用户名: 密码: 验证码:
青霉菌Penicillium sp.GXCR1有毒重金属盐的抗性及其遗传转化体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从矿山排水沟污泥中分离到一株高抗铜的同时对苯菌灵(Benomyl)敏感的青霉菌(Penicillium sp.)GXCR1。该菌的ITS核苷酸序列与102株青霉菌的ITS核苷酸序列有95%以上的同源性。其最适生长温度为32℃,最佳生长pH值为5。
     在含Cu~(2+)的PDA固体培养基上:抗Cu~(2+)的水平达200mM,在5mM的Mn~(2+)存在下,其抗Cu~(2+)水平达800mM。
     在含重金属盐的PDB液体培养基中抑制该菌生长的Cu~(2+)、Zn~(2+)、Al~(3+)、Cr~(3+),Cr~(6+)、Cd~(2+)、Pb~(2+)、Ni~(2+)最小浓度分别为>200mM、>1200mM、>500mM、>60mM、10mM、10mM、10mM和3mM;能在含40mM Cu~(2+)、200mM Zn~(2+)和1mM Cd~(2+)组合,40mM Cu~(2+)、100mM Zn~(2+)和3mM Pb~(2+)组合,或者200mM Zn~(2+)、3mM Cd~(2+)和3mM Pb~(2+)组合的复合重金属盐的PDB液体培养基中生长。
     在含重金属盐的水溶液中自然菌体表面对Cu~(2+)、Zn~(2+)吸附量分别达到26.19和258.3mg/g干菌体,而且吸附量远大于二者分别在菌体内的蓄积量。碱预处理的菌体对Cu~(2+)的吸附量达76.9mg/g干菌体。在Cu~(2+)、Zn~(2+)离子共存时,对Cu~(2+)的吸附量大于对Zn~(2+)的吸附量。
     制备该菌原生质体的最佳菌龄为从孢子接种起培养24h。原生质体制备得率3.2×10~7个/ml,再生率达31%,原生质体的质粒转化效率为0.3个转化子/μgDNA。
     用紫外诱变法获得了GXCR1的铜抗性水平明显降低的一株突变体MGXCR1。
A strain of Penicillium sp. GXCR1 was isolated from waste sludge out of the effluent channel in the mining area. The GXCR1 has very high copper resistance, and was susceptible to the Benomyl. The nucleotide sequences of ITS DNA of the GXCR1 shared more than 95% homology with 102 strains of P.spp. Its optimum growth temperature was at 32 , and the optimum growth pH was at pH 5.
    On the PDA medium, the level of Cu2+resistance of the GXCR1 was 200mM, and even up to 800mM if in the presence of 5mM Mn2+.
    In the liquid medium PDB with the added individual metal salt, the minimal concentration of the individual heavy metal inhibiting the GXCR1 growth was > 200mM Cu2+, >1200mM Zn2+,>500mM Al34 and 60mM Cr3+, 10mM Cd2+ ,10mM Pb2+ , 10mM Ni2+ and 3mM Cr6+ respectively; It could growth well in liquid medium PDB with one of the following heavy metal combinations: 40mM Cu2+, 200mM Zn2+ and 1mM Cd2+, 40mM Cu2+, 100mM Zn2+and 3mM Pb2+, or 200mM Zn2+, 3mM Cd2+ and 3mM Pb2+.
    The biosorption capacity of heavy metals of the GXCR1 was up to 26.19mg Cu2+/g DW and 258.3mgZn2+/g DW respectively. The quantity of to Cu2+ and Zn2+ biossorption of the mycelium surfaces was much larger than that of both accumulation inside the cells of mycelia. The biosorption of mycelia pretreated with 0.2M NaOH was up to 76.9mg Cu2+/g DW. The Cu2+ biosorption quantity of mycelia was much larger than that of Zn2+ biosorption when under coexsistance of both metal salts.
