用户名: 密码: 验证码:
粉末高温合金FGH95高速切削加工表面完整性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉末高温合金具有晶粒小、组织均匀、无宏观偏析、合金化程度高、屈服强度高及抗疲劳性能好等优点,是现代高推重比航空发动机涡轮盘等关键高温部件的首选材料。切削加工表面完整性对航空发动机零部件的疲劳寿命等服役性能起着至关重要的作用。但是目前对粉末高温合金的切削加工表面完整性的研究几乎还是空白。本文主要针对FGH95粉末高温合金的材料特性,对其切削加工特点进行研究,重点研究切削加工表面的表面粗糙度,加工硬化、残余应力、白层及表面塑性变形及其影响因素,为生产实际中控制切削参数,提高粉末高温合金零部件的服役性能提供理论和技术指导。
     分析研究FGH95粉末高温合金的组织结构、相、合金中的非金属夹杂以及力学性能,为切削表面微观组织结构的转变以及表面物理力学性能的变化的研究提供基础;与GH4169高温合金的切削加工性进行对比分析,通过切削试验研究切削速度、进给量和切削深度对切削力和切削温度的影响规律;研究切削速度对切屑形貌的影响,分析其难加工特点;采用正交铣削试验获取切屑根部,研究切削过程中材料的断裂特性,探索FGH95合金切屑形成的周期性断裂机制,揭示FGH95合金切削过程的延性断裂本质,为研究其切削表面完整性奠定基础。
     建立考虑切削表面弹性回复的正交铣削FGH95合金表面粗糙度模型,研究切削深度和切削速度对FGH95合金正交铣削表面粗糙度的影响规律。发现随着切削深度的增大,表面粗糙度增大。在常规切削速度范围内的表面粗糙度值明显大于高速切削得到的表面粗糙度。采用具有不同后刀面磨损量的涂层硬质合金刀片进行FGH95合金切削加工试验,揭示刀具后刀面磨损量对表面粗糙度的影响规律,确定切削加工FGH95合金时涂层硬质合金刀具的磨钝标准。
     基于切削加工过程中切削力和已加工表面的应力关系建立切削加工表面硬化层深度预测模型,通过切削试验验证该模型的有效性。对FGH95切削表面的残余应力进行试验测试和有限元仿真研究,探索残余应力沿切削深度方向的分布规律。
     基于切削第四变形区形成理论建立切削加工表面塑性变形计算模型,对表面塑性变形及塑性变形深度进行理论预测,在不同切削速度下进行FGH95镍基粉末高温合金切削试验和有限元仿真表面塑性剪切应变和塑性变形深度验证该理论模型的有效性。结果表明:在常规切削速度下,随着切削速度提高,已加工表面的塑性变形深度减小,塑性变形深度在0.02-0.04mm之间;已加工表面的塑性剪应变随着切削速度的提高而增大,已加工表面塑性剪应变在1.2-4.0之间。高速切削加工FGH95粉末高温合金时在其他切削用量保持不变的情况下,获得表面塑性变形深度和表面塑性剪应变较小的切削速度区间为400~2400m/min。已加工表面的塑性剪应变在沿切削深度方向上服从负指数分布,即在已加工表面上具有最大值,然后沿着垂直于已加工表面方向塑性剪应变值急剧减小。
     对FGH95合金基体和已加工表面白层进行EDS能谱、XRD衍射分析研究,结果表明:FGH95合金白层与基体组织不同,白层中的强化相γ'含量比基体中增加8%-15%,且发生了γ'相的细化;FGH95合金中的Ni基固溶体在切削加工过程中发生物相变化,白层中基体相γ和强化相γ'晶格错配度增大;白层的结晶度较差且晶粒发生细化,切削速度越高,晶粒细化程度越严重,合金中的大、中型晶粒的个数不断减少,细小晶粒的个数不断增多。基于切削加工过程中切削力及切削温度和加工后表面白层厚度分析,研究切削应力、应变率和切削温度对白层厚度的影响规律,揭示FGH95合金切削加工表面白层形成的形相变耦合机制。结果表明:白层的形成与切削过程中的应力和应变率有关,随着应力和应变率的增大,白层厚度增大;切削温度的升高也导致白层厚度的增大,但是在低于材料相变临界温度时,白层仍然形成,这说明严重的塑性变形在白层形成过程中起着不可或缺的作用。
     本课题得到国家重点基础研究发展计划(973)(2009CB724401)和山东省自然科学杰出青年基金(JQ200918)的支持
PM superalloy with high tensile properties has been developed for turbine disk applications in advanced turbo-engines due to its homogeneous and fine grains. Although machined surface integrity of PM superalloy has significant impacts on the parts service performance and fatigue life, there is lack of sysmatic research done in this area. Thus, the aim of this dissertation is to investigate the surface integrity in machining of PM nickel-based superalloy FGH95. In this study, the machinability of FGH95has been investigated according to its material properties. The machined surface integrity such as surface roughness, work-hardening, residual stress, white layer, surface plastic deformation and its influencing factors in the machining of FGH95are analyzed. The outputs of this research can provide theoretical base and technical guidance for the control of cutting parameters to improve the PM superalloy parts machined surafce properties in the actual production.
