用户名: 密码: 验证码:
红外发射率涂层(LIREC)的组成结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着红外探测技术的提高,红外隐身材料研发和应用的重要性与日俱增。红外隐身涂层由于其突出的优点,成为红外隐身材料中最重要的品种之一。而如何设计和制备具有低红外发射率及优良工程应用性能的红外隐身涂层成为关键。本文通过理论计算和分析,设计了低红外发射率涂层(LIREC)的理想组成及结构;设计了含片状粒子涂层对辐射吸收的物理模型,并推导出了其红外发射率的计算公式;通过设计相关实验对结论加以验证。选择红外高透明的三元乙丙橡胶(EPDM)和红外低透明的聚氨酯(PU)两种典型树脂为代表,分别对其改性作为黏结剂,制备LIREC。研究LIREC的组成结构与涂层的红外发射率性能、力学性能、耐盐水腐蚀性能和耐老化性能的关系,为LIREC的研制提供基础性指导。主要内容包括:
     (1)LIREC的组成和结构设计:
     通过理论计算和分析,研究了颜料粒子的材质、形状、在涂层中的分布状态及涂层表层黏结剂的红外透明性和厚度对涂层红外发射率的影响,进而设计了LIREC的理想组成及结构。设计了含片状粒子涂层对辐射吸收的物理模型,并推导了其红外发射率的计算公式。
     (2)涂层的组成结构与红外发射率性能研究
     通过设计相关实验对理想LIREC的设计结论加以验证。结果证明:通过①选用金属类的片状粒子颜料;②红外高透明性黏结剂;③将黏结剂改性提高极性,以增强其与金属颜料的相容性;④通过一定的工艺条件,使薄片状颜料粒子整齐紧凑地平铺在涂层表面等措施,可以显著降低涂层的红外发射率。并可成功制备出红外发射率低至0.1左右的LIREC。
     通过制备不同附着率的片状Cu粉颜料,调节红外涂层表面黏结剂的厚度,从而调节涂层的红外发射率。当选用高附着率的片状Cu粉颜料时,黏结剂红外透明性对涂层红外发射率的影响大幅度降低,即使使用红外透明性较差的黏结剂也可制得LIREC。大大拓宽了黏结剂的选择范围,为研制性能优良的LIREC打下了坚实的基础。
     通过实验对含片状粒子涂层红外发射率的计算公式进行验证。证明该公式可以近似的计算含片状粒子涂层的红外发射率,并能反映影响涂层红外发射率的主要因素的影响情况。
     (3)LIREC的组成结构与力学性能研究:
     分析了EPDM接枝的极性基团、颜料含量、黏结剂分子链结构对LIREC力学性能的影响。表明LIREC可经组成结构设计提高其力学性能:1)低极性黏结剂接枝强极性基团。XPS分析证明EPDM-g-MAH中的极性基团可与金属材料形成配位键,显著提高LIREC的力学性能。2)调控颜料的含量。随颜料含量的增加:涂层的附着力增大;硬度先提高后下降;柔韧性和耐冲击强度方面,使用刚性链为主黏结剂的涂层会显著降低,而对使用柔性链为主黏结剂涂层的影响较小。3)调节黏结剂的分子链结构。柔性EPDM-g-MAH制备的LIREC的柔韧性和耐冲击强度好于刚性PU所制备的,而硬度有所不及。PU用附着力和韧性更好的环氧改性后制备的LIREC的柔韧性和耐冲击强度显著提高,而附着力和硬度仍然优良。
     (4)LIREC的组成结构与耐盐水腐蚀性能研究
     研究了LIREC在盐水中的腐蚀机理和腐蚀进程。结果表明,LIREC的腐蚀失效主要由于Cu粉颜料发生腐蚀引起涂层红外发射率大幅上升造成的。黏结剂可对颜料提供保护,延缓腐蚀。在腐蚀前期,黏结剂的耐渗水性能起主要作用,耐渗水性好,可减缓腐蚀溶液的渗透;而到腐蚀的中后期,黏结剂对颜料的附着力起主要作用,附着力强则能减缓二者界面处的起泡进展。分别对EPDM和PU进行改性作为黏结剂,制备LIREC。研究不同LIREC的组成结构与其耐盐水腐蚀性能的关系。结果表明,LIREC可通过组成结构设计提高其耐腐蚀性能:1)低极性黏结剂接枝强极性基团。EPDM经改性提高极性后显著改善其与金属颜料的相容性和附着力,降低了涂层孔隙率,从而提高了LIREC的耐腐蚀性能。2)通过黏结剂的组分和结构设计,引入强耐腐蚀性组分,但要考虑各组分间的表面张力匹配。PU中引入与金属颜料附着力更强、耐腐蚀性能好的环氧树脂可显著提高LIREC的耐腐蚀性能;而引入耐腐蚀性能强、但表面张力相差太大的含氟组分与环氧树脂时,LIREC的耐腐蚀性能变差。3)提高LIREC的致密度,减少空隙。EPU的研究表明,适当的组分配比、环氧种类及固化温度可提高黏结剂的交联固化程度、减小结构孔隙;而适当的消泡剂用量和固化温度可减少由气泡和溶剂挥发所造成的气孔。4)耐腐蚀性能强的黏结剂制备的LIREC的耐腐蚀性能并不一定强。要综合考虑其所需的颜料添加量、抗渗透性能及与颜料的附着性能,其中与颜料的附着性能更为重要。5)在LIREC上涂覆红外高透明性的防护型面漆。在EPU/50%Cu涂层上涂覆一层可阻隔腐蚀介质渗透的EPDM-g-MAH面漆,其发射率增大较小,但耐盐水腐蚀性能却大幅提高。
     (5)LIREC的组成结构与耐热老化和光老化性能研究
     研究了不同LIREC的耐热老化性能。结果表明,LIREC经热老化引起红外发射率升高的原因是其中的Cu粉颜料发生氧化。而黏结剂可对颜料提供一定保护,延缓其氧化进程,与颜料相容性好、附着力强的黏结剂的保护性能更好。EPDM-g-MAH/20%Cu、EPU/50%Cu及EPDM-g-MAH@EPU/50%Cu涂层的耐热老化性能较好,可在433K以下长时间使用。
     研究了不同LIREC的耐紫外人工加速老化性能。结果表明,随着时间的延长,LIREC发生了失光和变色现象,其红外发射也率逐渐升高。黏结剂组分间相容性差,会加速老化。减少黏结剂中易紫外降解组分的含量能提高涂层的耐光老化性能。LIREC耐紫外人工加速老化性能的优劣顺序为: FPU/50%Cu > PU/50%Cu > EPDM-g-MAH/20%Cu > EPU/50%Cu >EPDM-g-MAH@EPU/50%Cu,与其所用的黏结剂的耐光老化性能一致。
With the improvement of infrared detection technology, the importance of the development and application of infrared stealth materials increases. Due to its outstanding advantages of infrared stealth coating, as infrared stealth coating, it is one of the most important species. But how to design and prepare infrared stealth coatings which has low infrared emissivity and the excellent performance of engineering applications becomes the key factor.
     In this paper, the ideal composition and structure of low infrared emissivity coating (LIREC) was designed by theoretical calculation and analysis, the physical model of radiation absorbing of containing flake particles of coating was designed, its infrared emissivity approximate calculation formula was derived, and the related experiments on the conclusions was designed and verified. High infrared transparency of EPDM rubber and low infrared transparency of polyurethane were choosed for two typical representatives, which were modified as resin-based material, and LIREC was prepared. The composition and structure of LIREC on infrared emissivity performance, mechanical properties, corrosion resistance and anti-aging properties of LIREC was studied, providing the basic guidance for LIREC. The main contents include:
     (1) The composition and structure design of LIREC:
     Through theoretical calculation and analysis, the effects of the pigment material, shape of pigment particles, the distribution of pigment particles in the coating and infrared transparency and thickness of the surface coating resins on infrared emissivity of coating were researched, and thus the ideal composition and structure of LIREC were designed. The physical model of radiation absorbing of coating containing flaky particles was designed and the infrared emissivity approximate formula was derived.
     (2) Study of the composition and structure on the infrared emissivity of coating:
     The related experiments were designed to validate the conclusions of the composition and structure design of LIREC. The results showed that, the infrared emissivity of coatings can significantly decrease when①the flake metallic powder was elected as pigment, and②the high-infrared transparent resin was elected as adhesive, and③the polarity increases after grafting resin adhesive with polar groups, enhances its compatibility with the metallic paint and reduces the gap in the coating, and④the metallic flake pigment was spread out in order in the coating. And the coating with low infrared emissivity (about 0.1) was prepared.
     Through the preparation of the different attachment rates of Cu flake pigments, infrared coating resin layer thickness can be adjusted, thereby regulating the infrared emissivity of coating. The high attachment rate of the metal pigments can significantly reduce the infrared emissivity of coating. The impact of the infrared transparency of the resin on infrared emissivity of coating reduces significantly when the high attachment rate of Cu flake pigment was elected. Even if the less infrared transparency resin was used, LIREC can be obtained. Therefore, the choice scope of resin adhesive is broadened, and lay a solid foundation for the development of LIREC with good properties.
     After experimental verification, the infrared emissivity aformula can be used to calculate approximately the infrared emissivity of coating containing flaky particles and can reflect the main factors of the infrared emissivity of the coating.
     (3) Study of the composition and structure on the mechanical properties of the LIREC:
     The impacts of polar groups of EPDM-g-MAH, pigment content and resin structure on the mechanical properties of LIREC were analyzed. The results showed that, the mechanical properties of LIREC can be improved by designing the composition and structure of LIREC. 1) Grafting low polarity adhesive with polar groups. The XPS analysis shows that the polar groups of EPDM-g-MAH can form coordination bonds with the metal, significantly improve the mechanical properties of LIREC. 2) Adjusting pigment content. The adhesion of LIREC increased with the increased pigment content, and the hardness first increased and then decreased. The flexibility and resistance to impact strength were significantly reduced for rigid chain of PU-based coatings, while the flexibility and resistance to impact strength of the coating were less affected for the flexible chain resin EPDM-g-MAH. 3) Adjusting resin structure. The flexibility and impact strength resistance of LIREC prepared with EPDM-g-MAH were better than that prepared with polyurethane, while the hardness was somewhat less. The flexibility and impact strength resistance of LIREC prepared with epoxy modified polyurethane were greatly improved, while the adhesion and hardness remain basically unchanged.