    The optimum mycelial age for preparation of protoplast was at 24h time-point after inoculation and culture of conidia. The rate of the prepared protoplast was 3.2 107/ml. The reproduction rate of the prepared protoplast was up to 31%. Efficiency of protoplast transformation with the plasmid was 0.3 transformants/ug DNA.
    A strain of the mutant MGXCR1 with a much lower level of Cu resistance was selected by ultraviolet mutagenesis from the wild type strain GXCR1.
引文
1. Valentine S J and Gralla E B(1997) Enhanced: Delivering Copper Inside Yeast and Human Science. 278: 817-818.
    2. Ennifar E, Walter P, Dumas P(2003 )A crystallographic study of the binding of 13 metal ions to two related RNA duplexes. Nucleic Acids Res. 31(10):2671-2682.
    3. O'Halloran T V and Culotta V C (2000) Metallochaperones, an Intracellular Shuttle Service for Metal Ions. J Biol Chem. 275(33): 25057-25060.
    4. Culotta V C,Joh H D,Lin S J,et al.(1995) A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering. J Biol Chem. 270: 29991-29997.
    5. Fogarty R V, Tobin J M(1996) Fungal melanins and their interactions with metals. Enzyme Microb Technol.19(4):311-7.
    6. Valentine J S, and Gralla E B (1997) Delivering copper inside yeast and human cells. Science. 278: 817-818.
    7. Radisky D, and Kaplan J (1999) Regulation of transition metal transport across the yeast plasma membrane..J Biol Chem. 274: 4481-4484.
    8. Pea M M O, Lee J,and Thiele D J (1999) A Delicate Balance: Homeostatic Control of Copper Uptake and Distribution. J Nutr. 129: 1251-1260.
    9. Beaudoin J and Labbé S (2001) The Fission Yeast Copper-sensing Transcription Factor Cufl Regulates the Copper Transporter Gene Expression through an Acel/Amtl-like Recognition Sequence-. J Biol Chem. 276(18):15472-15480.
    10. Himelblau E, Mira H, Lin S J, et al. (1998),Identification of a Functional Homolog of the Yeast Copper Homeostasis Gene ATX1 from Arabidopsis, Plant Physiol. 117(4): 1227-1234,
    11. Koch K, Pena M, Thiele D J (1997) Copper-binding motifs in catalysisi,transport,detoxification and signaling. Chem Biol. 4:549-560.
    12. Eide D J (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae.Annu Rev Nutr. Annu Rev Nutr. 18: 441-469.
    13. Labbé S and Thiele D J (1999) Pipes and wiring: the regulation of copper uptake and distribution in yeast. Trends Microbiol. 7: 500-505.
    14. O'Halloran T V,and Culotta C V (2000) Metallochaperones, an Intracellular Shuttle Service for Metal Ions.J Biol Chem. 275: 25057-25060.
    15. Tamai K.T,Gralla E B,et al.(1993) Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase. Proc Natl Acad Sci USA. 90:8013-8017.
    16. De Freitas J, Wintz H, Kim JH,et al.(2003) Yeast, a model organism for iron and copper metabolism studies.Biometals. 16(1): 185-197.
    
    
    17. Glerum D M, Shtanko A and Tzagoloff A (1996) Characterization of COX17, a Yeast Gene Involved in Copper Metabolism and Assembly of Cytochrome Oxidase. J Biol Chem Jun. 271(24):14504-9.
    18. Culotta V C, Lin S J, Schmidt P,et al.(1999) Interacellular pathways of copper trafficking in yeast and humans.Adv. Exp Med Biol.448:247-254.
    19. Vulpe C D and Packman S.(1995) Cellular copper transport.Annu Rev Nutr. 15:293-322.
    20. Rothstein J D, ykes-Hoberg M, Corson L B ,et al. (1999) The Copper Chaperone CCS Is Abundant in Neurons and Astrocytes in Human and Rodent Brain. J Neurochem ,72(1):422-429.
