    [87] Mouches C, Pasteur N, Berge J ,et al.Amplification of an esterase gene is responsible for insecticide resistance in a California Culex pipiens mosquito.Science, Wash. 1986,233:778-780
    [88] Mouches C, Pauplin Y, Agarwal M, et al. Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Cule. Proc. Natl. Acad. Sci. U.S.A.,1990,87(6):2574-2578
    [89] Mulbry W W and Kearney P C.Degradation of pesticides by microorganisms and the potential for genetic manipulation.Crop Protection ,1991, 10:334-346
    [90] Nannipieri P, Bollay J M. Reviews and Analyses:Use of enzyme to detoxify pesticide contaminated soils and waters. Environ.Qual,1991,20:510-517
    [91] Novy R, Berg J, Keith Y, Mierendorf R.PET TRX fusion system for increased solubility of proteins expressed in E. coli. Novage Inc Newsleter,1994,jun 4
    [92] Paton MG, et al.Quantitative analysis of gene amplification in insecticide-resistant Culex mosquitoes.Biochem J,2000,346(1):17-24
    [93] Pigiet V P, Schuster B J. Thioredoxin-catalyzed refolding of disulfide-containing proteins. Proc Natl Acad Sci USA, 1086,83:7643-7647
    [94] Pohlenz H.D. et al..Purification and Properties of an Arthrobacter oxydans p52 Carbamate Hydrolase Specific for the Herbicide Phnmedipham and Nucleotide Sequence of the corresponding Gene.J. Bacterial, 1992,174:6600-6607
    [95] Poirie M, Raymond M, Pasteur N.Identification of two distinct amplifications of the esterase B locus in Culex pipiens from Italy.J. Amer. Mosq. Contr. Ass, 1993,9:164-168
    [96] Qiao C L, Raymond M.The same esterase B1 haplotype is amplified in insecticide-resistant mosquitoes of the Culex pipiens complex from the Americas and China.J.Heredity,1995,74(2):339-345
    [97] Raymond M, Callaghan A, Fort P et al.Worldwide migration of amplified insecticide resistance genes in mosquitoes.Nature Lond,
    
    1991,350(2):151-153
    [98] Raymond M, Marquine M.Evolution of insecticide resistance in Culex pipiens population: the corsican paradox. J. Evol. Biol., 1994,7:315-337
    [99] Raymond M, Poulin E, Bioroux V et al.Stability of insecticide resistance due to amplification of esterase genes in Culex pipens.Heredity,1993,70(2):301-307
    [100] Roe RM, Hodgson E, Rose R L, et al .Minimizing chronic exposure of humans and the environment. Pesticides and the Future ,1998,169-178
    [101] Schauder B, Mccarthy JE.The role of bases upreem of the shine-Dalgarno region and in the coding sequence in the control of gene expressionin Escherichia coli : translation and stability of mRNA in vivo.Gene, 1989,78(1):59-72
    [102] Severini C, Romi R, Marinucci M, et al.Mechanisms of insecticide resistance in field populations of Culex pipiens from Italy.J. Amer. Mosq. Cntr. Ass., 1993,9(1):164-168
    [103] Shao.Z.Q. et al..Characterization of the expression of the thcB Gene ,coding for a pesticide degrading cytochrome p-450 in rhodococcus strains. Appl. Environ. Microbiol. ,1996(62):2-7
    [104] Sharrocks AD, et al. Expression vector for producing N-and C-terminal fusion protein with glutathione S-transferase. Gene, 1994,138(1-2):105-108
    [105] Shpir Nir, Mandelbaum Raphi T. Atrazine degradation in subsurface soil by indigenous and introduced microorganism. Agric. Food. Chem.,  1997, 45:4481-4486
    [106] Takashi Y, Chie K, Toshio M, et al .Increase of solubility of foreign in Escherichia coli by coproduction of the bacterial thioredoxin.J Bio Chem ,1995,270:25328-25331
    [107] Wirth M C, Marquine M, Geoghiou G P, et al.Esterase A2 and B2 in Culex quinquefasciatus(Diptera:Culicidate): role in organophosphate resistance and linkage studes.J. Med. Entomol.,1990,27(2):202-206
    [108] Xu J, Qu F, Liu W.Diversity of amplified esterase B genes responsible
    
    for organophosphate resistence in Culex quinquefasciatus from China.Acad. J. Second Milit. Med. Univ.,1994,15(1):101-105
    [109] Yebdkima A, Raymond M, Marquine M.Resistance to organophosphorous insecticides in Culex pipens qinquefasciatus from Martinique. Heredity,1995,10:123-126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700