     The investigations on the microstructure, phase, non-metallic inclusions inside the material and material mechanical properties can provide references in the machined surface microstructure and mechanical properties changes in the machining of FGH95. Contrast to the machinability of GH4169superalloy, the effects of cutting parameters on the cutting forces and cutting temperature are revealed. The effects of cutting speed on chips morphology are investigated. In order to study the chip roots fracture properties in the cutting process, the orthogonal milling experiments are carried out and SEM observation is used to analyze the chip root fracture properties. The periodical fracture mechanism in FGH95chip formation is proposed, the nature in the machining of FGH95is revealed, which lays the foundation for the study of the machined surface integrity.
     Taking into account the influence of elastic recovery on machined surface, the surface roughness theoretical model in orthogonal milling of FGH95is established. The influences of depth of cut and cutting speed on the surface roughness are investigated in orthogonal milling of FGH95. The results show that the machined surface roughness increases with the increasing of depth of cut. The roughness values generated in the conventional cutting speed range are higher than roughness values generated in the high speed machining. The effects of tool flank wear on the machined surface roughness are investigated through the cutting tests. The blunt standard of coated carbide cements in the cutting of FGH95PM superalloy is proposed. The depth of work-hardening layer model is established according to the relationship of cutting forces and stress in the machined surface, the reliability of this model is verified through the cutting tests. The residual stress in the FGH95machined surface is analyzed through the cutting tests and finite element simulation, and the distribution of residual stress along the depth of cut direction is revealed.
     Computational model of the machined surface plastic deformation is developed based on the the fourth deformation zone formation theory. The surface plastic deformation and its distribution are predicted by the developed computational model. The cutting tests and finite element simulation for the machining of FGH95are emloyed to verify the validity of computational model for machined surface plastic deformation. The results show that in the conventional cutting speeds, with the increasing of cutting speed the depth of machined surface plastic deformation decreased, the depth of plastic deformation is in0.02-0.04mm. However, the machined surface plastic shear strain increases with the increasing of cutting speed, the machined surface plastic shear strain is in1.2-4.0. In high speed machiing, smaller depth of machined surface plastic deformation and plastic shear strain is generated in the cutting speeds range of400-2400m/min. The machined surface plastic deformation has maximum value on the machined surface and decreases rapidly along perpendicular to the machined surface direction.