    21. Nakada H, Kodama K, Hayashi H,et al. (2002). Mammalian Copper Chaperone Cox17p Has an Essential Role in Activation of Cytochrome c Oxidase and Embryonic Development. Mol Cell Biol. 22:7614-7621
    22. Culotta V C, KlompL W J, Strain J, et al。(1997) The copper chaperone for superoxide dismutase. J Biol Chem. 272:23469-23472.
    23. Wakabayashi T, Nakamura N, Sambongi Y,et al.(1998)Identification of the copper chaperone, CUC-1, in Caenorhabditis elegans: tissue specific co-expression with the copper transporting ATPase, CUA-1.FEBS Lett. 440(1-2): 141-146.
    24. Rothstein J D., Dykes-Hoberg M, Corson L B ,et al. (1999). The Copper Chaperone CCS Is Abundant in Neurons and Astrocytes in Human and Rodent Brain. J Neurochem. 72: 422-429.
    25. Rae T D, Schmidt, P J, Pufahl R A, Culotta V C,et al. (1999). Undetectable Intracellular Free Copper: The Requirement of a Copper Chaperone for Superoxide Dismutase. Science. 284: 805-808.
    26. Hamza J, Faisst A, Prohaska J,et al.(2001)The metallochaperone Atoxl plays a critical role in perinatal copper homeostasis. Proc Natl Acad Sci USA, 98: 6848-6852.
    27. Kondo Y, Yanagiya T, Himeno S,et al.(1999)Simian virus 40-transformed metallothionein null cells showed increased sensitivity to cadmium but not to zinc, copper, mercury or nickel.Life Sci .64(11):PL145-50
    28. Ahles L A, Fernando Q, Rodig O R, et al(1976) Interaction of copper(Ⅱ) with the fungal metabolite, citrinin. Bioinorg Chem .5(4):361-366;
    29. Pufahl R A, Singer C P, Peariso K L,et al.(1997) Metal Ion Chaperone Function of the Soluble Cu(Ⅰ) Receptor Atxl. Science. 278(5339):853-556
    30. 丛艳国,魏立华(2002) 土壤环境重金属污染来源的现状分析,现代农业,1:18—20
    31. 夏立江,华珞,李向东(1998) 重金属污染生物修复机制及研究进展,核农学报,12(1):59—64
    32. 陈素华,孙铁,周启星,吴国平(2002) 微生物与重金属之间的相互作用及其
    
    应用研究,应用生态学报,13(2):239—24219.
    33. Wang S-F, et al.(1993) ction in tensity of nitrogen-fixing and denitrifying bacteria in Chemozem polluted by heavy metals,Chin J Appl Ecol,2(2): 174-177(in Chinese).
    34. Hiroki M(1992) Effects of heavy metal contamination on soil microbial population,Soil Sci Plant,38:141--147.
    35. Sauge-Merle S,Cuine S,Carrier P, et al.(2003)Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase,Appl Environ Microbiol,69(1): 490--494.
    36. 周东美,王玉军,郝秀珍等(2002)铜矿区重金属污染分异规律初步研究,农业环境保护,21(23):225—227.
    37. Cunningham S D,Berti W R,Hugang J W W(1995)Phytoremediation of contaminated soils[J],Trends Biotechnol,13:393-403
    38. 沈振国,陈怀满(2000) 土壤重金属污染生物修复的研究进展,16(2):39—44
    39. Chaney R L,Malik M,Li Y M,et al.(1997)Phytoremediation of soil metals,Current Opinion in Biotechnology,8:279-284
    40. Cantafio A W, Hagen K D,Lewis G E,et al.(1995)Pilot-scale selenium bioremediation of San Joaquin drainage water with Thauera selenatis,Applied and Environmental Microbiology,62:3298-3303.
    41. 郑平,冯孝善(1997) 废物生物处理理论和技术,浙江教育出版社,浙江。
    42. Wang L, Chua H, Wong PK,et al.(2003) Ni2+ removal and recovery from electroplating effluent by Pseudomonas putida 5-x cell biomass.J Environ Sci Health Part A Tox Hazard Subst Environ Eng.38(3):521-531.
