用户名: 密码: 验证码:
长江口底沙再悬浮及其影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以河口中段的沙波分布区为研究区域,选取具有较强代表性的1998年洪季、2000年枯季、2002年枯季末期洪季初期三个年份,覆盖南、北港及南、北槽四个站点的流速、悬沙浓度、盐度、水深、粒度、床面形态、颗粒态及溶解态重金属浓度等特征数据,采用水文学、泥沙运动力学和数理统计学相结合的方法,运用SPSS和Matlab等软件技术手段,着重分析了底沙再悬浮的动力机制、扬动流速、周期特征及其影响等,获得以下结果:
     1.野外观测获取的长江口连续时间序列的可视化紊动“猝发”ACP图像数据表明,用水流紊动“猝发”作用解释泥沙再悬浮的动力过程具有合理性,而且水流的紊动“猝发”特征(时间间隔和历时、频率和强度等)与底沙的起扬运动、各种尺度沙波的形成、悬浮泥沙浓度等直接相关。
     2.基于扬动流速一般公式,对长江口区流向稳定时期同步观测的垂线平均流速、底部悬沙粒径、水深和泥沙沉速等数据进行回归分析,拟合获得长江口区非均匀细颗粒粘性泥沙扬动流速公式,相关系数达0.85以上。经该公式计算的长江口非均匀细颗粒粘性泥沙扬动流速值大于已有公式计算值,这主要是由于长江口区泥沙为细颗粒粘性泥沙,颗粒的稳定性主要受制于粘结力所致。
     3.在长江口沙波分布区,底沙再悬浮的周期性特征是多种不同尺度周期叠加耦合的结果,有4.2h、35min和2min三个显著的周期。其中4.2h的周期是第一峰值周期,可能与径潮流及盐水楔的作用有关;35min的周期是第二峰值周期,可能与该区域发育的中等及大型沙波的运动有关;2min的周期是第三峰值周期,可能与该区域水流的紊动猝发有关。
     4.底沙再悬浮泥沙浓度的主要影响因子是盐度、流速、水深和悬沙粒径等,再悬浮泥沙浓度与四个因子的线性回归关系显著,相关系数达0.91。其回归模型可用于预测南港底沙再悬浮泥沙浓度。南槽颗粒态重金属元素可分为三类,重金属元素在该水域进行的是有选择性的置换吸附,且Cu、Zn、As、Cd对重金属污染的贡献率最大。底沙再悬浮能增强水体的自净能力,由于涨、落急阶段再悬浮泥沙浓度高,溶解态重金属浓度较低,水质总体上较转流阶段好。
Field measurements of suspended sediment concentration, salinity, water depth, bedforms, grain sizes in the bottom, current velocity at 1 m under water surface were made at four fixed stations in the area that dunes distributed at the South Channel and North Channel, South Passage and North Passage of the Yangtze Estuary in 1998, 2000 and 2002. And the records of viewed near-bed turbulent burst, bed-sediment ejection with a continuous time scale of 14 hours were obtained by Acoustics Suspended Concentration Profiler (ACP). Particulate and dissolved heavy metal concentration were analyzed by Inductively Coupled Plasma-Atomic Emission (ICP-AEC). Statistics methods of correlative analysis, regression analysis, principal component analysis and spectrum analysis are applied for the winnowing of bed-sediment, mechanism, periods and influence of the bed sediment re-suspension. Results show that:
    1. According to the frequency and intensity of bed sediment re-suspension, three stages within a tide are divided as: (1) during the slack water, the frequency is lower, but the intensity is higher; (2) during the flood or ebb strength, the frequency is higher, but the intensity is lower; (3) during the transition, the frequency and intensity changes positively with the velocity fluctuation. These bed sediment re-suspension ejection characteristics might be due to interval, duration, frequency and intensity of the turbulent burst.
    2. The winnowing formula of fine-grained gummy sediment particles in the Yangtze Estuary are poly-regression imitated. The correlative coefficients are more than 0.85. The winnowing formula is more applicable than other theoretical and semi-experimental winnowing formula reported in the study area because the particles felt.
    3. Three remarkable periods of bed-sediment re-suspension in the area appear as:
    4.2h, 35mmand 2mm.The first peak value 4.2 hperhaps is corresponding to the
    
    
    tidal duration; the second peak value 35 min perhaps is corresponding to medium or large scale sand dunes movement; and the third peak value 2 min perhaps is corresponding to turbulent burst.
    4. Bed-sediment re-suspension concentration is mainly controlled by four factors as salinity, velocity, water depth and grain sizes. A good linear correlation exists between re-suspension concentration and salinity, velocity, water depth, grain sizes of suspension sediment, and linear correlative coefficient is 0.91. So the regression models are applicable for forecasting the bed sediment re-suspension concentration at the South Channel. The particulate heavy metals at the South Passage can be divided into 3 clusters, and it is also known that heavy metals are exchanged selectively in the area. The water quality is chiefly influenced by the concentration of the dissolved Cu, Zn, As and Cd at the South Passage, and the water quality during the flood or ebb strength is much better than that during the slack water. Therefore, the bed-sediment re-suspension contributes to the water's self-purification.