     Microstrctures of white layer and bulk material have significantly differences under the EDS, XRD analysis. Strengthening phase γ' contents in white layer is higher than that in the bulk material, and the strengthening phase refinement is appeared. Ni-based solid solution phase of FGH95superalloy changes in the cutting process and the lattice mismatch of strengthening phase γ' and the matrix phase γ is increased. White layer has poor crystallinity and occurrs grain refinement, with the increasing of cutting speed, the grain refinement is more serious. With the increasing of cutting speed, the number of large-sized and medium-sized grains continus to reduce but the number of small-sized grains increases. The deformation phase transformation mechanism in PM superalloy machined surface white layer formation is explored. The effects of cutting speed and tool flank wear on FGH95machined surface white layer thickness are investigated. The influences of cutting stress, strain rate and cutting temperature on white layer thickness are analyzed. The results show that with the increase of cutting stress and strain rate, white layer thickness increases. The increasing of cutting temperature also induces to increase of white layer thickness, but white layer is still formed when the cutting temperature is lower than material phase transition temperature, which indicates that severe plastic deformation plays an integral role in the formation of white layer.
     This work is sponsored by National Basic Research Program of China (973)(2009CB724401) and Foundation of Shandong Province of China for Distinguished Young Scholars (JQ200918) for financial supports.
引文
[1]邹金文,汪武祥.粉末高温合金研究进展与应用[J].航空材料学报.2006,26(3):244-250
    [2]Lee K O, Bae K H, Lee S B, Copparison of prediction methods for low-cycle fatigue life of HIP superalloys at elevated temperatures for turbopump reliability[J]. Material Science and Engineering:A.2009,519(1-2):112-120
    [3]Yang H Q, Bao R, Zhang J Y, et al, Crack growth behavior of a nickel-based powder metallurgy superalloy under elevated temperature [J]. International Journal of Fatigue.2011,33:632-641
    [4]Guo W M, Wu J T,. Zhang F G, Zhao M H, Microstructure, properties and heat treatment process of powder metallurgy superalloy FGH95[J]. Journal of Iron and Steel Research.2006,13(5):65-68
    [5]汪武祥,毛健,呼和,等.热等静压FGH95粉末涡轮盘[J].材料工程.1999.12:39-43
    [6]岳彩旭,刘献礼,王宇,等.硬态切削与磨削工艺的表面完整性[J].工具技术.2008,42(7):13-18
    [7]贾建,陶宇,张义文,等.第三代粉末冶金高温合金Rene104的研究进展[J].粉末冶金工业.2007,17(3):36-43
    [8]陈焕铭,胡本芙,张义文,等.飞机涡轮盘用镍基粉末高温合金研究进展[J].材料导报.2002,16(11):17-19
    [9]贾成厂,田高峰.粉末高温合金[J].粉末冶金.2011,2:19-25
    [10]Binet C, Heaney D F, Spina R, Tricarico L. Experimental and numerical analysis of metal injection molded products[J]. Journal of Materials Processing Technology. 2005,164-165:1160-1166
    [11]Krone L, Schuller E, Bram M, et al. Mechanical behaviour of NiTi parts prepared by powder metallurgy methods[J]. Materials Science and Engineering:A. 2004,1-2:185-190
    [12]Tang C F, Pan F, Qu X H, et al. Nickel base superalloy GH4049 prepared by powder metallurgy [J]. Journal of Alloys and Compounds.2009,474:201-205