    43. Woitke P, Wellmitz J, Helm D, et al.(2003) Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere. 51(8):633-42.
    44. Chiang KY, Yoi SD, Lin HN, et al.(2001) Stabilization of heavy metals in sewage sludge composting process. Water Sci Techno.44(10):95-100.
    45. Linnik R P and Zaporozhets O A.(2003) Solid-phase reagent for molecular spectroscopic determination of heavy metal speciation in natural water. Anal Bioanal Chem.375(8): 1083-1088.
    46. Iqbal M and Saeed A (2003) Removal of heavy metals from contaminated water by petiolar felt-sheath of palm. Environ Technol. 23(10): 1091-8.
    47. Ibeanusi V M, Phinney D, Thompson M(2003)Removal and recovery of metals from a coal pile runoff. Environ Monit Assess.84(1-2):35-44.
    48. Cape JN, Fowler D, Davison A (2003) Ecological effects of sulfur dioxide, fluorides, and minor air pollutants: recent trends and research needs. Environ Int 29(2-3):201-211.
    49. Sameeka-Cymerman A, Kempers AJ(1996)Bioaccumulation of heavy metals by
    
    aquatic macrophytes around Wroclaw, Poland. Ecotoxicol Environ Saf. 35(3):242-7.
    50. 周东美,王玉军,郝秀珍等(2002)铜矿区重金属污染分异规律初步研究,农业环境保护,21(23):225—227。
    51. 王庆人,刘秀梅,董艺婷等(2002)典型工业区与污灌区植物的重金属污染状况及特征,农业环境保护,21(2):115—118.
    52. Momani K A,Jaradat Q M,Jbarah Ael-A,et al.(2002)Water-soluble species and heavy metal commination of the petroleum refinery area,Jordan, J Environ Monit,4(6):990-996.
    53. Bull P C, and Cox D W (1994) Wilson disease and Menkes disease: new handles on heavy metal transport. Trends Genet. Sci. 10:248-252.
    54. Price D L, Wong P C, Markowska A L, et al. (2000) The Value of Transgenic Models for the Study of Neurodegenerative Diseases. Annals NYAS Online 920: 179-191.
    55. Halliwell, B. & Gutteridge, J. M. C. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 219: 1-14.
    56. Hamza I and Gitlin J D (2002)Copper chaperones for cytochrome c oxidase and human disease.J Bioenerg Biomembr.34(5):381-8.
    57. Jezowska-Bojczuk M, Szczepanik W, Lesniak W,et al.(2002)DNA and RNA damage by Cu(Ⅱ)-amikacin complex. Eur J Biochem. 269(22):5547-56.
    58. Halliwell B & Gutteridge J M C (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J.219: 1-14.
    59. 茆灿泉,薛沿宁,王会信(2001)微生物展示技术在重金属污染生物修复中的研究进展,生物工程进展,21(5):48—51。
    60. Kaewsarn P(2002) Biosorption of copper(Ⅱ) from aqueous solutions by pre-treated biomass of marine algae Padina sp. Chemosphere.47(10): 1081-1085
    61. Ritehie SM, Bhattaeharyya D(2002)Membrane-based hybrid processes for high water recovery and selective inorganic pollutant separation.J Hazard .92(1):21-32.
    62. Leung W C, Chua H, Lo W(2001)Biosorption of heavy metals by bacteria isolated from activated sludge. Appl Biochem Biotechnol.91-93:171-84.
    63. Walter I, Martinez F, Alonso L,et al.(2002)Extractable soil heavy metals following the cessation of biosolids application to agricultural soil.Environ Pollut. 117(2):315-21
    64. Baumann T, Muller S, Niessner R(2002) Migration of dissolved heavy metal compounds and PCP in the presence of colloids through a heterogeneous calcareous gravel and a homogeneous quartz sand-pilot scale experiments. Water Res. 36(5): 1213-23
    65. Cotter-Howells J D,Caporn S(1996)Remediation of contaminated land by formation of heavy metal phosphates,Applied Geochemistry, 11:335-342
    66. 焦芳婵,毛雪,李润植(2002)金属结合蛋白基因及其在清除重金属污染中的应
    
    用,遗传,24(1):82—86.