     (4) Study of the composition and structure on the corrosion resistance of LIREC:
     The corrosion mechanism and process of LIREC was studied in aqueous salt solutions. The results showed that the corrosion failure of LIREC was mainly due to the corrosion of Cu powder paint generating CuCl, causing a substantial increase in infrared emissivity. The resin adhesive can provide protection to the pigments and slow down the corrosion process. Pre-corrosion, anti-seepage properties of the resin play an important role, the better in resin with good resistance to water seepage, the slower the infiltration rate of corrosion solution; at the latter part of corrosion the resin adhesion to metal pigments plays a more important role, the strong adhesion is able to slow down the interface of the sparkling progress.
     EPDM and polyurethane which were modified as resin adhesive, and LIREC were prepared. The composition and structure of LIREC on corrosion resistance was studied. The results showed that, the corrosion resistance of LIREC can be improved by designing the composition and structure of LIREC. 1) Grafting low polarity adhesive with polar groups. EPDM modified by the MAH increased the polarity, and significantly increased the compatibility and adhesion with metallic pigment, reducing the porosity of the coating and thus enhancing the corrosion resistance of LIREC. 2) Adjusting the composition and structure of resin. Resin adhesive modified by introducing the component with stronger corrosion resistance, and full consideration should be given on the surface tension between the various components. The polyurethane modification to introduce the epoxy which has a stronger adhesion to metal paint can improve corrosion resistance of LIREC. Due to the much difference in surface tension between fluorine composition and epoxy resin, the mixed capacity is poor, so the corrosion resistance of LIREC got worse when the both two were used. 3) Increasing the compactability of coating, and reducing the pores in the coating. The study of Epoxy-modified polyurethane (EPU) showed that proper curing temperature, composition ratio and the type of epoxy resin can improve the degree of crosslinking and reduce the structural pore, and appropriate defoamer usage and curing temperature can reduce the pores caused by the bubbles and solvent evaporation, thereby increasing the corrosion resistance of LIREC. 4) The corrosion resistance of LIREC which prepared with resin adhesive with stronger corrosion resistance is not determinately better. And full consideration should be given on the pigment content needed, the anti-seepage properties of resin adhesive and the adhesion between resin adhesive and metal pigment. 5) Smearing high infrared transparency finish on LIREC. The LIREC was prepared with high infrared transparency EPDM-g-MAH as the finish and EPU-based material, the infrared emissivity of the coating increases 0.05, but the corrosion resistance has substantially increased.
     (5) Study of the composition and structure on the heat aging and light aging properties of LIREC:
     The heat aging property of different LIREC was studied. The results showed that the reason for the increased infrared emissivity in thermal aging is oxidation of Cu powder pigment. The resin adhesive can provide protection to the pigments and slow down the oxidation process, and protect performance of resin adhesive with the good compatibility with pigment and the strong adhesion was better. EPDM-g-MAH/20% Cu and EPU/50% Cu coatings had good heat aging properties, and the coatings can be used for a long time below 433 K.
     The light aging property of different LIREC was studied. The results showed that, with the extension of time of artificial accelerated aging, the loss of light and color and relatively mild powder occurred on low infrared emissivity coating, and the infrared emissivity of coating was also gradually increased. The poor compatibility of binder components could result in two-phase separation, increasing the absorption of ultraviolet light and accelerating the aging; The decrease of the content of components vulnerable to UV-degradation can increase the resistance to artificial accelerated aging of the coating. The order of artificial accelerated aging-resistant properties of low infrared emissivity coatings was: FPU/50% Cu > PU/50% Cu > EPDM-g-MAH/20% Cu > EPU/50% Cu > EPDM-g-MAH@EPU/50% Cu, and was positively correlated with the resistance of artificial accelerated aging of the used adhesives.
引文
[1]李世祥.光电对抗技术.长沙:国防科技大学出版社,2000:1~34.
    [2]李国强,武文军,辛欣.当代隐身技术的研究现状和发展.国防科技,2005,30(4):22~25.
    [3]胡传炘.隐身涂层技术.北京:化学工业出版社,2004:120~182.
    [4]谢国华,吴瑞彬,吴伶芝,等.红外隐身材料的现状与展望.宇航材料工艺,2001,31(4):5~10.
    [5]李新华.国外涂料型红外隐身材料研制现状和发展方向分析.红外技术,1994,16(1):5~11.
    [6] Wang B, Sun X Q, Wang Z R. Study on stealth effect evaluation of infrared coating. Chinese Journal of Quantum Electronics, 2004,21(4):538~541.
    [7]蔣耀庭,王躍.红外隐身技术与发展.红外技术,2003,25(5): 7~9.
