用户名: 密码: 验证码:
开关式驱动无线功率传输系统若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子产品的迅速发展,功能愈加增多,对能量依赖也愈加增强,而拖着电缆或携带较大电池使电子产品的在便携性和应用范围方面受到了很大限制,这使得无线功率传输在近些年成为研究的热点。无线功率传输根据距离可分为三类:远距离电能传输、近距离电能传输和中等距离的电能传输。远距离电能的传输主要通过激光或微波实现,距离可以达到数十或数千公里,甚至更远;近距离电能传输通过电磁感应耦合原理实现了电能不通过电缆的非接触式传输,但距离较近,数十公分或更近;中等距离电能传输则为数米远的电能传输,目前主要通过强谐振耦合原理实现。本文主要研究基于中等距离的强谐振式的无线功率传输,距离有数米远,系统主要包含工频电能到高频电能的变换和无线功率收发,主要涉及电力电子的功率变换、电磁场理论和控制理论等。本文从以下几个方面对强谐振式无线功率传输系统进行了研究。
     1.功率因数调整在有源功率因数调整方面,本文提出了一种具有隔离的无桥有源式功率因数调整线路,线路基于SEPIC拓扑,深入分析了该线路的各种电气特性,并进行了仿真,分析和仿真结果表明该线路具有较高功率因数,同时具有效率高、谐波小和安全性高等特点。针对无源式功率因数调整,填谷式线路是应用比较典型的无源功率调整线路,本文通过对经典的填谷式线路的详细分析,提出了一种增强的填谷式功率因数调整线路,进一步提高功率因素,并大大减小了谐波。
     2.逆变线路目前常用电压馈电半桥或全桥逆变线路,由于开关管含有极间电容,电压馈电的桥式逆变线路在导通瞬间会产生较大电流冲击,容易造成非工作开关管的误导通,以及对非工作桥臂也造成较大干扰,本文综合电流馈电和电压馈电两种线路特点,提出了一种电流和电压联合馈电逆变线路,改善了功率开关管的驱动性能,大大减小了导通瞬间的电流冲击,在一定程度上降低了开关功耗,同时避免了对其他非工作功率管的干扰,减小了电磁干扰特性,增强了系统安全和稳定。
     3.开关管高频驱动本文通过对传统白举供电驱动线路分析,提出了一种新的自举供电开关管驱动线路,使得驱动线路保持了白举供电线路的简单特性,又具有负电压关断功能,系统具有较好的可靠性。
     4.强谐振耦合无线功率传输系统的馈电和受电传统馈电主要为线性馈电和开关式直接馈电,线性馈电效率极低,开关式直接馈电线路自身参数对谐振影响和限制较大。本文提出了一种串联-并联组合方式的间接馈电方案,实现了半桥线路的软开关,同时为并联谐振的间接馈电线路提供恒流源,使并联谐振线路避免了开关器件的影响,并且具有较好的谐振性能。在受电方面给出了一种串并联谐振线路在受电线路的应用,使得受电线路具有更好的负载特性,并且避免了受电线圈的阻抗对上一级谐振线路的影响,这一方式也可推广到非阻性负载。
     5.谐振式无线功率传输拓扑分析以变压器原理分析为基础,进一步分析了漏感的产生,根据原边和次边采用串联或并联谐振补偿方式不同,衍生出四种拓扑,本文对各种拓扑进行了分析,给出了各种拓扑的电压、电流以及功率等特性,并对其中两种拓扑的频率问题进行了分析。
     6.开关式间接馈电的强谐振式无线功率传输的深入分析和优化,在麻省理工学院学院研究团队所提谐振式无线功率传输方案的基础上,对该方案进行了更进一步的电气特性研究,归纳了多级串联谐振电压、电流和电阻的一些特性,并进一步分析了线圈电感、电容取值以及线圈电磁场和线圈匝数等参数,使之优化得到更大的传输功率和传输效率。
With the rapid development of electronic products, the power supply has become a bottleneck because dragging cables or carrying large batteries greatly restricts the use and development of electronic products, so such requirement makes the wireless power transmission has become a hot research in recent years. According to the transferring distance wireless power transmission (WPT) can be classified into three categories: non-contact power transmission, power transmission in long-distance and power transmission in middle-distance. Long-distance power transmission is primarily achieved by laser or microwave, and distance can reach tens of thousands of kilometers and even farther; non-contact power transmission can reach tens of centimeters without the cable. This paper studies the strong resonant medium-range wireless power transfer which can reach a few meters distance.Such system mainly contains power converters and high-frequency wireless power transferring, and mainly involving power electronics, electromagnetic theory and control theory. The strong resonant wireless power transmission is studied from the following aspects.
