用户名: 密码: 验证码:
长江口悬浮细颗粒泥沙絮凝体特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用B型现场激光粒度仪LISST-100,在不扰动天然细颗粒泥沙絮凝体的情况下,2003年6月在长江口徐六泾测站和2003年12月在长江口横沙测站,对悬浮细颗粒泥沙絮凝体粒径和体积浓度进行了定点大、小潮连续以及垂线观测。用500k的ADP获取同步的水动力资料,同时用OBS-3A取得相应的悬沙浓度和盐度资料。计算了现场絮凝体的有效密度和沉速。
     观测显示:1) 长江口徐六泾和横沙絮凝体粒径和分散粒径差别明显,潮周期表层絮凝体粒径要比其分散粒径大2~5倍。2) 徐六泾大、小潮表层絮凝体粒径潮周期平均分别为39.8μm和64.4μm。横沙小潮表层絮凝体粒径潮周期平均为48.1μm。絮凝体垂线粒径分层现象明显,细颗粒泥沙絮凝体粒径从表层到底层逐渐增大。徐六泾洪季大潮垂线絮凝体粒径垂线平均63.9μm,小潮垂线平均70.Oμm。3) 洪季徐六泾大潮表层的絮凝体体积浓度潮周期内平均为98.0μLL~(-1),小潮表层潮周期内平均为70.8μLL~(-1)。4) 徐六泾大潮和小潮表层絮凝体平均有效密度分别为1173 kg·m~(-3)和919 kg·m~(-3)。絮凝体有效密度随水深的增加呈减小趋势,有效密度在532~1456kg·m~(-3)之间。5) 不同动力条件下絮凝体沉速变化显著,徐六泾大潮表层絮凝体沉速潮周期平均0.80 mm·s~(-1);小潮表层相应1.62 mm·s~(-1);大潮底层潮周期平均1.68 mm·s~(-1)。絮凝体沉速表、中、底层分层现象明显。徐六泾大潮垂线平均为1.71 mm·s~(-1);相应垂线平均为小潮1.97 mm·s~(-1)。
     研究表明:1) 在潮周期内,絮凝体粒径的过程线和流速变化过程线趋势相反,即流速增大时,粒径减小,流速减小,粒径增大;絮凝体有效密度的过程线和流速过程线变化一致,即流速增大时,有效密度增大,流速减小,有效密度减小。长江口细颗粒泥沙絮凝体粒径、有效密度受水动力条件的影响显著,水流产生的紊动剪切力制约着絮凝体粒径和有效密度。徐六泾处涨落潮流历时的周期性变化影响着絮凝体粒径的变化。现有资料未显示盐度对絮凝体粒径的作用。水温和有机质浓度也许是造成徐六泾和横沙两处细颗粒泥沙絮凝体粒径差异的因素之一。2) 长江口徐六泾表层絮凝体的体积浓度主要受水流流速影响。再悬浮现象明显,絮凝体体积浓度过程线滞后于流速过程线,落潮滞后约在10~30分钟,涨潮滞后约在30~50分钟。3) 絮凝体有效密度的变化趋势和其粒径的变化趋势相反,大粒径的絮凝体有效密度要比小粒径的絮凝体有效密度小。絮凝体有效密度和其粒径的关系可以用△p∝Dm~a表示。4) 不同水动力条件下絮凝体沉速变化显著,水动力条件强,絮凝体沉速小,水动力条件弱,絮凝体沉速大。大潮沉速小于小潮,表层沉速小于底层。絮凝体的大小和有效密度共同决定着絮凝体的沉速。絮凝体的沉速随着其粒径的增加而增加。絮凝体沉速与其粒径的关系可用ω_s∝Dm~a表示。
In the present study, temporal changes in floes size (Dm) and volume concentration (VC) of suspended fine sediment were measured at Xuliujin station andHensha station of the Yangtze Estuary in 2003, using an in situ laser diffraction particle sizer, the Laser In Situ Scattering and Transmissomerty-100 (LISST-100). At the same time, the profile current velocity was obtained by a 500k acoustic Doppler profiler (ADP) and suspended sediment concentration (SSC) and salinity by an optical backscatter (OBS), respectively. Based on the value of Dm, VC and SSC, in situ mean effective density (Ap) and mean settling velocity (ωs) of suspended fine sediment floes can be computed.