    67. 李海华,刘建武,李树人等(2000)土壤—植物系统中重金属污染及作物富集研究进展,河南农业大学学报,34(1):30—34.
    68. Kaewsarn P (2002)Biosorption of copper (Ⅱ)from aqueous solutions by pre-treated biomass of marine algae Padina sp.,Chemosphere,47(10): 1081-1085.
    69. Nuhoglu Y, Malkoc E, Gurses A,et al.(2002)The removal of Cu(Ⅱ) from aqueous solutions by Ulothrix zonata. Bioresour Technol.85(3):331-333.
    70. 陈勇生,孙启俊,陈钧等(1997)重金属的生物吸附技术研究,环境科学进展,5(6):34—43。
    71. Rao D V, Shivannavar C T, Gaddad S M (2002) Bioleaching of copper from chalcopyrite ore by fungi.Indian J Exp Biol.40(3):319-24。
    72. Kuroda K, Ueda M, Shibasaki S, et al.(2002) Cell surface-engineered yeast with ability to bind, and self-aggregate in response to, copper ion. Appl Microbiol Biotechnol.59 (2-3):259-64.
    73. 徐亚同,史家,张明(2001)污染控制微生物工程,化学工业出版社,北京.
    74. Kaewsarn P (2002)Biosorption of copper (Ⅱ)from aqueous solutions by pre-treated biomass of marine algae Padina sp.,Chemosphere,47(10): 1081-1085.
    75. 宋菲,郭玉文,刘孝义等(1996)土壤中重金属镉锌铅复合污染的研究,环境科学学报,16(4):431—436
    76. Hicks,J.B.,A. Hinen,and G.R.Fink. 1979.Properties of yeast transfomation. Cold spring harbor Symp.Quant. Biol.43:1305-1313
    77. Tilburn J: 1983 Gene 26:205-221
    78. Volmer SM & Yanofsky C: 1986,Proc.Nail.Acad. Sci.USA.83:4869-4873
    79. BanksG.(1983)Curr. Genet.7:73-77.
    80. Diez B, Mellado E, Rodriguez M, Bernasconi E, Barredo JL. The NADP-dependent glutamate dehydrogenase gene from Penicillium chrysogenum and the construction of expression vectors for filamentous fungi. Appl Microbiol Biotechnol 1999 Aug;52(2): 196-207
    81. Van Gorcom R F Metal(1985)gene 40:90-106
    82. Ashby AM.etal(1993)Mycol. Res.97:575-581
    83. PuntP. J.etal(1992)Genetransfersystemandvec-tordevelopmentforfilamentousfungi. In: AppliedMolecularGeneticsofFungi. J.F. Peberdyetaled. CambridgeUniv.press.Cambridge,UK.pp1-29.