     1. Power factor correction As for passive power factor corrector,Valley-fill circuit is a typical passive power corrector, and the classic valley-fill circuit has been analyzed in detail in the paper, and an enhanced valley-fill power factor correction circuit is proposed which improves the power factor furtherly with less harmonics. This paper has proposed an isolated and bridgeless active power factor corrector based on SEPIC topology, and electrical characteristics of the circuit has been analyzed and simulated, and such circuit further improve the efficiency with a high power factor, less harmonic and high security.
     2. High-frequency inverter, the inverter fed by voltage souece will engender large transient current because of the electrode capacitance, and such current can cause greate interference and mislead the other MOSFET to conduct. Acording to features of current-fed and voltage-fed inverter, a combined current and voltage feed circuit has been proposed, so that driving performance to power switch has been improved with less disturbance to other power switch, less electromagnetic interference and enhanced system security and stability.
     3. High-frequency driver, high-frequency driver is the key to the switching power converter, and it can impact directly on the stability and security of the system. In this paper, based on the traditional bootstrap drive cicuit a novel bootstrap drive circuit has been proposed, which maintains the simplicity of the bootstrap circuit, but it also can shutdown MOSFET/IGBT with negative voltage, and so the system has better reliability.
     4. Feeding and pick-up of power in the RWPT system, this paper has proposed an indirect power feeding circuit with the combinations of serial-parallel resonance to achieve a soft-switching in the half-bridge circuit, and to feed power to parallel resonance indirectly with a constant current source, and such scheme keep the parallel resonance away from interference of switching devices, while the serial resonance compensates reactive power of the parallel resonance. This paper presents a pick-up circuit with serial-parallel resonant circuit, such crcuit has a better characteristics with a wide range of load, and avoids impacting on the impedance of the primary resonant circuit.
     5. RWPT topology analysis, based on analysis of the transformer principle, this paper presents further analysis of the leakage inductance. According to serial or parallel resonant compensation is applied in the primary and secondary side a variety of topologies are derived. This paper analyzed the voltage, current and power characteristics of various topologies, and wherein the frequency splitting of the two topologies are analyzed.
     6. Analysis and optimization of the RWPT system fed indirectly by switching power, based on scheme of RWPT proposed by MIT Institute research team, the electrical characteristics of RWPT system were studied further. This paper summed up some electrical characteristics of a multi-stage series resonance, and further analysis has been carried out on the coil inductance, capacitance values and the number of turns to make greater transmission power and transmission efficiency.
引文
[1]A. H. Weinberg, A Boost Regulator with a New Energy Transfer Principle, Proceedings of the Spacecraft Power Conditioning Electronics Seminar, European Space Research Organization Publication Sp-103, September 1974.
    [2]NASA (2003). Beamed laser power for uavs, Dryden Flight Research Center.
    [3]Glaser, P. E. (1973). Method and apparatus for converting solar radiation to electrical power, U.S.A Patent.
    [4]Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J. D., Fisher, P., and Soljacic, M., Wireless power transfer via strongly coupled magnetic resonances, Science, vol. 317, No.5834,83-86(2007)
    [5]Karalis, A., Joannopoulos, J. & Soljacic, M. (2008). Efficient wireless non-radiative mid-range energy transfer, Elsevier Annals of Physics (323):34-48.
    [6]Elliott G A J, Boys J T, Green A W. Magnetically coupled svstems for power transfer to electric vehicles[J]. IEEE Catalogue 95th 8025:797-801.
