用户名: 密码: 验证码:
消谱线弯曲长波红外成像光谱仪器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成像光谱技术是一种新兴的光电探测技术,能够同时获得目标的图像和光谱信息。由于长波红外波段独特的光谱特性,长波红外成像光谱仪器在地理遥感、化学气体流检测、军事目标侦查、热流分析等军事和民用领域有广泛的应用。
     分光元件为成像光谱系统的核心器件之一,基于平面闪耀光栅的成熟性、高效性和在长波红外波段能量及成本优势,本文选择平面反射式闪耀光栅作为系统的分光元件。为了保证系统采集数据的准确性和后续图像处理的可行性,在成像光谱系统中要求具有很小的谱线弯曲和色畸变,但平面光栅本身固有的谱线弯曲和色畸变比较大,难以满足光谱仪器的使用要求,因此解决基于平面闪耀光栅成像光谱仪器的谱线弯曲和色畸变问题,具有重要的理论和应用价值。
     本文主要研究内容包括:
     1.详细介绍了共轴三反系统初始结构的计算方法,讨论分析了离轴三反系统中间成像情况与轮廓参数和系统焦距的取值之间的关系,并进行了软件模拟和离轴优化设计,根据应用要求设计了无中间像的离轴三反系统。
     2.计算了平面光栅产生的谱线弯曲和色畸变,首次提出了离轴透镜消谱线弯曲和色畸变的设计思路,分析了离轴透镜的消谱线弯曲和色畸变特性。根据矢量衍射理论分析平面光栅的衍射特性,再通过分析倾斜成像系统在二维视场的像高公式,计算得到了理想成像系统和倾斜成像系统中平面光栅产生的谱线弯曲和色畸变,最后利用空间光线追迹方法分析了离轴透镜的消谱线弯曲和色畸变特性,这为消谱线弯曲平面光栅成像光谱仪器的设计提供了理论依据。
     3.设计得到了小畸变的准直物镜和具有100%冷光阑效率的二次成像物镜。对比分析了反射式和折射式光谱成像系统,证明了反射式光谱成像系统存在消除挡光和冷光阑设计困难、结构不合理的缺陷,而折射式结构可通过二次成像实现100%冷光阑效率,无挡光、结构合理。
     4.完成了整个成像光谱系统的优化设计并进行了像质评价和公差分析,系统具有成像质量接近衍射极限、结构紧凑、公差分配宽松的优点。设计的系统谱线弯曲和色畸变最大值分别为8.17μm和13.64μm,小于探测器像元尺寸(30μm)的一半。系统采用平面闪耀光栅分光,推扫式工作方式,其主要性能指标为:光谱分辨率32nm,空间分辨率0.15mrad,焦距200mm,F数为2。
Imaging spectral technique is an emerging photoelectric detecting technique,and can get both spatial and spectral information of the target. Due to the spectralcharacteristics of the long-wave infrared, imaging spectrometer of this waveband iswidely used in military and civilian areas, such as geographical remote sensing,detection of chemical gas, military target detection and thermal fluent analysis.
     Based on the maturity, efficiency and the advantages of energy and cost inlong-wave infrared of plane blazed reflection grating, we choose plane blazedreflection grating as beam split element, which is one of the core components ofimaging spectral system. In order to ensure the accuracy of data collection and thefeasibility of image processing, smile and keystone should be very small in theimaging spectral system. However, a larger smile and keystone will be produced byplane grating. So it is necessary and meaningful whether theoretically or practicallyto solve the problem of smile and keystone. The specific research contents include:
     1. The calculation method of the initial structure of the coaxial three-mirrorsystem is detailed. And it is discussed that the relationship between intermediateimage and values of profile parameters and focal length of the system. Depending onthe requirements of application, we simulate and design the off-axis three-mirrorsystem without intermediate image.
     2. The smile and keystone caused by grating are calculated. It is proposed for the first time that using off-axis lens to correct the smile and keystone. Thecharacteristics of eliminating smile and keystone of off-axis lens are analyzed.According to the vector diffraction theory, we analyze the diffraction characteristicsof plane grating. The formulas of the image height of two-dimensional field in tiltedimaging system are also deduced. Then, the smile and keystone caused by planegrating in Gaussian imaging system and tilted imaging system are calculatedrespectively. Finally, the elimination of smile and keystone of the off-axis lens isstudied by means of spatial ray tracing. It provides theory for the design of imagingspectrometer with smile and keystone eliminated.