    [13]宋迎东,高德平.粉末冶金涡轮盘的性能与特点[J].燃气涡轮试验与研究. 1997,(4):48-54
    [14]Zheng L, Zhang M C, Chellali R, et al. Investigation on the growing, cracking and spalling of oxides scales of powder metallurgy Rene95 nickel-based superalloy[J]. Applied Surface Science.2011,257:9762-9767
    [15]席文君,邢洁,张义文FGH95粉末冶金高温合金长期时效的组织稳定性[J].稀有金属材料与工程.2011,40(8):1397-1401
    [16]孙兼,邹金文,刘培英.盘件用粉末高温合金的研究与发展[J].航空工程与维修.2001,1:28-30
    [17]张义文,上官永恒.粉末高温合金的研究与发展[J].粉末冶金工业.2004,14(6):30-42
    [18]Field M, Kahles J F. The surface integrity of machined and ground high strength steels[J]. DMIC Report.1964,210:54-77
    [19]裴旭明.加工工艺对机械零件表面完整性的影响[J].郑州轻工业学院学报.2003,18(1):21-25
    [20]王贵成,洪泉,朱云明,等.精密加工中表面完整性的综合评价[J].兵工学报.2005,26(6):820-824
    [21]杨茂奎,任敬心.加工表面完整性对GH4169高温合金疲劳寿命的影响[J].航空精密制造技术.1996,32(6):28-31
    [22]韩凤麟.粉末冶金实用手册-汽车、摩托车零件[M].北京:兵器工业出版社.1996:140-146
    [23]Furrer D. Forging aerospace components [J]. Advanced Materials & Processes. 1999,155:33-37
    [24]Salak A, Selecka M, Danniger H. Machinability of power metallurgy steels[M]. Cambridge International Science Publishing.2005
    [25]Axinte D A, Andrews P, Li W. Turning of advanced Ni based alloys obtained via powder metallurgy route [J]. Annals of the CIRP.2006.1(55):1-4
    [26]谭天.粉末冶金零件的加工, WMEM.1998,11(4):26-28
    [27]Don Graham. Machining PM parts[J]. Manufacturing Engineering. 1998,120(1):64-67
    [28]姜雪梅.粉末高温合金涡轮盘机械加工技术研究[J].航空制造技术2010,(12):89-93
    [29]辛民,王西彬,康运江,等.高速干切削铁基粉末冶金零件时细晶粒硬质合金刀具的切削性能研究[J].工具技术.2006,40(6):7.10
    [30]乔阳,艾兴,刘战强,等.涂层刀具铣削粉末冶金镍基高温合金试验研究[J].华南理工大学学报(自然科学版).2010,38(8):83-88
    [31]Veldhuis S C, Dosbaeva G K, Elfizy A, et al. Investigations of white layer formation during machining of powder metallurgical Ni-based ME16 superalloy[J]. Journal of Materials Engineering and Performance.2009,19(7):1031-1036
    [32]任敬心,吴小玲,张研,等.立方氮化硼刀片车削粉末高温合金的刀具磨损[J].航空制造技术.2001,(1):22-26
    [33]韩立发,夏伟,屈胜官.陶瓷刀具车削铁基粉末冶金复合材料时的磨损机理研究[J].工具技术.2007,41(4):7-10
    [34]刘阳,赵秀芬.航空粉末冶金高温合金的车削加工[J].航空制造技术.2010,(15):44-46
    [35]Soo S L, Hood R, Aspinwal D K, et al. Machinability and surface integrity of RR1000 nickel based superalloy[J]. CIRP Annals-Manufacturing Technology. 2011,60(1):89-92
    [36]Li W, Withers P J, Axinte D, et al. Residual stresses in face finish turning of high strength nickel-based superalloy[J]. Journal of Materials Processing Technology. 2009,209:4896-4902
    [37]Kwong J, Axinte D A, Withers P J. The sensitivity of Ni-based superalloy to hole making operations:Influence of process parameters on subsurface damage and residual stress[J]. Journal of Materials Processing Technology. 2009,209:3968-3977
    [38]Ranganath S, Guo C, Hegde P. A finite element modeling aproach to predicting white layer formation in nickel superalloys[J]. CIRP Annals-Manufacturing Technology.2009,58:77-80
    [39]胡本芙,章守华.镍基粉末高温合金FGH95涡轮盘材料研究[J].金属热处理学报.1997,18(3):28-36
    [40]中华人民共和国航空行业标准—涡轴发动机用FGH95粉末高温合金盘形件规范.国防科学技术工业委员会,HB7727-2002.2003.02.01
    [41]郭建亭.高温合金材料学[M].科学出版社.2008.4
    [42]国为民,吴剑涛,张凤戈,等.不同成型工艺条件下FGH95粉末高温合金中夹杂物对材料力学性能的影响[J].中国材料科学技术与设备.2006,2:45-47