    [7]Takehiro Imura, Toshiyuki Uchida and Yoichi Hori, Flexibility of Contactless Power Transfer using Magnetic Resonance Coupling to Air Gap and Misalignment for EV, World Electric Vehicle Journal Vol.3-ISSN 2032-6653,2009 AVERE
    [8]Masayoshi Koizumi1, Kimiya Komurasakil, Yoshihiro Mizuno, Yoshihiro Arakawa, Wireless Power Feeding with Strongly Coupled Magnetic Resonance for a Flying Object, Wireless Engineering and Technology,2012,3,86-89 doi:10.4236/wet.2012.32014 Published Online April 2012 (http://www.SciRP.org/journal/wet)
    [9]Covic, G. A., Boys, J. T., Kissin, M. L. G, and Lu, H. G, A three-phase inductive power transfer system for Roadway-Powered Vehicles, IEEE Trans. on Industrial Electronics, vol.54, No.6,3370-3378,2007.
    [10]Elliott, G. A. J., Raabe S., Covic, G. A., and Boys, J. T., Multiple pickups for large lateral tolerance contactless power-transfer systems, IEEE Trans.on Industrial Electronics, vol.57, No.5,1590-1598,2010.
    [11]Huh, J., Lee, S. W., Lee, W. Y., Cho, G H., and Rim, C. T., Narrow-Width Inductive power transfer system for online electrical vehicles, IEEE Trans, on Power Electronics, vol.26, No.12,3666-3679,2011.
    [12]Suh, I. S., and Gu, Y, Application of shaped magnetic filed in resonance (SMFIR) technology to future urban transportation, CIRP Design Conference,2011 IEEE.
    [13]Lee, S., Huh J., Park, C., Choi, N., Cho, G, Rim, C., On-line electric vehicle using inductive power transfer system, Energy Conversion Congress and Exposition (ECCE),2010 IEEE.
    [14]Roadway powered electric vehicle project parametric studies:phase 3D final report, California Partners for Advance Transit and Highways Research Reports, Oct.1996. (http://www.path.berkeley.edu)
    [15]Aiguo Patrick Hu, Chao Liu, Hao Leo Li. A Novel Contactless Battery Charging System for Soccer Playing Robot[R], The 15th International conference on Mechatronics and Machine Vision in Practice (M2VIP08),2-4 Dec 2008(646-650).
    [16]Xiaofang Yu, Sunil Sandhu, Sven Beiker, Richard Sassoon, and Shanhui Fan, Wireless energy transfer with the presence of metallic planes, APPLIED PHYSICS LETTERS 99,214102 (2011)
    [17]孙跃,王智慧,戴欣等.非接触电能传输系统的频率稳定性研究.电工技术学报.2005,20(11):56-59
    [18]孙跃,戴欣,苏玉刚等.广义状态空间平均法在 CMPS 系统建模中的应用. 电力电子技术.2004.38(3):86-88
    [19]Yue Sun, Hu A. P., Xin Dai. Discrete time mapping modeling and bifurcation phenomenon study of a ZVS converter.2004 International Conference on Power System Technology.2004,2(10):1015-1018
    [20]Yugang Su, Chunsen Tang, Shuping Wu. Research of LCL resonant inverter in wireless power transfer system.2006 International Conference on Power System Technology.
    [21]韩腾,卓放,刘涛等.可分离变压器实现的非接触电能传输系统研究.电力电子技术,2004,5:28-30
    [22]谭林林,黄学良,邹玉炜.无线电能传输技术及其应用探讨[R],2009年全国电工理论与新技术学术年会论文集,2009,PP:416-419.
    [23]I. A. Khan. Battery Chargers for Electric and Hybrid Vehicles[C]. IEEE Power Electronics in Transportation 1994:103-112.
    [24]A. Esser. Contactless charging and communication for electric vehicles[J]. IEEE Industry Applications Magazine.1995,1(6):4-11.
    [25]Blackweli, T, Recent demonstrations of laser power beaming at DFRC and MSFC, AIP Conference Proceedings Beamed Energy Propulsion. Third International Symposium on Beamed Energy Propulsion n 766 2005,PP:73-85.
    [26]N. Tesla, Apparatus for transmitting electrical energy, US patent number 1,119,732, issued in December 1914.