    Analyses of these measured data showed that 1) floes diameter is 2-5 times larger than separate diameter. 2) Average Dm in the surface water during the spring tide and neap tide are 39.8μm, and 64.4pm at Xuliujin station, respectively. That in the surface water is 48.1μm during the neap tide at Hensha station. The Dm in the surface water is smaller than that in the bottom water. The vertical average Dm is 63.9μm and 70.0μm during the spring tide and neap tide at Xuliujin station, respectively. 3) Average VC in the surface water during the spring tide and neap tide at Xuliujin station are 98.0μL-L-1 and 70.8μL.L-1, respectively. 4) Average Ap are 1173 kg.m-3 and 919 kg.m-3 in the surface water during the spring tide and neap tide, respectively. Ap decrease with the increasing of water depth, ranging from 532~1456kg.m-3. 5) Average ωs in the surface water during the spring tide and neap tide are 0.80 mm.s-1 and 1.62mm.s-1 at Xuliujin station, respectively. It in the bottom water during the spring tide is 1.68m
    m.s-1. The vertical average ωs is 1.71 mm.s-1 and 1.97 mm.s-1 during the spring tide and neap tide at Xuliujin station, respectively.
    1)The analysis of Dm and Ap show that they are controlled by turbulent shear generated within the water column, which has a controlling influence over both the flocculation of fine grained cohesive sediments within estuarine waters, and their respective floes break-up. During the tidal period, Dm and Ap vary with the current velocity. The variation trend of Dm is opposite to that of tide current, and the variation trend of Ap is same with that of tide current. The analysis of the main oscillation periods of Dm shows that those periods are responded to the periods of the current velocity, which is fluctuating through the tidal periods. Maybe the salinity has little effect
    
    
    on suspended fine sediment flocculation at Changjiang estuary. The temperature and organic compound might affect the flocculation process importantly at Changjiang estuary. 2) Floes VC is closely related to the current velocity. The measurement indicated the phenomenon that the peaks of VC lag those of the current velocity. The lag variation during ebb tide and flood tide are from 10 to 30 minutes and 30 to 50 minutes, respectively. 3) The variation trend of Ap is opposite to that of Dm, larger floes have much lower Ap than smaller floes, and vice versa. 4) Floes ω3 vary evidently under different hydrodynamics. The stronger hydrodynamics, the smaller ωs is, weaker hydrodynamics, the higher ωs is. Floes ωS during the spring tide is smaller than that during the neap tide. Floes cos in the surface water is smaller than that in the bottom water. Both Dm and Ap of the floc affect its ωs. From the study, we found that Ap and Dm, ωs and Dm have good relationships. Their exponential relationships can be described as
     Δp∝ Dma and ωs∝Dma, respectively.
引文
陈邦林,吴玲,邱佩英.长江河口南港南槽地区悬移质絮凝机理研究[A].胨吉余,沈焕庭,恽才兴等著.长江河口动力过程和地貌演变[C].上海:上海科学技术出版社,1988,276-282.
    程江,何青,王元叶等.长江口徐六泾洪季水沙特性观测研究[J].海洋通报,2003(5):86-91.
    邓安军,陈立,林鹏等.紊动强度沿垂线分布规律的分析.泥沙研究[J],2001(5):33-36.
    关许为,陈英祖,杜心慧.长江口絮凝机理的试验研究[J].水利学报,1996(6):70-74.
    关许为,陈英祖,林以安等.长江口泥沙絮凝体的现场显微观测[J].泥沙研究,1992(3):54-59.