    [43]李晓,张麦仓,张丽娜,等.夹杂物对粉末高温合金力学性能的影响[J].特殊钢.2001.2,22(1):25-28
    [44]郭伟彬.夹杂物对粉末高温合金疲劳性能的影响[J].理化检验(物理分册).2008.5
    [45]国为民,吴剑涛,张凤戈,等.FGH95镍基高温合金粉末中的夹杂及其对合金疲劳性能的影响[J].粉末冶金工业.2000.6,10(3):23-28
    [46]黄智斌,朱冬梅,罗发,等.K424合金的高温氧化行为和红外发射率研究[J].稀有金属材料与工程.2008,37(8):1411-1414
    [47]辛民,王西彬,康运江,等.镍基粉末冶金零件的切削试验研究[J].工具技术.2005,39(6):14-17
    [48]Sathyan S, Shreyes N M. Effect of finite edge radius on ductile fracture ahead of the cutting tool edge in micro-cutting of A12024-T3[J]. Materials Science and Engineering:A.2007,474(1-2):283-300
    [49]Shaw M C. Metal cutting principles[M]. Clarendon Press. Oxford,1984.
    [50]Vyas A, Shaw M C. Mechanics of saw-tooth chip formation in metal cutting[J]. Trans, ASME:Journal of Manufacturing Science and Engineering.1999:163-172
    [51]Davies M A, Chou Y, Evans C J. On the chipmorphology, tool wear and cutting mechanics in finish hard turing[A]. Annals of the CIRP.1996,45(1):77-82
    [52]杨扬,程信林.绝热剪切的研究现状与发展趋势[J].中国有色金属学报.2006,1(3):401-408
    [53]Shaw M C, Vyas A. Chip formation in machining hardened steels[J]. Annals of the CIRP.1998,47:29-32
    [54]Cemal M C, Cihat E, Ilker D. Mathematical modeling of surface roughness for evaluating the effects of cutting parameters and coating material [J]. Journal of Materials Processing Technolog.2009,209:102-109
    [55]Lawani D I, Mehta N K, Jain P K, Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel [J]. Journal of Materials Processing Technology. 2008,206:167-179
    [56]Pawade R S, Joshi S S, Brahmankar P K, et al. An investigation of cutting forces and surface damage in high-speed turning of Inconel718[J]. Journal of Materials Processing Technology.2007,192-193:139-146
    [57]陈日曜.金属切削原理[M].北京:机械工业出版社,1993
    [58]孙玉芹,孟兆新.机械设计精度基础[M].北京:科学出版社,2003
    [59]刘正林.摩擦学原理[M].北京:高等教育出版社,2009.
    [60]科拉格里斯基,多贝钦,孔巴洛夫,等.摩擦磨损计算原理[M].北京:机械工业出版社,1982
    [61]杨佳通.弹性力学[M].北京:高等教育出版社,2005
    [62]Nikolaev V A. Effect of porosity on the size of surface microirregularities in the finish lathe-turning and smoothing of sintered materials[J]. Belorussian Polytechnic Institute. Translated from Poroshkovaya Metallurgiya,1980, 9(213):94-99
    [63]王盘鑫,邹仲元FGH95和Rene95合金热诱导孔隙的研究[J].北京钢铁学院学报.1987,(2):118-123
    [64]Korkut I, Donertas M A. The influence of feed rate and cutting speed on the cutting forces, surface roughness and tool-chip contact length during face milling[J]. Materials and Design.2007,28:308-312
    [65]张泰昌.表面缺陷与表面粗糙度的区分及计算[J].机械工艺师.1998.1:27-28
    [66]Zhou J M, Bushlya V, Stahl J E. An investigation of surface damage in the high speed turning of Inconel718 with use of whisker reinforces ceramic tools[J]. Journal of Materials Processing Technology.2012,212:372-384
    [67]Pawade R S, Joshi S S, Brahmankar P K. Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel718[J]. International Journal of Machine Tools & Manufacture.2008,48:15-28
    [68]Ginting A, Nouari M. Surface integrity of dry machined titanium alloys[J]. International Journal of Machine Tools & Manufacture.2009,49:325-332
    [69]Iino Y, Kim T Y, Mun S D. Machined surface plastic strain in orthogonal cutting by subsequent recrystallizations technique[J]. Wear.1996,199:211-216