    [27]J.M. Fernandez, and J.A. Borras, Contactless battery charger with wireless control link, US patent number 6,184,651, issued in February 2001.
    [28]L. Ka-Lai, J.W. Hay, and P.G.W. Beart, Contact-less power transfer, US patent number 7,042,196, issued in May 2006.
    [29]J. Hirai, T.-W. Kim, A. Kawamura, IEEE Trans. Power Electron.15 (2000) 21.
    [30]G Scheible, B. Smailus, M. Klaus, K. Garrels, and L. Heinemann, System for wirelessly supplying a large number of actuators of a machine with electrical power. US patent number 6,597,076, issued in July 2003.
    [31]H.A. Haus, Waves and Fields in Optoelectronics, Prentice-Hall, New Jersey,1984.
    [32]D.M. Pozar, Microwave Engineering, Wiley, New Jersey,2005.
    [33]Rafif E. Hamam, Aristeidis Karalis, J.D. Joannopoulos, Marin Soljacic, Efficient weakly-radiative wireless energy transfer:An EIT-like approach, Annals of Physics 324 (2009) 1783-1795.
    [34]ON Semiconductor company, Power Factor Correction (PFC) Handbook, www.onsemi.com/pub/Collateral/HBD853-D.PDF,2004,8.
    [35]侯典立,张庆范,张龙,刘晓,含有PFC的LED驱动线路的改进设计[J],电源学报,2011,2,PP34-38.
    [36]蒋孝平,梁慧.填谷式无源PFC在离线LED照明[J].灯与照明,2009,33(3).
    [37]Jianyou Yang; Junming Zhang; Xinke Wu; Zhaoming Qian; Ming Xu, Performance comparison between buck and boost CRM PFC converter, Control and Modeling for Power Electronics (COMPEL),28-30 June 2010, PP.1-5.
    [38]De Vicuna, L.G., Guinjoan, F., Majo, J.; Martinez, L. Discontinuous conduction mode in the SEPIC converter, Electrotechnical Conference,1989, PP.38-43.
    [39]Wong, L.K., Man, T.K. Small signal modeling of open-loop SEPIC converters, Power Electronics, IET,2010, PP.858-869.
    [40]Simonetti, D.S.L.; Sebastian, J.; Uceda, J. The discontinuous conduction mode Sepic and Cuk power factor preregulators:analysis and design, Industrial Electronics, IEEE Transactions on, Oct 1997, page(s):630
    [41]Huber, L.; Yungtaek Jang; Jovanovic, M.M., Performance Evaluation of Bridgeless PFC Boost Rectifiers, IEEE TRANS, on Power Electronics, VOL.23, NO.3, MAY 2008, PP.1381-1390.
    [42]Ismail, E.H., Bridgeless SEPIC Rectifier with Unity Power Factor and Reduced Conduction Losses, IEEE Trans, on Industrial Electronics, VOL.56, NO.4, APRIL 2009, PP.1147-1157.
    [43]Mohd Rodhi Sahid; Abdul Halim Mohd Yatim, Modeling and simulation of a new Bridgeless SEPIC power factor, Simulation Modeling Practice and Theory,19 (2011),PP.599-611.
    [44]Sahid, M.R.; Yatim, A.H.M., An isolated bridgeless AC-DC converter with high power factor, IEEE International Conference on Power and Energy (PECon), Nov. 2010,PP.791-796
    [45]P. R. K. Chetty, Current injected equivalent circuit approach (CIECA) to modeling of switching dc-dc converters, IEEE Trans. Aerosp. Electron. Syst., vol.17, pp. 802-808, Nov.1981.
    [46]Duncan A. Grant John Gowar. Power MOSFETs:Theory and Applications, Wiley-Inter science,1989-04.
    [47]Ned Mohan, Tore M. Undeland, William P. Robbins. Power Electronics: Converters, Applications, and Design,3rd Edition, Wiley,2002.
    [48]Abraham I. Pressman, Keith Billings, Taylor Morey. Switching Power Supply Design, Third Edition, McGraw-Hill Professional,2009.