     3. Collimating lens with small distortion and secondary imaging lens with100%efficiency of cold aperture are designed. The spectrophotometric systems withrefraction and reflection structure are compared, and the results show that thereflective structure is difficult to optimize the rational optical system with coldaperture and no obscuration. However, for refractive system, the rationalconstruction with100%efficiency of cold aperture and no obscuration can berealized through secondary imagery method.
     4. The imaging spectral system is optimized; the image quality and tolerance isanalyzed. The system designed has good image quality, tight structure and loosetolerance distribution. The maximum of smile and keystone of the optical systemdesigned are8.17μm and13.64μm, respectively. Both of them are less than half thepixel size of the detector. Plane blazed grating is used in the system to split the light,and it will work in pushbroom mode. The optical system with main performances ofhigh spectral resolution of32nm, spatial resolution of0.15mrad, focal length of200mm and F number of2is obtained.
引文
[1] L. E. Hoff, J. R. Evans, L. E. Bunney. Detection of targets in terrain clutter byusing multispectral infrared image processing [C]. International Society for Opticsand Photonics,1991,1481:98-109
    [2] J. J. Puschell. Hyperspectral imagers for current and future missions [C]. Proc.SPIE,2000,4041:121-132
    [3]许洪,王向军,刘峰,等.非制冷色散式成像光谱仪辐射传递模型[J].红外与激光工程,2009,38(1):31-35
    [4] M. D. King, Y. J. Kaufman, W. P. Menzel, et al. Remote sensing of cloud, aerosol,and water vapor properties from the Moderate Resolution Imaging Spectrometer(MODIS)[J]. IEEE Transactions on Geoscience and Remote Sensing,1992,30(1):2-27
    [5] F. D. van der Meer, S. M. de Jong. Imaging Spectrometry: Basic Principles andProspective Applications [M]. Springer,2001
    [6]洪新华,姚凯.成像光谱仪的原理与应用[J].河南科技学院学报,2005,33(2):113-116
    [7] Goetz. Imaging spectrometry for remote sensing: vision to reality in15years [C].Proc. SPIE,1995,2480:2-13
    [8] C. Labaw. Airborne Imaging Spectrometer: an advanced concept instrument [C].Proc. SPIE,1984,430:68-74
    [9] G. Vane, R. O. Green, T. G. Chrien, et al. The airborne visible/infrared imagingspectrometer (AVIRIS)[J]. Remote Sensing of Environment,1993,44(2):127-143
    [10]陈秋林,薛永祺.OMIS成像光谱数据信噪比的估算[J].遥感学报,2000,4(4):284-289
    [11]C. Yang, J. H. Everitt, M. R. Davis, et al. A CCD camera-based hyperspectralimaging system for stationary and airborne applications [J]. Geocarto International,2003,18(2):71-80
    [12]R. J. Birk, T. B. McCord. Airborne hyperspectral sensor systems [J]. IEEEAerospace and Electronic Systems Magazine,1994,9(10):26-33
    [13]S. Sandor-Leahy, J Shepanski. Hyperspectral remote sensing: data collection andexploitation [J]. Encyclopedia of Analytical Chemistry,2000
    [14]H. J. Kramer. Observation of the Earth and its Environment [M]. Berlin etc.:Springer,1994.
    [15]D. G. Goodenough, J. Y. Li, G. P. Asner, et al. Combining hyperspectral remotesensing and physical modeling for applications in land ecosystems [C]. IEEEInternational Conference on Geoscience and Remote Sensing Symposium,2006:2000-2004.