    [70]Guo Y, Christopher S, Compton W D. Srinivasan Chandrasekar, Controlling deformation and microstructure on machined surfaces[J]. Acta Materialia. 2011,59:4538-4547
    [71]Guo Y, MSaoubi R, Chandrasekar S. Control of deformation levels on machined surfaces[J]. CIRP Annals-Manufacturing Technology.2011,60:137-140
    [72]Lin Z C, Lo S P. A study of deformation of the machined workpiece and tool under different low cutting velocities with an elastic cutting tool[J]. International Journal of Mechanical Science.1198,40(7):663-681
    [73]Schmutz J, Brinksmeier E, Bischoff E. Sub-surface deformation in vibration cutting of copper[J]. Journal of the International Societies for Precision Engineering and Nanotechnology.2011,25:218-223
    [74]Zhu Y H, To S, Lee W B, et al. Ultra-precision raster milling-induced phase decomposition and plastic deformation at the surface of a Zn-Al-based alloy [J]. Scripta Materialia.2010,62:101-104
    [75]Ghadbeigi H, Bradbury S R, Pinna C, et al. Determination of micro-scale plastic strain caused by orthogonal cutting[J]. International Journal of Machine Tools & Manufacture.2008,48:228-235
    [76]Mansori M E, Mkaddem A. Surface plastic deformation in dry cutting at magnetically assisted machining[J]. Surface & Coatings Technology. 2007,202:1118-1122
    [77]Valiev R Z, Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Progress in Materials Science. 2006,51:881-981
    [78]Sung L K, David A. Dornfeld, burr formation and fracture in oblique cutting[J]. Journal of Materials Processing Technology.1996,62:24-36
    [79]艾兴.高速切削加工技术[M].国防工业出版社,2004
    [80]Lee E H, Shaffer B W. The theory of plasticity applied to a problem of machining[J]. Trans ASME, Journal of Applied Mechaanics.1952,18:405-413
    [81]Ko S L, Dornfeld D A. Analysis and modeling of burr formation and breakout in metal[J]. ASME,1989,12:79-92
    [82]Sung Y C. Plastic strain analysis of the surface damage in metal cutting[D]. The Pennsylvania State University,1996
    [83]吴继华.基于应变梯度塑性理论的正交微切削变形研究[D].山东大学博士学位论文,2009
    [84]Abdul B S, Mohan Y R, Wang B P. Plastic deformation analysis in machining of Inconel718 nickel-base superalloy using both experimental and numerical methods[J]. International Journal of Mechanical Sciences.1991,33(10):829-842
    [85]刘战强,吴继华,史振宇,等.金属切削变形本构方程的研究[J].工具技术.2008,42(3):3-9
    [86]Monaghan J, Brazil D. Modeling the flow processes of a particle reinforced metal matrix composite during machining [J]. Composities Part A:Applied Science and Manufacturing.1998,29A:87-99
    [87]钱桦,习宝田.X射线衍射半高宽在研究回火残余应力中的作用[J].林业机械与土木设备.2004,32(9):19-22
    [88]王素玉.高速铣削加工表面质量的研究[D].山东大学博士论文,2006.4
    [89]RiKio H, Eiji K, Norio K, et al. Generation mechanism of work hardened surface layer in metal cutting[J]. JSME International Journal.2004,47(l):405-411
    [90]Su J C. Residual stress modeling in machining processes[D]. Georgia Institute of Technology,2006.12
    [91]Mohammadpour M, Razfar M R, Saffar S J. Numerical investigating the effect of machining parameters on residual stresses in orthogonal cutting[J]. Simulation Modeling Practice and Theory.2010,18:378-389