引文
[1] Allen G P, Sauzay G, Castaing P, et al. Transport and deposition of suspended sediment in the Gironde estuary, France. In: Wiley M, ed. Estuarine Processes[C]. New York: Academic Press, 1977, Ⅱ: 563-81.
    [2] Celik I, Rodi W. Suspended sediment transport capacity for open channel flow. J Hydr Engrg, 1991, 117(2): 191-204.
    [3] Conimos T J, Peter D H. Suspended-particle transport and circulation in San Francisco Bay: an overview. In: Wiley M, ed. Estuarine Processes[C]. New York: Academic Press, 1977, Ⅱ: 89-97.
    [4] David P. Tidal characteristics of suspended sediment concentrations. Journal of Hydrological Engineering, 1997, 123(4):341-350.
    [5] Dyer K R. Estuaries: A physical introduction. John Wiley and Sons, 1973,140.
    [6] Dyer K R. Velocity profiles over a rippled bed and the threshold of sand. Estuarine Coastal Marine Science, 1980, 10:181-199.
    [7] Dyer K R. Fine sediment particle transport in estuaries. In: Drokers J, Leussen W van, eds. Physical Processes in Estuaries[C]. New York: Spring-Verlag, 1988, 295-310.
    [8] Eric P Achterberg et al. Metal behaviour in an estuary polluted by acid mine drainage: the role of particulate matter. Environmental Pollution, 2003, 121 (2):283-292.
    [9] Gelfenbaum G, Smith J D. Experimental evaluation of a generalized suspended-sediment transport theory. In: Kinght RJ, McLean J R, eds. Shelf Sands and Sandstone[C]. Canada: Canadian Society of Petroleum Geologists, Memoir Ⅱ: 1986.133-144.
    [10] Heathershaw A D, Thorne P D. Sea-bed noises reveal role of turbulent bursting phenomena in sediment transport by tidal currents. Nature, 1985, 3(16):339-342
    [11] Hill P S, Nowell A R M, Jumar P A. Flume evaluation of the relationship between suspended sediment concentration and excess boundary shear stress. Journal of Geophysical Research, 1988, 93:12499-12509.
    [12] J Ple Roux. A Simple method to predict the threshold of particle transport under oscillatory waves. Sedimentary Geology, 2001, 143:59-70.
    [13] Kirby R, Parker W R. Distribution and behaviour of fine sediment in the Severn Estuary and
    
    Inner Bristol Channel, VK. Canadian Journal of Fishery and Aquaric Sciences, 1983, 40:83-95.
    [14] Lang G et al. Date interpretation and numerical modeling of the mud and suspended sediment experiment. J Geophysical Research, 1989, 94(C10): 14381-14384.
    [15] Lapointe M F., Burst-like sediment suspension events in a sand bed river. Earth Surf. Process. Landforms. 1992, (17):253-270.
    [16] Latimer J S et al. Mobilization of PAHs and PCBs from inplace contaminated marine sediments during simulated resuspension Events. Estuarine, Coastal and Shelf Science, 1999, 49(4):577-595.
    [17] Martino M et al. Resuspension, reactivity and recycling of trace metals in the Mersey Estuary. Marine Chemistry, 2002, 77(3):71-186.
    [18] Mccave I N. Discussion on net transport of sediment through the mouths of estuaries: seaward of landward. Mere Inst Geol Bassin Aquitaine, 1974, 7:207-213.
    [19] Milliman J D, Shen Huanting. Transport and deposition of river sediment in the Changjiang estuary and adjacent shelf. Continental Shelf Research, 1985, (4):37-45.
    [20] Morris A W. Chemical and ecological response to rasiaasle rivers discharge in the Tamas eotuaing Estuaries, 1985, 8(2B):54A.
    [21] Nicholas J, O'connor B A. Cohesive sediment transport model. J Hydraulics Division, ASCE, 1981, 107:1089-1107.
    [22] Pilummer D H. Bacteria-Particle interactions in fjord estuarine environments. Cont. Shelf. Res., 1987, 7(11-12):1429-1433.
    [23] Smith T J, Kirby R. Generation, stabilization and dissipation of layered fine sediment suspension. Journal of Coastal Research, 1989, 5:63-73.
    [24] Sumer B M, Deigaard R. Experimental investigation of motions of suspended heavy particles and the bursting process. Series Paper23, Institute of Hydrodynamics and Hydraulic Engineering. Technical University of Denmark, 1979, 106-115.
    [25] Van den Berg J H, et al., Prediction of suspended bed material transport in flows over silt and very fine sand. Water Resources Res., 1993, 29(5):1393-1404.
    [26] Van Rijn L G. Sediment transport (Ⅱ), suspended load transport. J Hydr. Engrg., 1984, 110(11):1613-1640.
    
    
    [27]Walling D E. Estimating the discharge of contaminants to coastal waters by rivers: some cautionary comments. Marine Pollution Bulletin, 1985, 16:488-492.