    关许为,陈英祖。长江口泥沙絮凝静水沉降动力学模式的试验研究。海洋工程[J],1995,13(1):46~50.
    关许为等.长江口泥沙絮凝临界粒径试验研究[A].陈松等,海洋沉积物—海水界面过程研究[C].北京:海洋出版社,1997.
    黄长红,关许为.长江口泥沙絮凝问题研究综述[J].水利科技,2001(4):4-5.
    蒋国俊,张志忠.长江口阳离子浓度与细颗粒泥沙絮凝沉积[J].海洋学报,1995(1):76-82.
    蒋国俊,姚炎明,唐子文.长江口细颗粒泥沙絮凝沉降影响因素分析[J].海洋学报,2002,24(4):51-57.
    金鹰,王义刚,李宇.长江口粘性细颗粒泥沙絮凝试验研究[J].河海大学学报,2002,30(3):61~63.
    李安春,陈丽蓉,D.Eisma.伊姆斯-道拉德河口悬浮体絮凝过程及其控制因素[J].海洋与湖沼,1996(27):138-144.
    林以安,唐仁友,李炎等.长江口生源要素的地球生物地球化学特征与絮凝沉降的关系[J].海洋学报,1995,17(5):65-72.
    吕全荣,王效京.长江口细颗粒沉积物的粘土矿物及地球化学特征[J].沉积学报,1985,3(4):141-151.
    钱宁,万兆惠.泥沙运动力学[M].科学出版社,1983:14-28,43-48,74,82-108.
    阮文杰.长江口天然水流中细颗粒泥沙的絮凝作用[J].海洋科学,1991a(6):39-43.
    阮文杰.细颗粒泥沙动水絮凝的机理分析[J].海洋科学,1991b(5):46-49.
    陈吉余,沈焕庭,恽才兴等著.长江河口动力过程和地貌演变[C].上海:上海科学技术出版社,1988,122-130.
    沈焕庭等著.长江河口最大浑浊带[M].北京:海洋出版社,2001a,15-25,29-31,50-56.
    沈焕庭等著.长江河口物质通量[M].北京:海洋出版社,2001b,14-27.
    沈焕庭等著.长江河口盐水入侵[M].北京:海洋出版社,2003.
    时钟,朱文蔚,周洪强.长江口北槽口外细颗粒悬沙沉降速度[J].上海交通大学学报,2000,34(1):18-23.
    陈沈良,谷国传,张国安.长江口南汇近岸水域悬沙沉降速度估算[J].泥沙研究.2003(6):45-51.
    时钟.长江口细颗粒泥沙过程[J].泥沙研究,2000(6):72-81.
    王保栋.河口细颗粒泥沙的絮凝作用[J].黄渤海海洋,1994,12(1):72-76.
    夏福兴,Eisma D..长江口悬浮颗粒有机絮凝研究[J].华东师范大学学报(自然科学版),1991,(6):66-70.
    夏震寰,宋根培.离散颗粒和絮凝体相组合的沉降特性[A].第二次河流泥沙国际学术讨论会论文集[C].北京,水利水电出版社,1983:253-264.
    严镜海.潮汐水流中细颗粒泥沙絮凝沉降的初步探讨[J].泥沙研究,1988(4):10-22.
    严镜海.粘性细颗粒泥沙絮凝沉降的初探.泥沙研究[J],1984(1):41-48.
    
    
    杨美卿.细泥沙絮凝的微观结构[J].泥沙研究,1986(3):73-78.
    杨世伦.长江口沉积物粒度参数的统计规律及其沉积动力学解释.泥沙研究[J].1994(3):24~31.
    张庆河,王殿志,吴永胜等.粘性泥沙絮凝现象研究述评(1)絮凝机理与絮团特性[J].海洋通报,2001,20(6):80-90.