    [16]李聪.大气紫外成像光谱仪地面测试与定标技术研究[D]:[博士学位论文].北京:中国科学院大学(空间科学与应用研究中心),2010
    [17]许洪.多光谱、超光谱成像探测关键技术研究[D]:[博士学位论文].天津:天津大学,2008
    [18]许洪,王向军.多光谱、超光谱成像技术在军事上的应用[J].红外与激光工程,2007,36(1):13-17
    [19]张晓龙,刘英,孙强,等.折/反混合式长波红外成像光谱仪光学系统设计[J].光学学报,2012,32(11):1122005
    [20]袁立银,林颖,何志平,等.长波红外高光谱成像系统的设计与实现[J].红外与激光工程,2011,40(2):181-185
    [21]苏丽娟.成像光谱仪分光技术研究[D]:[硕士学位论文].西安:中国科学院大学(西安光学精密机械研究所),2006
    [22]孙林,鲍金河.航空成像光谱仪的发展和在侦察中的应用[J].遥感信息,2010(6):115-119
    [23]P. Curran. Multispectral remote sensing of vegetation amount [J]. Progress inphysical geography,1980,4(3):315-341
    [24]M. Govender, K. Chetty, H. Bulcock. A review of hyperspectral remote sensingand its application in vegetation and water resource studies [J]. Water Sa,2007,33(2):145-151
    [25]郑玉权,禹秉熙.成像光谱仪分光技术概览[J].遥感学报,2002,6(1):75-80
    [26]R. G. Sellar, G. D. Boreman. Classification of imaging spectrometers for remotesensing applications [J]. Optical Engineering,2005,44(1):013602
    [27]P. Mouroulis, R. O. Green, T. G. Chrien. Design of pushbroom imagingspectrometers for optimum recovery of spectroscopic and spatial information [J].Applied Optics,2000,39(13):2210-2220
    [28]裴琳琳,黄旻,吕群波,等.分析双Amici棱镜角度误差对色散的影响[J].光学学报,2013,33(1):0122003
    [29]郑玉权.超光谱成像仪的精细光谱定标[J].光学精密工程,2010,18(11):2347-2354
    [30]D. W. Warren, D. J. Gutierrez, E. R. Keim. Dyson spectrometers forhigh-performance infrared applications [J]. Optical Engineering,2008,47(10):103601
    [31]D. W. Warren, D. J. Gutierrez, J. L. Hall, et al. Dyson spectrometers for infraredearth remote sensing [C]. Proc. SPIE,2008,7082:70820R
    [32]刘玉娟,崔继承,巴音贺希格,等.凸面光栅成像光谱仪的研制与应用[J].光学精密工程,2012,20(1):52-57
    [33]L. L. Robert. Out-of-plane dispersion in an Offner spectrometer [J]. OpticalEngineering,2007,46(7):073004
    [34]黄元申,倪争技.同心三反射镜光学系统研究[J].光学仪器,2005,27(2):42-46
    [35]撖芃芃.成像光谱仪同心光学系统的研究[J].中国光学与应用光学,2009,2(2):157-162
    [36]黄元申,倪争技,庄松林.光栅成像光谱仪同心光学系统研究[J].光学仪器,2005,27(6):38-42
    [37]G. G. Shepherd, W. A. Gault, D. W. Miller, et al. WAMDII: wide-angle MichelsonDoppler imaging interferometer for Spacelab [J]. Applied optics,1985,24(11):1571-1584
    [38]W. A. Gault, S. F. Johnston, D. J. W. Kendall. Optimization of a field-widenedMichelson interferometer [J]. Applied optics,1985,24(11):1604-1608
    [39]L. Dame, M. Martic, R. J. Rutten. Prospects for very-high-resolution solarphysics with the SIMURIS inteferometric mission [C]. ESA Special Publication,1993,1157:119-144
    [40]Z. C. Min, X. L. Bin, Z. B. Chang, et al. A static polarization imagingspectrometer based on a Savart polariscope [J]. Optics Communications,2002,203(1):21-26
    [41]M. Hashimoto, S. Kawata. Multichannel Fourier-transform infrared spectrometer[J]. Applied optics,1992,31(28):6096-6101
    [42]W. H. Smith, P. D. Hammer. Digital array scanned interferometer: sensors andresults [J]. Applied optics,1996,35(16):2902-2909