    [28]曹文洪,张启舜.潮流和波浪作用下悬移质挟沙能力的研究.泥沙研究,2000,(5):12-22.
    [29]曹志先,张效先,习和忠.基于湍流猝发的明渠流悬沙浓度分布.水利学报,1997,(2):52-57.
    [30]陈吉余等.长江河口动力过程和地貌演变,上海科学技术出版社,1989,91—96,131—137,169,317.
    [31]陈吉余等.上海市海岸带和海涂资源综合调查报告.上海:上海科学技术出版社,1988,15-26.
    [32]程和琴,宋波,薛元忠等.长江口粗粉沙和极细纱输移特性研究——幕式再悬浮和底形运动.泥沙研究,2000,(1):20-27.
    [33]程和琴,李茂田.1998 长江全流域特大洪水期河口区床面泥沙运动特征.泥沙研究,2002,(2):38-44.
    [34]程和琴,李茂田等.长江口水下微地貌运动高分辨率探测研究.自然科学进展,2001,11(10):1-7.
    [35]窦国仁.再论泥沙起动流速.泥沙研究,1999,(6):1-9.
    [36]窦国仁.全沙模型相似律及设计实例.水利水运科技情报,1997,(3):1-20.
    [37]洪大林,唐存本.泥沙扬动实验研究.水利水运科学研究,1994,4:285-296.
    [38]黄才安,王进.床面形态判别的人工神经网络方法.应用基础与工程科学学报,2002,10(1):51-56.
    [39]金鹰,王义刚,李宇.长江口粘性细颗粒泥沙絮凝试验研究.河海大学学报,2002,30(3):61-63.
    [40]李九发,何青等.长江河口拦门沙河床淤积和泥沙再悬浮过程.海洋与湖沼,2000,31(1):101-109.
    [41]李九发,时伟荣,沈焕庭.长江河口最大浑浊带的泥沙特性和输移规律.地理研究,1994,13(1):51-59.
    [42]李荣,李义天等.非均匀沙起动规律研究.泥沙研究,1999,(1):27-32.
    [43]李四海,恽才兴.河口表层悬浮泥沙气象卫星遥感定量模式研究.遥感学报,2001,5(2):154-159.
    
    
    [44]李旺生.旱道开挖后的泥沙回淤预报计算方法.第七届全国海岸工程学术讨论会论文集,北京:海洋出版社,1993.754-761.
    [45]李旺生.平衡状态挟沙能力及其级配确定方法研究.全国泥沙基本理论研究学术讨论会文集.中国水利学会泥沙专业委员会,1992.
    [46]刘青泉,曹文洪.泥沙颗粒的扬动机理分析.水利学报,1998,(5):1-6.
    [47]樊社军,Chiang. C. Mei,虞志英.波浪边界层中细颗粒粘性泥沙的再悬浮和扩散输移.泥沙研究,1999,(2):23-31.
    [48]钱宁,万兆慧.泥沙运动力学.北京:科学出版社,1983,298-345.
    [49]任汝述等,长江口水流挟沙能力,长江口行道治理研究,1981,1(1).
    [50]沙玉清.泥沙运动学引论.北京:中国工业出版社,1965,146-171.
    [51]上海市海岛资源综合调查报告编写组.上海市海岛资源综合调查报告.上海:上海科学技术出版社.1996.
    [52]沈焕庭,茅志昌,朱建荣.长江河口盐水入侵,海洋出版社,2003,2—4,31—40.
    [53]沈焕庭等.长江河口物资通量,海洋出版社,2001,14—28.
    [54]沈焕庭,潘定安.长江河口最大浑浊带.北京:海洋出版社,2001,15—32,41,46—51,56—58.
    [55]时钟,陈伟民.长江口北槽最大浑浊带泥沙过程.泥沙研究,2000,24(11):26-30.
    [56]王殿常,王兴奎,李丹勋.明渠时均流速分布公式对比及影响因素分析.泥沙研究,1998,(3):86-90.
    [57]王绍成.河流动力学.北京:人民交通出版社.1995,23-35.
    [58]王兴奎,邵学军,李丹勋.河流动力学基础.北京:中国水利水电出版社,2002.
    [59]严恺,梁其荀等.海岸工程.北京:海洋出版社,2002.206-212.
    [60]杨世伦.长江口沉积物粒度参数的统计规律及其沉积动力学解释.泥沙研究,1995,(3):23-31.
    [61]杨世伦,张正惕,谢文辉等.长江口南港航道沙波群研究.海洋工程,1999,17(2):79-88.
    [62]余力民,王宝灿,陈沈良.海口湾泥沙来源与秀英港回淤的分析.第七届全国海岸工程学术讨论会论文集,北京:海洋出版社,1993.642-649.
    [63]张瑞瑾等.河流泥沙动力学.北京:水利电力出版社,1989,59-88.
    [64]周志德.泥沙颗粒扬动条件.水利学报,1981,(6):51-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700