    [49]Majid Delshad, Hosein Farzanehfard, A new soft switched push pull current fed converter for fuel cell applications. Energy Conversion and Management 52 917-923.2011.
    [50]Katsuya Hirachi, Manabu Ishitobi, Keiji Matsumoto, etc. Pulse Area Modulation Control Implementation for Single-phase Current Source-Fed Inverter for Solar Photovoltaic Power Conditioner, Page(s):677-682 Vol.2.1998.
    [51]Xie Shaojun, Xu Jinming. Overview of Current Control Strategy for Grid-Tied Inverters with LCL Filters.Journal of Power Supply.2012.7(4) PP:1-6.
    [52]GONZALEZ R, LOPEZ J, SANCHIS P, et al. Transformerless inverter for single-phase photovoltaic systems [J]. IEEE Trans. on Power Electronics,2007, 22 (2):693-697.
    [53]JAIN S, AGARWAL V. A single-stage grid connected inverter topology for solar PV systems with maximum power point tracking [J]. IEEE Trans. on Power Electronics,2007,22 (5):1928-1940.
    [54]Xiao-Qiang Guo, Wei-Yang Wu, He-Rong Gu. Modeling and simulation of direct output current control for LCL-interfaced grid-connected inverters with parallel passive damping. Simulation Modelling Practice and Theory 18 (2010) 946-956.
    [55]Dahono P A. A control method to damp oscillation in the input LC filter of AC-DC PWM converters [C].2002 IEEE 33rd Annual Power Electronics Specialists Conference, Cairns,Australia:IEEE.2002:1630-1635.
    [56]张承慧,叶颖,陈阿莲.基于输出电流控制的光伏并网逆变电源[J].电工技术学报,2007,22(8):41-45.
    [57]Zhang Chenghui, Ye Ying, Chen Alian, Research on Grid-Connected Photovoltaic Inverter Based on Output Current Control [J], Transactions of China Electrotechnical Society,2007,22(8):41-45.
    [58]M. Liserre, F. Blaabjerg, and S. Hansen, Design and control of an LCL filter-based three-phase active rectifier, IEEE Trans. Ind. Appl., vol.41,no.5, pp.1281-1291, Sep./Oct.2005.
    [59]C. wessels, J. Dannehl, and F. Fuehs. Active damping of LCL-filter resonance based on virtual resistor for PWM rectifiers- stability analysis with different filter parameters[C], Power Electronics Specialists Conference,2008. PESC 2008. IEEE Date of Conference:15-19 June 2008 Page(s):3532-3538
    [60]Serpa, L.A., Kolar, J.W.; Ponnaluri, S.; Barbosa, P.M. A modified direct power control strategy allowing the connection of three-phase inverter to the grid through LCL filters[C]. Industry Applications Conference,2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005.Volume:1,Page(s):565-571 Vol.1.
    [61]沈国桥,徐德鸿.LCL型并网逆变器的分裂电容法电流控制[J].中国电机工程学报,2008,28(18)36-41.
    [62]G. Shen, X. Zhu, J Zhang, et al. A new feedback method for PR current control of LCL-filter-based grid-connected inverter [J].IEEE Trans, on Industrial Electronics, 2010,57(6)2033-2041.
    [63]Daniel Nahum Zmood, Donald Grahame Holmes. Stationary frame current regulation of PWM inverters with zero steady-state error [J].IEEE TRANS, on Power Electronics, May.2003,18(3)814-822.
    [64]M. Liserre, R. Teodorescu, and F. Blaabjerg, Multiple harmonics control for three-phase grid converter systems with the use of pi-res current controller in a rotating frame, IEEE Trans. Power Electronics., vol.21, no.3,pp.836-841, May 2006.
    [65]Fainan A. Magueed, Jan Svensson. Control of VSC connected to the grid through LCL-filter to achieve balanced currents, [C].Industry Applications Conference,2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005,Date of Conference:2-6 Oct.2005 Page(s):572-578 Vol.1.
    [66]J. A. G. Akkermans, M. C. van Beurden, G D. & Visser, H. (2005). Analytical models for low-power rectenna design, IEEE Antennas and Wireless Propagation Letters 4.