    [8]葛文奇.红外探测技术的进展、应用及发展趋势.光机电信息,2007,24(4): 33~37.
    [9]王力民,张蕊,林一楠,等.红外探测技术在军事上的应用.红外与激光工程,2008,37(6):570~574.
    [10] Ryan R, Adam C, David T, et al. Spherical sensor configuration. SPIE,2008, 6940: 694019.
    [11]高国龙.走向第3代HgCdTe红外探测器.红外,2004,10(11):35~38.
    [12]付伟.飞机光电隐身技术.航空兵器,2001, (4) :9~12.
    [13]陈衡.红外物理学.北京:国防工业出版社,1985:5~104.
    [14] Zueco J, Alhama F. Inverse estimation of temperature dependent emissivity of solid metals. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006,101(1):73~86.
    [15]汤定元.我国红外技术发展的回顾.激光与红外,1998,28(5): 261~266.
    [16] Zhang Y W, Zhang C G, Klemas V. Quantitative measurements of ambient radiation, emissivity and truth temperature of a greybody:methods and experimental results. Applied Optics, 1986, 25(20):3683~3689.
    [17] Tennyson C. Protective coatings for spacecraft materials. Surf. Coat. Technol. 1994,68:519~527.
    [18]仁菁.低发射率硫化物半导体颜料的制备及机理研究, [硕士学位论文].南京:南京航空航天大学,2007.
    [19]左永平.2A12、TC4微观组织及表面状态对红外发射率的影响研究, [硕士学位论文] .南京:南京航空航天大学,2008.
    [20]胡素芬.近代物理基础.浙江:浙江大学出版社,1988:1~200.
    [21] Atikins P W. Quanta:A Handbook of Concepts. London: Oxford University Press,1979:75~231.
    [22] Herzberg G. Molecular spectra and molecular structure. New York: R. Van Nostrand, 1966:642~766.
    [23]张光寅,蓝国祥.晶格振动光谱学.北京:高等教育出版社,1991:2~78.
    [24] P W克罗赛.红外技术基础(洪怀瑞).上海:上海科学技术出版社,1965:12~233.
    [25] Zueco J, Alhama F. Inverse estimation of temperature dependent emissivity of solid mletals. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006,101(1):73~86.
    [26]邹南智,朱又迈.关于红外半球全发射率与温度关系的讨论.红外技术,1997,19(3): 1~4.
    [27] Reynolds P M. Emissivity errors of infra-red pyrometers in relation to spectral response. Br. J. Appl. Phys., 1961,12 (3):111.
    [28]郦江涛,姜卫陵,赵云峰.红外隐身涂料的研究进展.导弹与航天运载技术,2002,(5): 69~73.
    [29]田乃林.红外隐身方法与材料研究.化工进展,2002,21(4):283~287.
    [30]马格林,曹全喜,黃雲霞.红外和雷达复合隐身材料-掺杂氧化物半导体.红外技术,2003, 25(4): 77~80.
    [31]宋兴华,於定华,马新胜,等.涂料型红外隐身材料研究进展.红外技术,2004,26(2): 9~12.
    [32] Kiyoshi C, Toshiyuki T, Takashi K, et al. Low-emissivity coating of amorphous diamond-like carbon/Ag-alloy multilayer on glass. Appl. Surf. Sci.,2005,246:48~51.
    [33] Aronson J R. Modeling the infrared reflectance and emittance of paints and coating. Bostonian: Adsabs. Harvard Edu. , 1982.
    [34]潘逴,赵振声,何华辉.低红外发射率材料的研究.华中科技大学学报(自然科学版), 2003,31(7): 28~30.
    [35] Booth R C, White EAD. Magneto-optic properties of rare earth iron garnet crystals in the wavelength range 1.1-1.7μm and their use in device fabrication. J.phys. D: Appl. Phys., 1984,17(3):579~587.
    [36]李春华,齐暑华,张剑,等.高分子材料在红外隐身中的应用.国外塑料,2005,23(9):26~30.
    [37]游毓聪,杜仕国,施冬梅,等.红外隐身涂料黏合剂的应用与研究.特种涂料与涂装2006,9(7):50~54.
    [38]张树海,苟瑞君.隐身技术的研究进展.华北工学院学报,2002,23 (2) :100~104
    [39]潘霞,王建营,孙家跃,等.红外隐身功能涂料的研究进展.国防科技,2001,171(8):44~46.
    [40]董伟.Schiff碱的合成及其红外隐身性能的研究, [硕士学位论文].南京:华东工学院,1999.
    [41]战凤昌,李锐良.专用涂料.北京:化学工业出版社,1996:321~358.
    [42] Agostino A. The space thermal signature model: principle and application. Mag. Proe. SPIE, 1987, 781:198~201.
    [43] Mar H Y, Zimmer P B. Low infrared emissivity paints comprising an oxime cured silicone binder. US patent, 4131593. 1978.
    [44] Supcoe R F. Blue - gray low infrared emitting coating. US patent, 4311623,1982.
    [45] Phillip R C, Jerry C E, Jody S L, et al. Infrared camouflage covering. US patent, 6127007, 2000.