    张瑞瑾.河流泥沙动力学[J].北京:中国水利水电出版社,1998:46-55.
    张志忠,阮文杰,蒋国俊.长江口动水絮凝沉降与拦门沙淤积的关系[J].海洋与湖沼,1995,26(6):633-637.
    张志忠,王允菊,徐志刚.长江口细颗粒泥沙絮凝若干特性探讨[A].第二次河流泥沙国际学术讨论会论文集[M].北京,水利水电出版社,1983:274-285.
    张志忠,王允菊,徐志刚等.长江口细颗粒泥沙絮凝试验研究[R].杭州大学河口与港湾研究室,1981:4-5.
    张志忠.长江口细颗粒泥沙基本特性研究[J].泥沙研究,1996(1),67-73.
    朱建荣,薛元忠.长江河口横沙小港泥沙浓度的观测研究[J].华东师范大学学报(自然科学版),2001(3):68~73.
    Agrawal, Y.C., Pottsmith, H.C. Instruments for particle size and settling velocity observations in sediment transport[J]. Marine Geology, 2000(168):89-114.
    Agrawal, Y.C., Traykovski, P. Particles in the bottom boundary layer: concentration and size dynamics through events[J]. Journal of Geophysical Research, 2001(106):9533-9542.
    Alldredge AL and Gotschalk C. In-situ setting behavior of marine snow[J]. Limnol. Oceanogr., 1988(33): 339-351.
    Bale, A., Morris, A.W.. In situ measurements of particle size in estuarine waters. Estuarine, Coastal and Shelf Science, 1987,24:253-263.
    Burban P Y., Lick W and Lick J. The flocculation of fine-grained sediments in estuarine waters. Journal of Geophysical Research, 1989(94): 8323-8330.
    Burt, T.N. Field settling velocities of estuary muds. In:Mehta, A.J. (Ed.), Estuarine Cohesive Sediment Dynamics.Lecture Notes on Coastal and Estuarine Studies, Vol 14,Springer-Verlag, Berlin, 1986, pp. 126-150.
    Droppo Ian G.. Rethinking what constitutes suspended sediment[J]. Hydrological Processes, 2001(15):1551-1564.
    Dyer K.R., Manning A. J.. Observation of the size, settling velocity and effective density of flocs and their fractal dimensions. Manning Journal of Sea Research[J], 1999(41): 87-95.
    Dyer, K.R Sediment processes in estuaries: future research requirements. Journal Geophysical Research 94, 1989,14327~14339.
    Eisma D. Particle size of suspended matter in estuaries. Geo-Marine Letters, 1991, 11:147-153
    Eisma D.: Flocculation and de-flocculation of suspended matter in estuaries, Neth. J. Sea Res. 1986,20(2/3): 183-199.
    Eisma, D., Bernard, P., Cadee, G.C., Ittekkot, V., Kalf, J., Laane,R., Martin, J.M., Mook, W.G., Van Put, A., Schuhmacher, T.. Suspended matter particle size in some west European estuaries. Neth[J]. J. Sea Res. 1991a 28(3), 193-220.
    
    
    Elmaleh S. Flocculation energy requirement [J]. Water Research, 1991,25(8):939-943.
    Esima D etal. Suspended-matter particle size in some West-European estuaries; Part: particle size distribution[J]. Neth. J. Sea Res., 1991 b,28(3): 193-214.
    Fennessy M J, Dyer K R, Huntley D A and Bale A J. Estimating of setting flux spectra in estuaries using INSSEV. In: Burr. N., Parker R., Watts J (Eds), Cohesive Sediment. Wiley, 1997: 87-104.
    Fennessy M J, Dyer K R. Flco population characteristics measured with INSSEV during the Elbe estuary intercalibration experiment[J]. J. Sea Res., 1996b,36(1-2):55-62.
    Fennessy M J, Dyer K R and Huntley D A. INSSEV: an instrument to measure the size and setting velocity of flocs in-situ[J]. Marine Geology, 1994(117):107-117.