    [43]M. R. Descour, C. E. Volin, E. L. Dereniak, et al. Demonstration of acomputed-tomography imaging spectrometer using a computer-generated hologramdisperser [J]. Applied Optics,1997,36(16):3694-3698
    [44]M. R. Descour, E. L. Dereniak. Nonscanning no-moving-parts imagingspectrometer [C]. SPIE,1995,2480:48-64
    [45]M. Hinnrichs, M. A. Massie. Image multispectral sensing: a new and innovativeinstrument for hyperspectral imaging using dispersive techniques [C]. SPIE,1995,2480:93-104
    [46]D. M. Lyons. Image spectrometry with a diffractive optic [C]. SPIE,1995,2480:123-131
    [47]D. M.Lyon, K. J. Whitcom. Characterization of the DOIS prototype: a diffractiveoptic image spectrometer [J]. SPI,1996,2819:206-217
    [48]高国龙.高光谱热成像仪及其应用[J].红外,2012,33(11):44-46
    [49]R. G. Vaughan, W. M. Calvin, J. V. Taranik. SEBASS hyperspectral thermalinfrared data: surface emissivity measurement and mineral mapping [J]. RemoteSensing of Environment,2003,85(1):48-63
    [50]刘子寒.长波红外成像光谱仪的设计与研究[D]:[硕士学位论文].苏州:苏州大学,2013
    [51]N. Gat, S. Subramanian, S. Ross, et al. Thermal infrared imaging spectrometer(TIRIS) status report [C]. Proc. SPIE,1997,3061:284-291
    [52]B. S. Paskaleva, M. M. Hayat, Z. Wang, et al. Canonical correlation featureselection for sensors with overlapping bands: Theory and application [J]. IEEETransactions on Geoscience and Remote Sensing,2008,46(10):3346-3358
    [53]A. G. Mares, R. C. Olsen, P. G. Lucey. LWIR Spectral measurements of volcanicsulfur dioxide plumes [C]. Proc. SPIE,2004,5425:266-272
    [54]P. G. Lucey, T. J. Williams, M. E. Winter, et al. Two years of operations of AHI:an LWIR hyperspectral imager [C]. Proc. SPIE,2000,4030:31-40
    [55]P. G. Lucey, T. J. Williams, M. Mignard, et al. AHI: an airborne long-waveinfrared hyperspectral imager [C]. SPIE,1998,3431:36-43
    [56]李海涛,田庆久.ASTER数据产品的特性及其计划介绍[J].遥感信息,2004(3):53-55
    [57]P. R. Christensen, B. M. Jakosky, H. H. Kieffer, et al. The thermal emissionimaging system (THEMIS) for the Mars2001Odyssey mission [J]. Space ScienceReviews,2004,110(1-2):85-130
    [58]R. E. Holaske, W. I. Rose. Anatomy of1986Augustine volcano eruptions asrecorded by multispectral image processing of digital AVHRR weather satellite data[J]. Bulletin of Volcanology,1991,53(6):420-435
    [59]C. Coll, V. Caselles, T. J. Schmugge. Imation of land surface emissivitydifferences in the split-window channels of AVHRR [J]. Remote Sensing ofEnvironment,1994,48(2):127-134
    [60]X. Xiong, W. Barnes. An overview of MODIS radiometric calibration andcharacterization [J]. Advances in Atmospheric Sciences,2006,23(1):69-79
    [61]Z. Han, Y. Jin. Data fusion technology of multi-resource satellite-borne remotesensing and its applications for coastal zone environment monitoring and informationevaluation [C]. Proc. SPIE,2006,6200:62000P