    [46] Hubbard, Ronald N. Radio frequency transparent infrared reflective coating materials andmethods of making the same. US patent, 5506053. 1996.
    [47] Pine D J. Selfassembly of low-emissivity materials. AD-A386035,2000.
    [48] Tului M, Valle R, Mortoni, et al. Composite with a low emissivity in the medium and far infrared, and with a low reflectivity in the visible and near infrared. US patent, 7070857, 2006.
    [49] Bach W, Assfalg A. Materials for multispectral camouflage in the visual, IR and micro /millimetre - wave range. DE patent, 3606691, 1987.
    [50] Schaefer C. Low emissivity coatings on architectural glass [J]. Surface and Coatings Technology, 1997, 93(11):37~45.
    [51] Hugo G. Camouflage paint with low emission in heat radiation range and mfr. process. DE patent, 4418215, 1995.
    [52] Szczyrbowski J. New low emissivity coating based on TwinMag sputtered TiO2 and Si3N4 layers. Thin Solid Films, 1999, 351(1-2):254~259.
    [53]杜永,邢宏龙,陈水林.热红外隐身涂料的研究进展.涂料工业,2007,37(2):51~55.
    [54]张凯,马艳,范敬辉,等.低发射率红外隐身涂料研究进展.化学推进剂与高分子材料, 2008,6(1):21~25.
    [55]张卫东,冯小云,孟秀兰.国外隐身材料研究进展.宇航材料工艺,2000, 30 (3): 1~4.
    [56]张帆,王建营,杜海燕,等.红外隐身涂料研究进展.化学与粘合,2004, (2) : 87~89.
    [57]庄海燕,郑添水,任润桃,等.红外隐身涂料的研究现状及发展趋势.材料开发与应用,2006,21(3):43~46.
    [58]王自荣,余大斌.红外隐身涂料颜料发射率研究.上海航天,2000,17(1):24~26.
    [59]翁小龙,张捷,刘孝会.热红外低辐射率涂料的研制.表面技术,2001,30(4):36~38.
    [60]李齐方,于运花,杨庆泉,等.聚氨酯/纳米复合涂料的红外特性及其力学性能的研究.高分子材料科学与工程,2002,18(3):110~113.
    [61]王庭慰,程从亮,张其土.8~14μm波长低发射率红外隐身涂料的研究.光学技术,2005, 31(4):598~600.
    [62]汪小舟,周钰明,韩凤俊,等.胶原-In2O3纳米复合低红外发射率涂料的制备及性能研究.涂料工业,2006,36(8):40~42.
    [63]程从亮,李萍.聚氨酯涂料红外发射率性能研究.激光与红外,2007, 37(10): 1067~1070.
    [64]施冬梅,游毓聪,鲁彦玲,等.低发射率红外隐身涂料的研究.军械工程学院学报, 2008,20(3):76-78.
    [65]吕晓猛,刘祥萱,舒静.新型红外隐身涂料热辐射性能研究.化工新型材料,2008, 36(4):81~83.
    [66]张凯,马艳,郭静,等.低红外发射率韧性涂料的制备与表征.红外技术, 2009,31(2):87~89.
    [67] Twersky V. Interface effects in multiple scattering by large,low-refracting,absorbing particles. J.Opt. Soc. Am.,1970,60(7):908~914.
    [68] Twersky V. Absorption and multiple scattering by biological suspensions. J. Opt. Soc.Am., 1970,60(8):1084~1093.
    [69] Twersky V. Form and intrinsic birefringence. J. Opt. Soc. Am., 1975,65(3):239~245.
    [70] Twersky V. Transparency of pair-correlated,random distributions of small scatterers, with applications to the cornea. J. Opt. Soc. Am., 1975,65(5):524~530.
    [71] Twersky V. Propagation in correlated distributions of large-spaced scatterers. J. Opt. Soc. Am., 1983,73(3):313~320.
    [72] Twersky V. Wavelength-dependent refractive and absorptive terms for propagation in small-spaced correlated distributions. J. Opt. Soc. Am., 1983,73(11):1562~1567.
    [73] Twersky V. Propagation in pair-correlated distributions of small-spaced lossy scatters. J. Opt. Soc. Am., 1979,69(11):1567~1572.
    [74] Twersky V. Multiple scattering of waves and optical phenomena. J. Opt. Soc. Am., 1962,52(2):145~171.
    [75] Ishimaru A. Wave propagation and scattering in random media. New York: Academic,1978.
    [76] Chandrasekhar S. Radiative Transfer. London: Oxford U.P., 1950.
    [77] Kubelka P, Munk F. Ein beitrag zur optik des farbanstriche. Z.Tech.Phys.,1931,12:593~601.
    [78] Kubelka P. New contributions to the optics of intensely light-scattering materials. J. Opt. Soc. Am., 1948,38(5):448~457.
    [79] Kubelka P. New contributions to the optics of intensely light-scattering material Erratum. J. Opt. Soc. Am., 1948,38(12):1067~1073.
    [80] Kubelka P. New contributions to the optics of intensely light-scattering materials. PaII: Nonhomogeneous layers. J. Opt. Soc. Am., 1954,44(4):330~335.