    84. Tsukuda T. etal(1988)Mol. Cell.Biolo.8:3703-3709.
    85. Razanamparany V. etal(1988)Gene 74:399-409
    86. JunWang etal(1988)Pro.Natl.Acad. Sci. USA85:865-867.
    87. Chenetal(1993)EMBOJ. 12(8):2991-2998.
    88. LoritoM.HayesCK(1992)Curr. Genet.24:349
    89. DavidGemsetal(1991)Gene98:61-67.
    
    
    90. Ziva Weissman,Isracla Berdicevsky ,et al. The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Sci .USA,Vol 97(7):3520-3525
    91.劭力平,真菌分类学,中国林业出版社,1984。
    92.武波,韦东 等(2001)一株产絮凝剂的曲霉菌株的筛选,微生物学杂志21(6):3—5
    93. Narutaki S, Takatori K, et al(2002) Identification of fungi based on the nucleotide sequence homology of their internal transcribed spacer 1 (ITS1) region J Pharm Sci Technol 2002 Mar-Apr;56(2):90-8
    94.张部昌,赵志虎,于秀琴 等,富含GC DNA PCR扩增条件的优化,军事医学科学院院刊,2002年04期
    95.王宏年,生物学统计,兰州大学出版社,1988年5月第一版。
    96.李玉珍,邓宏筠。原子吸收分析应用手册。北京科学技术出版社,1990:151—165
    97.周德庆,微生物学实验手册,上海科技出版社,1986。
    98. Jim Sweigard, Anne Carroll, Lennie Farrall et al. Insertional mutagenesis of magnaporthe grisea: tagging and cloning of genes required for pathogenicity. http://www.fgsc.net/methods/sweig.html
    99. B. K. Filali, J. Taoufik,et al (2000)Waste Water Bacterial Isolates Resistant to Heavy Metals and AntibioticsCurr Microbiol 41:151-156
    100. Kuroda K, Shibasaki S, Ueda M, Tanaka A. Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions: Appl Microbiol Biotechnol 2001 Dec;57(5-6):697-701
    101. Tsekova K, Galabova D, Todorova K. Copper accumulation and phosphatase activities of Aspergillus and Rhizopus. Z Naturforsch [C] 2000 Sep-Oct;55(9-10):708-12
    102. Sharaf EF. Impact of industrial waste water effluents on mycoflora of the shore sediments of the 3rd oxidation pond, with reference to biosorption of heavy metals.: Acta Microbiol Pol 2002;51(3):293-306101.
    103. Karnachuk OV, Kurochkina SY, Copper resistance in Desulfovibrio strain R2. Antonie Van Leeuwenhoek 2003;83(1):99-106
    104. Okuyama M, Kobayashi Y, Inouhe M, Tohoyama H, Joho M. Effect of some heavy metal ions on copper-induced metallothionein synthesis in the yeast Saccharomyces cerevisiaeBiometals 1999 Dec;12(4):307-14
    105. Babich H,Stotzky G.Further studies on environmental factors that modify the toxicity of nickel to microbes. Regul Toxicol Oharmacol 1983 Mar;3(1):82-99
    106. Babich H,Stotzky G.Abiotic factors affecting the toxicity of lead to fungi.Appl environ Microbiol 1979 Sep;38(3):506-13
    107. Christopher Rensing, Mallika Ghosh, and Barry P. Rosen- Families of Soft-Metal-Ion-Transporting ATPases. Journal of Bacteriology, October 1999, p.
    
    5891-5897, Vol. 181, No. 19
    108. Tan T, Cheng P. Biosorption of metal ions with Penicillium chrysogenum. Appl Biochem Biotechnol 2003 Feb;104(2): 119-28
    109. Lo W, Ng L, Chua H, Yu P, Sin S, Wong PK. Biosorption and Desorption of Copper (Ⅱ) Ions by Bacillus sp. Appl Biochem Biotechnol 2003 Feb;107(1-3):581-92
    110.孙传宝,朱春宝,许文思等,产黄青霉原生质体制备和再生影响因子分析,中国抗生素杂志,2001年8月。第26卷第4期:241—243
    111.黄文树,施巧琴,吴松刚,碱性脂肪酶产生菌——扩展青霉K40原生质体的制备和再生,福建师范大学学报(自然科学版),2000年9月。第16卷第3期:77—82
    112. Vollmer, S.J.,and C.Yanofsky. 1986.Efficient cloning of genes of Neurosporo crassa. Proc.Natl.Acad. Sci. USA83:4867-4873
    113.杨炜,黄大年等,以潮霉素抗性为选择的稻瘟病菌原生质体转化,遗传学报,1994。21(4):305—312.
    114. Gregory O.Kothe and Stephen J .(2002)Protocol for the Electroporation of Neurospora Spheroplasts.(http://www.fgsc.net/fgn43/kothe.html)
    115. Olivia Sanchez and Jesus Aguirre. Efficient Transformation of Aspergillus nidulans by Electroporation of Germinated Conidia. (http://www.fgsc.net/fgn43/scanchez.html)
    116.中华人民共和国国家标准:污水综合排放标准(GB 8978-1996)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700