    Fennessy, M.J., Dyer, K.R.. Floc population characteristics measured with INSSEV during the Elbe estuary intercalibration experiment. Joumal of Sea Research, 1996a,36:55-62.
    Fowler S W and Knauer G A. Role of large particle in the transport of elements and organic compounds through the oceanic water column[J]. Progr. Oceanogr., 1986(16): 147-194.
    Gibbs R J. Estuarine flocs: their size, setting velocity and density[J]. J. Geophys. Res.. 1985,90(C2):3249-3251.
    Gibbs, R.J., Konwar, L. Sampling of mineral flocs using Niskin Bottles. Environmental Science and Technology, 1983,17:374-375.
    Gibbs, R.J.. Floc breakage by pumps. J. Sediment. Petrol,, 1981,51:670-672.
    Gibbs, R.J.. Floc breakage during HIAC light-blocking analysis. Environmental Science and Technology, 1982a(16):298-299.
    Gibbs, R.J.. Floc stability during Coulter Counter analysis. J. Sediment. Petrol., 1982b,52:657-670.
    Hawley N. Setting velocity distribution of natural aggregates[J]. J. Geophys. Res., 1982 (87):9489-9498.
    Hill Paul S.1, Syvitski James P., Ellen A. Cowan and Ross D. Powell. In situ observation of floc setting velocities in Glacier Bay, Alaska [J]. Marine Geology, 1998(145):85-94.
    Kranck, K. Flocculation of suspended sediment in the sea[J]. Nature, 1973,246:348-350.
    Kranenburg C.. Effects of floc strength on viscosity and deposition of cohesive sediment suspensions[J]. Continental Shelf Research. 1999(19): 1665-1680.
    Krone. R.B., Estuaries transport processes[M]. University of South Calorina Press (Columbra). 1978, PP.77-90.
    Lick W. Huang H and Jepsen R. Flocculation of fine-grained sediment due to differential settling. J. Geophys. Res., 1993,98(C6): 10279-10288.
    Lick, W.. Modelling the transport of sediment and hydrophobiccontaminants ha surface waters. USrIsrael Workshopon monitoring and modelling water quality, May 8-13,1994. Haifa, Israel.
    Manning A.J., Dyer K. R.. A laboratory examination of floc characteristics with regard to turbulent shearing [J]. Marine Geology,1999(160): 147-170.
    Manning, A.J., Dyer K.R., Christie, M.C.. Properties of macroflocs in the seaward limit region of the Gironde
    
    Estuary. 2000. (hydrography.ims.plym.ac.uk/swamiee/paper_andyl.html)
    Matsuo, T., Unno, H.. Forces acting on floc and strength of floc[J]. Journal of Environmental Engineering Division 1981,107 (EE3): 527-545.
    Mayer, L.M.: Aggregation of colloid iron during estuarines mixing: Kinetics mechanism, and seasonality. Geochim. Cosmochim. Acta, 1982(46):2527-2535.
    McCave I N. Size spectra and aggregates of suspended particles in the deep ocean[J]. Deep Sea Research, 1984(31): 421-427.
    McCave I N. Vertical flux of particles in the ocean. Deep Sea Research, 1975(22): 491-502
    Mehta, A.J. and Partheniades, E. An investigation of the depositional properties of flocculated fine sediment[M]. J. Hydrol. Res., 1975, 92(C13): 361-381.
    Migniot.C.不同的极细纱(淤泥质)物理性质的研究及其在水动力作用下的性质.La Houille Blanche,No.7,1968,丁联臻译,北京电力设计员印(1977)
    Mikkelsen, O.A., and Pejrup, M. In situ particle size spectra and density of particle aggregates in a dredging plume[J]. Marine Geology, 2000(170):443-459.
    Mikkelsen, O.A., and Pejrup, M. The use of a LISST-100 laser particle sizer for in-situ estimates of floc size, density and settling velocity[J]. Geo-Marine Letters, 2001 (20): 187-195.