    [81] Maheu B, Letoulouzan J N, Gouesbet G. Four-flux models to solve the scatterin transfer equation in terms of Mie parameters.Appl. Opt., 1984,23:3353~3362.
    [82] Maheu B, Gouesbet G. Four-flux models to solve the scattering transfer equation special cases. Appl. Opt., 1986,25(7):1122~1128.
    [83] Maheu B, Briton J P, Gouesbet G. Four-flux model and a Monte Carlo code comparisons between two simple, complementary tools for multiple scatterin calculations. Appl. Opt., 1989, 28(1):22~24.
    [84] Vargas W E, Niklasson G A. Forward-scattering ratios and average pathlengt parameter in radiative transfer models. J. Phys.:Condens. Mater., 1997,42(9):9083~9096.
    [85]Vargas W E, Greenwood P, Otterstedt J E, et al. Light scattering ipigmented coatings: experiments and theory. Solar Energy, 2000,68:553~561.
    [86] Vargas W E. Generalized four-flux radiative transfer model. App. Opt., 1998, 37(13):2615~2623.
    [87] Arancibia-Bulnes C A, Ruiz-Suárez J C. Spectral selectivity of cermets with larg metallic inclusions. J. Appl. Phys., 1998, 83:5421~5426.
    [88] Modest M F. Radiative heat transfer. New York: Mc Graw-Hill, 1993.
    [89]孙汉东,樊震,常大定.提高高温红外辐射涂层发射率的途径.红外技术,1990,12(3):31~34.
    [90]刘凌云,龚荣洲,聂彦,等.涂层的热红外发射率计算模型.光子学报,2006,35(12):1903~1907.
    [91] M.玻恩,E.沃耳夫.光学原理下册(黄乐天).北京:科学出版社,1981:822~908.
    [92] Abeles F. Optical Properties and electronic structure of metals and alloys. Amsterdam: North-Holland, 1966:177~201.
    [93] Campo L, P′erez-S′aez R B, Tello M J. Armco iron normal spectral emissivity measurements. International Journal of Thermophysics. 2006, 27(4):1160~1172.
    [94] Hu C X. Stealthy coating technique. Beijing: Chemical Industry Press, 2004:121~181.
    [95]陈军.光学电磁理论.北京:科学出版社,2005:106~118.
    [96]徐文兰.含颗粒涂层的等效光学常数.物理学报,1998,47(9):1555~1563.
    [97]王之江.光学技术手册(上) .北京:机械工业出版社,1987:8~59.
    [98]魏无际,俞强,崔益华,等.高分子化学与物理基础.北京:化学工业出版社,2005:126.
    [99] Chow W S, Bakar A A, Mohd Ishak Z A. Effect of maleic anhydride-grafted ethylene–propylene rubber on the mechanical, rheological and morphological properties of organoclay reinforced polyamide 6/polypropylene nanocomposites. Eur. Polym., 2005,41(4) 687~696.
    [100] Pasbakhsh P, Ismail H, Ahmad Fauzi M N, et al. Influence of maleic anhydride grafted ethylene propylene diene monomer (MAH-g-EPDM) on the properties of EPDM nanocomposites reinforced by halloysite nanotubes. Polym. Test., 2009,28 (5):548~559.
    [101] Grigoryeva O, Karger-Kocsis J. Melt grafting of maleic anhydride onto an ethylene–propylene– diene terpolymer (EPDM). Eur. Polym., 2000,36 (7):1419~1429.
    [102] Silva C D, Haidar B, Vidal A, et al. Preparation of EPDM/synthetic montmorillonite nanocomposites by direct compounding.Mater. Sci., 2005,40 (7):1813~1818.
    [103]王润珩,高忠良,陈连周.粘接过程中配位键力的研究.粘接,1999,20(6):8~10.
    [104] Hong S H, Lee D W, Kim B K. Manufacturing of aluminum flake powder from foil scrap by dry ball milling process. J. Mater. Pro. Tech., 2000,100 (1-3):105~109.
    [105] Zueco J, Alhama F. Inverse estimation of temperature dependentemissivity of solid metals. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 101(1):73~86.
    [106] Supcoe R F, Greenberg M. Dark coating with low solar infrared absorbing properties. US patent: 5749959, 1998.
    [107] Shan Y, Zhoou Y M, Cao Y, et al. Preparation and infrared emissivity study of collagen-g- PMMA/In_2O_3. Nanocomposite Materials Letters, 2004 (58):1655~1660.
    [108] Kou W, Yang L. Error analysis of temperature measurement using infrared thermography for navalship. Energy Conversion and Application, 2001, (2): 1301~1304.
    [109] Lews C F. Materials keep a low profile. Materials Engineering, 1988, 6(3): 37.
    [110] Shao C M, Xu G Y, Guo T C, et al. Study of modified polyethylene used as low infrared radiation material. Infrared Technology, 2008,30(7):412~415.
    [111]邵春明,徐国跃,余慧娟,等.改性三元乙丙橡胶用于红外隐身涂层的研究.宇航材料工艺,2008,(3):62~65.