    [92]刘倩倩,刘兆山,宋森,等.残余应力测量研究现状综述[J].机床与液压.2011,39(11):135-124
    [93]汪煜,邹金文,王仁智,等.一种粉末冶金高温合金涡轮盘热处理残余应力分析[J].动力与能源用高温结构材料—第十一届中国高温合金年后论文集,2007.5
    [94]杨业元,方鸿生,郑燕康.白层静载磨损特性研究[J].金属热处理学报.1995,16(4):60-64
    [95]朱旻昊,周仲荣,刘家浚.摩擦学白层的研究现状[J].摩擦学学报.1999,19(3):281-287
    [96]Shaw M C, Vyas A. Heat-affected zones in grinding steel[J]. Anneals CIRP. 1994,43:279-282
    [97]Matsumoto Y, Liu C R, Barash M M. Residual stress in the machined surface of hardened steel [J]. High Speed Machining.1984:193-204
    [98]Barry J, Byrne G. TEM study on the surface white layer in two turned hardened steels[J]. Materials Science and Engineering.2002, A325:356-364
    [99]Zhang B, Shen W, Liu Y, et al. Microstructures of surface white layer and internal white adiabatic shear band[J]. Wear.1997,211:164-168
    [100]Zurecki Z, Fhosh R, Frey J H. Investigation of white layers formed in conventional and cryogenic hard turning of steels[J]. ASME-International Mechanical Engineering Congress and Exposition.2003:1-10
    [101]张凌飞,张弘弢.高硬金属加工过程中表面白层的研究[J].工具技术.2004,38(2):13-16
    [102]Toenshoff H K, Wobker H G, Brandt D. Hard turning influences on the workpiece properties[J]. Transactions of NAMRI/SME XXIII.1995:215-220
    [103]Akcan S, Shah S, Moylan S P, et al. Characteristics of white layers formed in steel by machining[J]. ASMW MED.1999,10:789-795
    [104]Guo Y B, Sahni J. A comparative study of hard turned and cylindrically ground white layers[J]. International Journal of Machine Tools & Manufacture. 2004,44:135-145
    [105]Yang Y Y, Fang H S, Huang W G. A study on wear resistance of the white layer[J]. Tribology International,1996,29(5):425-428
    [106]Boshen S S, Mativenga P T, White layer formation in hard turning of H13 tool steel at high cutting speeds using CBN tooling[J]. International Journal of Machine Tools & Manufacture.2006,46:225-233
    [107]Vyas A, Shaw M C. The significance of the white layer in a hard turned steel chip[J]. Journal of Machine Science Technology.2000,41:169-175
    [108]Barbacki A, Kawalec M, Hormol A. Turning and grinding as a source of microstructural changes in the surface layer of hardened steel [J]. Journal of Materials Processing Technology.2002,5795:1-5
    [109]Tomlinson W J, Blunt L A, Spraggett S. The effect of workpiece speed and grinding wheel condition on the thickness of white layers formed on EN24 ground surfaces[J]. Journal of Materials Processing Technology.1991,25:105-110
    [110]Aramcharoen A, Mativenga P T. White layer formation and hardening effects in hard turning of H13 tool steel with CrTiAIN and CrTiAlN/Most-coated carbide tools[J]. International Journal of Advanced Manufacturing Technology. 2008,36:650-657
    [111]Guo Y B, Schwach D W. An experimental investigation of white layer on rolling contact fatigue using acoustic emission technique[J]. International Journal of Fatigue.2005,27:1051-1061
    [112]Chou Y, Evans C J. Process effects on white layer formation in hard turning[J]. Transaction of NAMRI/SME ⅩⅩⅩⅥ.1998:117-122