    [67]Mohammod Ali, G. Y. & Dougal, R. (2005). A new circularly polarized rectenna for wireless power transmission and data communication, IEEE Antennas and Wireless Propagation Letters 4.
    [68]Ren, Y.-J. & Chang, K. (2006).5.8-gHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission, IEEE Transactions on Microwave Theory and Techniques 54(4).
    [69]Shams, K. M. Z. & Ali, M. (2007). Wireless power transmission to a buried sensor in concrete, IEEE Sensors Journal 7(12).
    [70]杜桂平,张波.感应耦合式电能无线传输发展及其亟待解决的关键问题[J],国际电子变压器,2009,4(92-95)
    [71]Petrus A. JANSE VAN RENSBURG and Hendrik C. FERREIRA, The Role of Magnetizing and Leakage Inductance in transformer coupling circuit
    [72]Robert W. Erickson, Dragan Maksimovic, Fundamentals of Power Electronics,
    [73]夏晨阳,感应耦合电能传输系统能效特性的分析与优化研究,重庆大学,2010.
    [74]武瑛,新型无接触供电系统的研究,中国科学院电工研究所,2004.
    [75]Joannopoulos J D, Karalis A, Soljacic M. Wireless non-radiative energy transfer: US,60/698,442[P],2005-7-12.
    [76]Soljacic M, Wireless non-radiative energy transfer.presentation archived at the website of American Institute of Physics, http://www.aip.org/ca/2006/soljacic. pdf.
    [77]Fu Wen-zhen, ZHANG Bo, QIU Dong-yuan, WANG Wei,Maximum Efficiency Analysis and Design of Self-resonance Coupling Coils for Wireless Power Transmission System
    [78]Alanson P. Sample, David A. Meyer, Joshua R. Smith, Analysis, Experimental Results, and Range
    [79]A.P.,Electr., Seattle, WA, Meyer, D.A., Smith, J.R. Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer, IEEE TRANS. on Industrial Elecronics, VOL.58, NO.2, Febuary 2011
    [80]Takehiro Imura, Yoichi Hori, Fellow, Air Gap and Efficiency of Magnetic Resonant Coupling for Wireless Power Transfer Using Equivalent Circuit and Neumann Formula, IEEE TRANS. on Industrial Elecronics, VOL.58, NO.10, OCTOBER 2011
    [81]Constantine A. Balanis. Antenna Theory Analysis and Design, Third edition,2005, pp.244-260
    [82]Scholz, Peter, Analysis and Numerical Modeling of Inductively Coupled Antenna Systems. Theorie Elektromagnetischer Felder (TEMF) [Ph.D. Thesis], (2010) http://tuprints.ulb.tu-darmstadt.de/2354/
    [83]P. L. Overfelt, Near Fields of the Constant Current Thin Circular Loop Antenna of Arbitrary Radius, IEEE Trans. Antennas Propagat., Vol.44, No.2, February 1996, pp.166-171.
    [84]D. H. Werner, An Exact Integration Procedure for Vector Potentials of Thin Circular Loop Antennas, IEEE Trans. Antennas Propagat., Vol.44, No.2, February 1996, pp.157-165.
    [85]D. H. Werner, Lommel Expansions in Electromagnetics, Chapter in Frontiers in Electromagnetics, (D. H. Werner and R. Mittra, eds.), IEEE Press/John Wiley, New York,2000.
    [86]A. M. Niknejad, Analysis, simulation, and applications of passive devices on conductive substrates, Ph.D. dissertation, University of California at Berkeley, 2000.
    [87]H.A. Wheeler, Simple inductance formulas for radio coils,Proceedings of IRE, vol. 16, no.10, pp.1398-1400, Oct 1928.
    [88]H. Wheeler, Discussion on Simple inductance formulas for radio coils,Proceedings of IRE, vol.17, no.3, pp.580-582, Mar 1929.
    [89]Electromagnetic Radiation and How It Affects Your Instruments. Near Field vs. Far Field.' www.osha.gov/SLTC/radiofrequencyradiation/electromagnetic_fieldmemo/electromagnetic.html#section_6
    [90]W. H. Hayt, Jr. (1989). Engineering Electromagnetics, McGraw-Hill
    [91]任立涛,磁耦合谐振式无线能量传输功率特性研究,哈尔滨工业大学,2009.