    [112]刘登良.涂层失效分析的方法和工作程序.北京:化学工业出版社,2003:7~32.
    [113] Alexander M R, Beamson G, Blomfield C J, et al. Interaction of carboxylic acids with the oxyhydroxide surface of aluminium: poly(acrylic acid), acetic acid and propionic acid on pseudoboehmite. J. Elect. Spect. Rel. Phenom., 2001, 121(1-3):19~32.
    [114] Kurdi J, Ardelean H, Marcus P, et al. Adhesion properties of aluminium-metallized/ammonia plasma-treated polypropylene spectroscopic analysis (XPS, EXES) of the aluminium/ polypropylene interface. Appl. Surf. Sci., 2002, 189(1-2):119~128.
    [115]郑国娟.漆膜附着力及其测试方法.分析测试,2003, (2):30~32.
    [116]黄子勋.涂料结构学.北京:北京航空航天大学出版社,1992:79~103.
    [117]庞启财.防腐蚀涂料涂装和质量控制.北京:化学工业出版社,2003:17~41.
    [118]马庆麟.涂料工业手册.北京:化学工业出版社,2001:1109~1130.
    [119]周陈亮,肖利秋,窦贤飞.电化学方法在涂层/金属体系耐蚀性能评估中的应用.涂料工业,1998,(9):42~44.
    [120]刘小平.涂层防腐蚀的电化学研究.涂料工业,1999,(2):37~41.
    [121] Sekine I. Recent evaluation of corrosion protective paint films by electrochemical methods. Progress in organic coating, 1997, 31(1):73~80.
    [122] Kouloumbi N, Tsangarisl G M, Nitodas1 S, et al. Evaluation of the anticorrosive behaviour of organic coatings applied on galvanised steel surfaces. Surface Coatings International Part B: Coatings Transactions, 1998, 81(1):30~36.
    [123]杨丽霞.有机重防蚀涂层耐蚀性能研究. [硕士学位论文].武汉:机械科学研究院,2002.
    [124] Murray J N. Electrochemical test methods for evaluating organic coatings on metals: partⅢ. Progress in Organic Coating, 1997, 31(4): 375~391.
    [125]李国莱.电阻法测定介质在高分子材料中扩散系数的研究.中国腐蚀与防护学报, 1983,3(3):159~163.
    [126] Castela A S L, Simoes A M, Ferreira M G S. E.I.S. evaluation of attached and free polymer films. Progress in organic coatings, 2000,38(1):1~7.
    [127] Rammelt U, Reinhard G. Application of electrochemical impedance spectroscopy (EIS) for characterizing the corrosion-protective performance of organic coatings on metals, Progress in Organic Coatings, 1992, 21(3):205~226.
    [128] Monetta T, Bellucci F, Nicodemo L, et al. Protective properties of epoxy-based organic coatings on mild steel, Progress in Organic Coatings. 1993, 21(4):353~369.
    [129]杨丽霞,张三平,林安,等.有机涂层渗水率及金属界面腐蚀的研究进展.材料保护2001, 34(10):88-90.
    [130]张春亚,胡裕龙,袁东红,等.在3%NaCl溶液中试验参数对碳钢点蚀电位的影响.腐蚀科学与防护技术,2005,17(3):181~183.
    [131]曹楚南.腐蚀电化学原理(第二版).北京:化学工业出版社,2004: 166~244.
    [132]张鉴清,曹楚南.电化学阻抗谱方法研究评价有机涂层.腐蚀与防护,1998,19(3): 99~104.
    [133]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社,2004: 151~185.
    [134] Leidheiser H. Electrical and electrochemical measurements as predictors of corrosion at the metal-organic coating surface. Progress in organic coatings, 1979, 7(1):79~104.
    [135]刘引烽.涂料界面原理与应用.北京:化学工业出版社,2007:108~161.
    [136] Creus J, Mazille H, Idrissi H. Porosity evaluation of protective coatings onto steel, through electrochemical techniques. Surf. Coat. Technol., 2000, 130(2-3):224~232.
    [137] Chaudhari S, Patil P P. Corrosion protective poly(o-ethoxyaniline) coatings on copper. Electrochim. Acta, 2007, 53(2): 927~933.
    [138] Chaudhari S, Sainkar S R, Patil P P. Anticorrosive properties of electrosynthesized poly(o-anisidine) coatings on copper from aqueous salicylate medium. J. Phys. D: Appl. Phys., 2007, 40:520~533.
    [139] Bonnel K, Le Pen C, Pebere N. E.I.S. characterization of protective coatings on aluminium alloys. Electrochimica Acta, 1999, 44(24): 4259~4267.
    [140] Bonora P L, Deflorian F, Fedrizzi L. Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion. Electrochimica Acta, 1996,41(7-8):1073~1082.
    [141] Ribaut C, Reybier K, Torbiero B, et al. Strategy of red blood cells immobilisation onto a gold electrode: Characterization by electrochemical impedance spectroscopy and quartz crystal microbalance. IRBM, 2008, 29(2-3): 141~148.