    Mikkelsen, O.A., Examples of spatial and temporal variations of some fine-grained suspended particle characteristics in two Danish coastal water bodies[J]. Oceanologica Acta, 2002(25):39-49.
    NEDECO. A study on the siltation of the Bangkok PortChannel, Volume Ⅱ. The Field Investigation. Netherlands EngineeringConsultants, The Hague, 1965, 474 pp.
    Owen, M. W. The effect of turbulence on setting velocities of silt flocs[A]. 14th Cogress of International ASSOC for Hyd., Res.1971. Vol, 4[C]: 27-32.
    Parthenades E. Estuarine sediment dynamics and shoaling processes. Handbook of Coastal and Ocean Eng. (edited by Herbich J B),1992, 3: 985-1071.
    Parthenades E. The dynamics of flocculation as related to cohesive sediment transport precesses.4th Conf. Coastal and Port Eng. In Developing Countries, 1995:14-27.
    Partheniads E. Turbulence flocculation and cohesive sediment dynamics[]. Nearshore and Estuary Cohesive Sediment Transport (edited by Mehta A J), Am. Geophysical Union, 1993:40-59.
    Paul S. Hill, James P. Syvitski, Ellen A. Cowan and Ross D. Powell. In situ observation of floc setting velocities in Glacier Bay, Alaska[J]. Marine Geology, 1998(145): 85-94.
    Perjrup M. Flocculation suspended sediment in a micro-tidal environment[J]. Sediment Geology, 1988,54:249-256.
    Puls, W., Kuehl, H. Field measurements of the settling velocities of estuarine flocs. In: Wang Sy, Shen, H.W., Ding,L.Z. (Eds.), Proceedings of the Third International Symposiumon River Sedimentation. School of
    
    Engineering, Univ.Mississippi, 1986, pp. 535-536.
    Sternberg R.W., Berhane I., Ogston A.S. Measurement of size and settling velocity of suspended aggregates onthe northern California continental shelf[J]. Marine Geology, 1999 (154):43-53.
    Stolzenbach K. D., Elimelich M. The effect of particle density on collisions between sinking particle: implication for particle aggregation in the ocean. Deep Sea Research, 1994, 41(3): 469-483.
    Ten Brinke, W.B.M.. In situ aggregate size and settling velocity in the Oosterschelde tidal basin (the Netherlands[J]). Netherlands Journal of Sea Research, 1994(32):23—35.
    Thorn, M.F.C., Parsons, J.G.. Erosion and cohesive sedimentsin estuaries: an engineering guide. Proc. Third Int.Symp. Dredging Technology, Bordeaux, 5-7 March 1980, pp.349-358.
    Tipping. E and D. C. Higgins. Colloid Surface[M]. 1982,5:85-92.
    Tipping. E and M. Ohnstad. Colloid stability of iron oxide particles from a freshwater lake. Nature[J], 1984, 308(2):266-268.
    Van Leussen W, Cornelisse JM. The determination of the sizes and settling velocities of estuarine flocs by underwater video system[J]. Netherlands Journal of Sea Research 1993(31):231-241.
    Van Leussen W. Estuarine macroflcos and their role in fine grained sediment transport. PhD Thesis, University of Utrecht, 1994.
    Van Leussen, W.. Aggregation of particles, settling velocity of mud flocs: a review. In: Dronkers, J., van Leussen, W. Eds. Physical Processes in Estuaries. Springer, Berlin, 1988, pp.347-403.
    Willem T.B. Van der Lee. Temporal variation of floc size and settling velocity in the Dollard estuary.Continental Shelf Research[J], 2000 (20): 1495~1511.
    Winterwerp J.C. A simple model for turbulence induced flocculation of cohesive sediment[J]. Journal of Hydraulic Research, 1997, 36(3):309~326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700