    [92]张超,磁谐振耦合无线电能传输系统谐振器的仿真和实验研究,河北工业大学,2010.
    [93]杨庆新;陈海燕;徐桂芝;孙民贵;傅为农,无接触电能传输技术的研究进展,《电工技术学报》,2010-07-26
    [94]陈国东,非接触电能传输系统恒流技术研究,重庆大学,2008.
    [95]卓勇,生物体内置电装置的外部供电模式研究,重庆大学,2007.
    [96]苑舜,杨国明,蔡志远;贾红光,国内外电磁谐振式无线电能传输技术的现状分析,2012输变电年会论文集,2012.
    [97]闫卓;陈海燕;杨庆新;张超,磁共振无线传能技术及其应用探讨,天津市电机工程学会2009年学术年会论文集,2009.
    [98]杜伟炯,非接触供电的锂离子电池组快速充电技术,重庆大学硕士论文,2008.
    [99]戴路加,基于DSP的并联型混合有源电力滤波器的研究,兰州理工大学,2008.
    [100]郎文飞,单级反激式功率因数校正电路研究,郑州大学,2011.
    [101]杨鑫,电网谐波的快速检测分析及处理对策,武汉科技大学,2008.
    [102]刘斌,并联型有源电力滤波器的研究与实验,北京交通大学,2007.
    [103]董雪武,无功和谐波综合补偿方案的研究,北京交通大学,2008.
    [104]田军,基波磁通补偿串联混合APF数字化控制研究,华中科技大学,2007.
    [105]顾炜,电网谐波和无功电流实时检测技术的研究,福州大学,2005.
    [106]葛锁良,袁业剑,于敏华,一种新型可连续调节的无功补偿装置,电力自动化设备,2011-11-10
    [107]李二霞,广义无功补偿装置的关键技术研究,中国电力科学研究院,2010.
    [108]宋智,魏绪刚,宝钢炼铁厂布袋除尘器无功补偿及效益分析,机电信息,2009-08-25.
    [109]陈立剑,前端带功率因数校正的谐振式AC/DC变换器,华中科技大学硕士论文,2007.
    [110]徐从良,直接电流控制的DSTATCOM控制策略的研究,山东大学硕士论文,2009.
    [111]刘磊,王仲初,胡洋,三相电压型SVG的直接电流控制方法及仿真,辽宁科技大学学报,2010.
    [112]杨思源,浅谈功率因数与供电效率的关系,中国高新技术企业,2010.
    [113]郭瑞,一种新型静止无功发生器的研究,沈阳工业大学,2008.
    [114]陈厚岩,王环,许洪华,具有零电流关断特性的并网型光伏逆变器研制,电力电子技术,2005.
    [115]梁文炎,伺服双动力螺旋精压机控制系统研究,广东工业大学, 2007.
    [116]李森林,1:1列车制动试验台测控系统的设计开发西南交通大学,2009.
    [117]薛长坡,变频器与PLC结合在普通锅炉风机水泵控制上的应用,电子世界,2012.
    [118]牛改霞,基于PLC的自动收丝系统的设计,燕山大学,2010.
    [119]任毅,平面铰链四杆机构的动力和控制设计,西南交通大学硕士论文,2005.
    [120]王付敏,高精度热处理电炉温度控制及其EMC系统的设计与实现,电子科技大学,2008.
    [121]姚勇,熊志钢,陈代任,程翀,PID控制在转炉生产过程中的应用,武钢技术,2007.
    [122]孙瑞杰,磨矿分级的模糊控制及网络监控,昆明理工大学硕士论文,2009.
    [123]姜心国,钢筋预应力操作装置的微机测控系统研究,西南交通大学.2007.
    [124]鲁保云,基于多模型的主动容错控制方法研究,兰州理工大学,2007.
    [125]吴智勇,靶场空调自控系统研究,国防科学技术大,2005.
    [126]王晨光,TBM隧道掘进机推进系统的研究,西安理工大学,2010.