    [142]李桂林.环氧树脂与环氧涂料.北京:化学工业出版社,2003:3~208.
    [143] Eizb I Y, Anatolym K. Kinetics of the step-growth polymerization of epoxide in the p resence of the linear polyurethane. Reactive & Functional Polymers, 1997,33:351~357.
    [144]王恩清.无溶剂环氧聚氨酯涂料的研制.涂料工业,2004,34 (4):11~17.
    [145] Rosu L, Cascaval C N, Ciobanu C. Effect of UV radiation on the semi-interpenetrating polymer networks based on polyurethane and epoxymaleate of bisphenol A. Journal of Photochemistry and Photobiology A: Chemistry, 2005,169(2):177~185.
    [146] Ameduri B, Boutevin B, Kostov G. Fluoroelastomers: synthesis, properties and applications. Prog. Polym. Sci., 2001,26(1): 105~187.
    [147] Hougham G, Johns K, Cassidy P E, et al. Fluoropolymers:synthesis and polymerization, Vol 1 and 2. NewYork: Plenum Press:1999:1~208.
    [148] Scheirs J. Modern fluoropolymers. Victoria, Australia: Wiley, 1997:1~259.
    [149] Flemming R G, Capelli C C, Cooper S L, et al. Bacterial colonization of functionalized polyurethanes. Biomaterials, 2000, 21(3): 273~281.
    [150] Kim Y S, Lee J S, Ji Q, et al. Surface properties of fluorinated oxetane polyol modified polyurethane block copolymers. Polymer, 2002, 43(25):7161~7170.
    [151] Tonelli C, Trombetta T, Scicchitano M, et al. New fluorinated thermoplastic elastomers. J. Appl. Polym. Sci.,1996,59(2):311~327.
    [152] Aneja A, Wilkes G L. A systematic series of‘model’PTMO based segmented polyurethanes reinvestigated using atomic force microscopy. Polymer, 2003, 44(23):7221~7728.
    [153]丛树枫,喻露如.聚氨酯涂料.北京:化学工业出版社,2003:185~288.
    [154]张晓莉,郎建峰.常温固化含氟聚氨酯涂料的研究进展.上海涂料,2006,44(11):26~28.
    [155] Brady R F. Studying applications for fluorinated polyurethanes. Journal of Protective Coatings and Linings, 1998 (3): 83~89.
    [156] Yang X F, Li J, Crollb S G, et al. Degradation of low gloss polyurethane aircraft coatings under UV and prohesion alternating exposures. Polymer Degradation and Stability, 2003,80(1):51~58.
    [157]贾铮,戴长松,陈玲.电化学测量方法.北京:化学工业出版社,2006:46~184.
    [158] Zhang T, Zeng C L. Corrosion protection of 1Cr18Ni9Ti stainless steel by polypyrrole coatings in HCl aqueous solution. Electrochim. Acta, 2005,50 (24):4721~4727.
    [159]唐正姣,欧阳贻德,陈中.碳钢表面TiO2涂层耐蚀性和耐高温氧化性的研究.涂料工业, 2003,33(2):434~437.
    [160] Conde A, De Damborenea J, Duran A, et al. Protective properties of a sol-gel coating on zinc coated steel. J. Sol-Gel Sci. Technol., 2006,37(1) 79~85.
    [161] Chen F, Zhou H, Yao B, et al. Corrosion resistance property of the ceramic coating obtainedthrough microarc oxidation on the AZ31 magnesium alloy surfaces. Surf. Coat. Technol., 2007,201(9-11) 4905~4908.
    [162] Zhong X K, Li Q, Hu J Y. et al. Characterization and corrosion studies of ceria thin film based on fluorinated AZ91D magnesium alloy. Corrosion Science, 2008,50(8):2304~2309.
    [163] Pawar P, Gaikwad A B, Patil P P. Corrosion protection aspects of electrochemically synthesized poly(o-anisidine-co-o-toluidine) coatings on copper. Electrochim. Acta, 2007,52(19):5958~5967.
    [164] Shinde V, Sainkar S R, Patil P P, Corrosion protective poly(o-toluidine) coatings on copper. Corros. Sci., 2005,47(6):1352~1369.
    [165] Tuken T, Arslan G, Yazii B, et al. The corrosion protection of mild steel by polypyrrole/ polyphenol multilayer coating. Corros. Sci., 2004,46(11):2743~2754.
    [166]陈炳峰,方亦浩,徐晓刚.飞机的红外辐射特征研究.航空兵器,2005,(5):31~33.
    [167]童国忠.现代涂料仪器分析.北京:化学工业出版社,2006:132~198.
    [168]贺传兰,张银生.聚氨酯材料的老化降解.聚氨酯工业, 2002,17(3):1~5.
    [169]张晓莉,郎建峰.常温固化含氟聚氨酯涂料的研究进展.上海涂料,2006,44(11):26-28.
    [170]武利民.涂料技术基础.北京:化学工业出版社,1999:64.
    [171]刘娅莉,徐龙贵.聚氨酯树脂防腐蚀涂料及应用.北京:化学工业出版社,2006:217~223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700