    [62]P. Strobl, R. Richter, F. Lehmann, et al. Preprocessing for the digital airborneimaging spectrometer DAIS7915[C]. Proc. SPIE,1996,2758:375-382
    [63]T. Kavzoglu. Simulating Landsat ETM+imagery using DAIS7915hyperspectralscanner data [J]. International journal of remote sensing,2004,25(22):5049-5067
    [64]H. J. Kramer. Observation of the Earth and its Environment [M]. Berlin etc.:Springer,1994
    [65]J. Shepanski, S. Sandor-Leahy. The NGST long-wave hyperspectral imagingspectrometer: sensor hardware and data processing [C]. Proc. SPIE,2006,6206:62062B
    [66]H. Miller Jr, K. E. Yokoyama, K. Rasmussen, et al. Longwave hyperspectralimaging spectrometer design and implementation [C]. Proc. SPIE,2004,5159:255-261
    [67]K. E. Yokoyama, H. Miller Jr, T. Hedman, et al. NGST longwave hyperspectralimaging spectrometer system characterization and calibration [C]. Proc. SPIE,2004,5159:262-274
    [68]陆剑鸣,蔡毅.俄罗斯HgCdTe红外焦平面探测器的现状[J].红外技术,2009,31(5):303-309
    [69]袁继俊.红外探测器发展述评[J].激光与红外,2007,36(12):1099-1102
    [70]高国龙.法国的碲镉汞红外探测器[J].红外,2011,32(8):39-46
    [71]吴铮,陆剑鸣,白丕绩,等.俄罗斯与西方国家的长波MCT红外焦平面探测器比较与分析[J].红外技术,2010,32(5):291-296
    [72]L. J. Kozlowski, K. Vural, J. M. Arias, et al. Performance of HgCdTe, InGaAsand quantum well GaAs/AlGaAs staring infrared focal plane arrays [C]. SPIE,1997,3182:2-13
    [73]H. Yuan, G. Apgar, J. Kim, et al. FPA development: from InGaAs, InSb, toHgCdTe [C]. Proc. SPIE,2008,6940:69403C
    [74]P. Z. Mouroulis. Low-distortion imaging spectrometer designs utilizing convexgratings [C]. SPIE,1998,3482:594-601
    [75]W. R. Johnson, D. W. Wilson, A. Diaz. Short wave infrared imaging spectrometerwith simultaneous thermal imaging [C]. Proc. SPIE,2010,7812:781202
    [76]J. L. Hall, D. J. Gutierrez, D. M. Tratt, et al. Mineral and gas identification usinga high-performance thermal infrared imaging spectrometer [C]. Earth ScienceTechnology Forum,2011
    [77]P. Mouroulis, R. O. Green, D. W. Wilson. Optical design of a coastal oceanimaging spectrometer [J]. Optics express,2008,16(12):9087-9096
    [78]刘玉娟,巴音贺希格,崔继承,等.凸面光栅成像光谱仪的干涉法装调[J].光学精密工程,2011,19(8):1736-1742
    [79]佟亚军,吴刚,周全,等.Offner成像光谱仪的设计方法[J].光学学报,2010,30(4):1148-1152
    [80]程欣,洪永丰,张葆,等.插入F ry棱镜的小型Offner超光谱成像系统的设计[J].光学精密工程,2010,18(8):1773-1780
    [81]张晓龙,刘英,孙强,等.消谱线弯曲长波红外成像光谱仪设计[J].光学精密工程,2014,22(2):266-273
    [82]J. L. Hall, R. H. Boucher, D. J. Gutierrez, et al. First flights of a new airbornethermal infrared imaging spectrometer with high area coverage [C]. SPIE,2011,8012:801203
    [83]朱善兵.基于PGP分光器件的光谱成像系统设计[D]:[硕士学位论文].苏州:苏州大学,2009
    [84]V. V. Vasilyev, V. S. Varavin, S. A. Dvoretsky, et al.320×256HgCdTe IR FPAwith a built-in shortwave cut-off filter [J].Opto-Electronics Review,2010,18(3):236-240
    [85]李扬裕,方勇华,刘洋.小型长波红外光栅光谱仪光学设计[J].大气与环境光学学报,2012,7(4):315-320