    [113]戴苗,周志雄,黄向明.磨削白层厚度与磨削力的实验研究[J].制造技术与机床.2009,(5):78-81
    [114]戴素江,邢彤,文东辉,等.精密硬态切削表面白层组织形态的研究[J].中国机械工程.2006,17(10):1007-1014
    [115]张保法,沈万慈,刘英杰,等.白层中的绝热剪切带[J].金属学报.1997,33(11):1161-1164
    [116]Poulachon G, Albert A, Schluraff M, et al. An experimental investigation of work material microstructure effects on white layer formation in PCBN hard turning[J]. International Journal of Machine Tools & Manufacturing.2005,2:211-218
    [117]张凌飞,张弘弢.硬态车削表面白层厚度的影响因素分析[J].工具技术.2004,38(1):31-33
    [118]Chou Y K, Evans C J. White layers and thermal modeling of hard turned surfaces[J]. International Journal of Machine Tools & Manufacture.1999, 39:1863-1881
    [119]Sauvage X, Breton J M, Gullet A, et al. Phase transformations in surface layers of machined steels investigated by X-ray diffraction and Mossbauer spectrometry[J]. Materials Science and Engineering A.2003,362:181-186
    [120]黄向明,周志雄,杨军,等.塑性变形在淬硬钢磨削白层形成中的作用机理[J].湖南大学学报(自然科学版),2010,37(1):35-40
    [121]Sangil H, Melkote S N, Haluska M S, et al. White layer formation due to phase transformation in orthogonal machining of AISI1045 annealed steel[J]. Materials Science and Engineering A.2008,488:195-204
    [122]Ramesh A, Melkote S N, Allard L F, et al. Analysis of white layers formed in hard turning of AISI 52100 steel[J]. Materials Science and Engineering A.2005, 390:88-97
    [123]Umbrello D, Filice L. Improving surface integrity in orthogonal machining of hardened AISI52100 steel by modeling white and dark layers formation[J]. Annals CIRP-Manufacturing Technology.2009,58:73-76
    [124]Attanasio A, Umbrello D, Cappellini C, et al. Tool wear effects on white and dark layer formation in hard turning of AISI 52100 steel[J]. Wear.2012,286-287: 98-107
    [125]Cappellini C, Attanasio A, Rotella G, et al. Formation of white and dark layers in hard cutting:Influence of tool wear[J]. International Journal of Material Forming. 2010,3:455-458
    [126]Zhang X P, Song H C, Liu C R. White layer of hard turned surface by sharp CBN tool[J]. Journal of Shanghai Jiaotong University(Science).2005,10(4):377-380
    [127]Kundrak J, Verezub O, Gyani K. Investigation of the properties of white layer formation during hard turning[J].
    [128]Eda H, Kishi K, Hashimoto S. The formation mechanism of ground white layers, Bulletin of the JSME.1981,24:743-747
    [129]王建明,李晓桥,才庆魁.镍基单晶高温合金γ和γ'相合金元素分布特征[J].铸造.2005,54(5):466-469
    [130]李晶晶.热处理及长期时效对FGH95合金组织与蠕变性能的影响[D].沈阳工业大学硕士学位论文,2010.12
    [131]Burton A W, Ong K, Rea T, et al. On the estimation of average crystallite size of zeolites from the Scherrer equation:A critical evaluation of its application to zeolites with one-dimensional pore systems [J]. Microporous and Mesoporous Materials.2009,117:75-90
    [132]谢世殊,潘险峰,杨洪才,等.γ'相尺寸对GH586镍基合金疲劳裂纹扩展行为的影响[J].金属学报.1999,35(增刊2):s466
    [133]Sangil H. Mechanisms and modeling of white layer formation in orthogonal machining of steels[D]. Mechanical Engineering, Georgia Institute of Technology, 2006
    [134]杨奇彪,刘战强,曹成铭,等.高温合金高速切削锯齿形切屑应变与应变率研究[J].农业机械学报.2011,42(2):225-228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700