    [127]徐冬翔,加氢催化厂房控制系统的数据管理解决方案,中国科学技术大学,2006.
    [128]徐晓华,罗文军,纪世梁,20MN锻造操作机控制系统的构建,桂林航天工业高等专科学校学报,2011.
    [129]杜礼春,邢红颖,1号机组协调控制系统优化及投运,电力科学与工程,2010.
    [130]张兆惠,基于微处理器的智能车控制系统开发与研究,大连理工大学,2008.
    [131]陈明江,基于模糊算法的拖拉机电液悬挂系统力调节控制技术研究,南京农业大学,2009.
    [132]陈佳栋,周国平,申冬琴,基于变频器控制的凹版印刷机三电动机同步,电气时代,2012.
    [133]许宇翔,基于DSP的数字阀控制器的研究,浙江工业大学,2008.
    [134]陆英男CINCINNATI工业机器人力/位混合控制的研究,东北大学,2009.
    [135]唐文忠,王攀,基于内容自适应的Web QoS反馈控制系统研究,计算机应用研究,2009.
    [136]程玉芳,单相混合励磁车载轴带发电机及其稳压特性的研究,哈尔滨工业大学,2010.
    [137]许伟,中药滴丸生产线控制系统分析与设计,天津大学,2009.
    [138]李中贵,感应耦合电能传输系统开放式平台的设计,重庆大学,2011.
    [139]董军,非接触电能传输系统AC/AC变换器的研究,重庆大学,2009.
    [140]张旭,感应耦合式电能传输系统的理论与技术研究,中国矿业大学,2011.
    [141]余奎,LCL型感应耦合电能传输系统的特性研究,重庆大学,2012.
    [142]唐春森,非接触电能传输系统软开关工作点研究及应用,重庆大学,2009.
    [143]曹玲玲,自激式非接触谐振变换器的初步研究,南京航空航天大学,2011.
    [144]李军,动物实验用植入式脊髓电刺激系统的研制,华中科技大学,2012.
    [145]岳月华,手机天线HAC方案研究与设计,苏州大学,2011.
    [146]沈科杰,高效LED恒流驱动开关电源研究,浙江理工大学,2011.
    [147]张磊,倍流整流电路中集成磁件的应用研究,南京理工大学,2012.
    [148]陈大为,片上螺旋电感的模型优化与实现,华东师范大学,2009.
    [149]刘婧,射频片上螺旋电感的结构优化设计与实现,华东师范大学,2008.
    [150]周东胜,杭华民,杨长龙,电磁加热技术及其在热固性玻璃钢生产中的应用,纤维复合材料,2011.
    [151]任军,硅基片上螺旋电感建模及其在射频芯片中的应用,电子科技大学,2007.
    [152]胡欣峰,自同步椭圆振动筛动力学研究,西南石油学院,2004.
    [153]杨启祥,电击枪高压脉冲电源的研制,南京理工大学,2007.
    [154]肖华清,射频接收前端关键元器件及系统集成研究,西南交通大学,2012.
    [155]Dianli Hou, Qingfan Zhang, Xiao Liu, An Isolated Bridgeless Power Factor Correction Rectifier, Information Technology Journal, v 10, n 12, p 2336-2342, 2011.
    [156]Dianli Hou, Qingfan Zhang, Xiao Liu, A Soft-Switching Full-Bridge Inverter Working in the Current and Voltage Combination Fed Mode Information Technology Journal, v 13, n6, p 1154-1160,2014.
    [157]Dianli Hou, Qingfan Zhang, Xiao Liu, Separated-PI control strategy and stability analysis of a single-phase inverter connected to the grid with a LCL filter.Applied Mechanics and Materials, v 291,2013, p 2464-2469,2013.
    [158]侯典立,张庆范,刘晓,具有高负电压的自举供电MOSFET/IGBT驱动线路,专利201320666507.1,2014.
    [159]侯典立,张庆范,刘晓,一种具有负压的自举供电MOSFET/IGBT驱动线路,专利201320665710.7,2014.
    [160]张庆范,侯典立,刘晓,密立根油滴实验智能测试装置的设计,2010-10-12,青岛理工大学学报.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700