    [86]赵发财,王淑荣,曲艺,等.高光谱分辨率近红外CO2成像光谱仪设计与模拟[J].光电工程,2010,37(11):52-57
    [87]薛庆生.用于空间大气遥感的临边成像光谱仪研究[D]:[博士学位论文].长春:中国科学院大学(长春光学精密机械与物理研究所),2010
    [88]李珣.光栅型成像光谱仪光学系统设计[D]:[硕士学位论文].西安:西安工业大学,2012
    [89]樊叔维.二元光栅衍射特性的矢量理论分析[J].光学精密工程,1999,7(5):30-36
    [90]巴音贺希格,齐向东,唐玉国.位相光栅色散特性的矢量衍射理论分析[J].物理学报,2003,52(5):1157-1161
    [91]刘琳.长焦距三反射式望远镜设计研究[D]:[硕士学位论文].苏州:苏州大学,2002
    [92]J. W. Figoski. Development of a three-mirror, wide-field sensor, from paperdesign to hardware [C]. SPIE,1989,1113:126-133
    [93]张亮,安源,金光.大视场、长焦距离轴三反射镜光学系统的设计[J].红外与激光工程,2007,36(2):278-280
    [94]郭永祥,李英才,梁天梅,等.一种大视场离轴三反射光学系统研究[J].光学学报,2010,30(9):2680-2683
    [95]伍和云,王培纲.离轴反射式光学系统设计[J].光电工程,2006,33(1):34-37
    [96]姚罡,黄颖,傅丹膺.一种易于制造、较大视场离轴三反光学系统设计[J].航天返回与遥感,2010,31(5):44-48
    [97]卜江萍.用于凝视式相机的大视场离轴三反光学系统的研究[D]:[硕士学位论文].西安:中国科学院大学(西安光学精密机械研究所),2006
    [98]常军,翁志成,姜会林,等.长焦距空间三反光学系统的设计[J].光学精密工程,2001,9(4):315-318
    [99]李欢,向阳.成像光谱仪离轴三反望远系统的光学设计[J].红外与激光工程,2009,38(3):500-504
    [100]刘晓梅,向阳.宽视场成像光谱仪前置远心离轴三反光学系统设计[J].光学学报,2011,31(6):0622004
    [101]卜江萍,田维坚,杨小君等.一种新型离轴三反式光学系统的设计[J].光子学报,2006,35(4):608-610
    [102]王健.基于矢量像差理论的离轴反射式宽波段红外目标模拟器研究
    [D]:[博士学位论文].长春:中国科学院大学(长春光学精密机械与物理研究所),2012
    [103] L. D. Mei, G. Q. Xian, L. Zhuo. Optimization design for main supportingstructure of the off-axis TMA Space Remote Sensor [C]. International Conference onMechanic Automation and Control Engineering (MACE),2010:252-254
    [104]郁道银,谈恒英主编.工程光学[M].第2版.北京:机械工业出版社,2006.62-65
    [105]张以谟主编.应用光学[M].第3版.北京:电子工业出版社,2008.4-11
    [106]刘英,孙强,卢振武,等.折射/谐衍射红外双波段成像光谱仪系统研究[J].物理学报,2010,59(10):6980-6987
    [107] H. G. Reimann, H. Linz, R. Wagner, et al. TIMMI2: a new multimodemid-infrared instrument for the ESO3.6-m telescope [C]. Proc. SPIE,2000,4008:1132-1143
    [108] M. N. Akram. A design study of dual-field-of-view imaging systems for the3-5μm waveband utilizing focal-plane arrays [J]. Journal of Optics A: Pure andApplied Optics,2003,5(4):308-322
    [109] A. Daniels, T. W. Liepmann. Fiber optically coupled infrared focal planearray system for use in missile warning receiver applications [C]. Proc. SPIE,1999,3701:118-130
    [110] B. Jian, H. X. Yun, S. Y. Bing, et al. Design and fabrication of infrared hybridrefractive/diffractive optical system for3-5μm band [C]. Proc. SPIE,2002,4927:109-117
    [111]张亚萍,席珍强,张瑞丽,等.锗单晶材料的生长与应用[J].材料导报:纳米与新材料专辑,2009,23(1):14-16
    [112] R. L. Abrams, D. A. Pinnow. Acousto-Optic Properties of CrystallineGermanium [J]. Journal of Applied Physics,2003,41(7):2765-2768
    [113]刘琳,张兴德,贺谊亮.基于蒙特卡洛模拟法的红外光学系统公差分析[J].激光与红外,2010,40(5):496-499
    [114]姜会林,杨华民,任涛,等.制定光学公差中的MTF应用[J].兵工学报,2000,21(4):327-330
    [115]宫广彪.超光谱成像仪前置成像物镜设计[D]:[硕士学位论文].苏州:苏州大学,2009
    [116]张蕊蕊.环形孔径超薄光学成像系统设计[D]:[硕士学位论文].苏州:苏州大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700