用户名: 密码: 验证码:
陆地棉TM-1背景的海岛棉染色体片段导入系的培育鉴定和纤维强度QTL精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是世界性的重要经济作物。中国是世界上最大的棉花生产,消费和纺织国,随着我国人民生活水平的飞速提高和纺织品配额的取消,纺织品消费和出口必将快速提高进而对棉花的需求越来越大,品质要求也越来越高。
     陆地棉(Gossypium hirsutum L.)和海岛棉(G. barbadense L.)是棉花的2个四倍体栽培种,陆地棉产量高,纤维品质中等,海岛棉产量低但纤维细强,可纺100-200支纱,是纺高支纱的原料。遗传基础狭窄已经成为目前限制陆地棉遗传改良的主要因素。在陆地棉和海岛棉间进行优良基因的高效转移渗透对二者的遗传改良具有极为重要的现实意义,而限制这一过程的主要因素是连锁累赘。染色体片段导入系了除目标基因所在座位的局部区域外,基因组其余部分都是相同的,在这样的材料间找到的多态性标记才可能与目标基因紧密连锁,是QTL精细定位和图位克隆的一类理想群体。本研究以海陆杂交群体为基础,通过回交和标记辅助选择构建了海岛棉的染色体片段导入系,并利用这过程产生的高代回交群体和片段导入系对纤维品质等性状进行了QTL标记定位研究。同时还研究了QTL的精细定位。研究的主要结果如下:
     1.陆地棉遗传标准系TM-1背景海岛棉染色体片段导入系的培育
     以纤维品质中等陆地棉遗传标准系TM-1为母本与优质抗黄萎病海岛棉“海7124”杂交,然后用TM-1回交,回交4-5次和自交一次,在BC5S1代借助330个SSR分子标记进行分子标记辅助选择技术(Maker-assisted Selection, MAS).BC5S1代杂合的单株自交1-2代得BC5S2-3继续进行MAS选择,BC4S1代的单株自交直到BC4S2-3继续进行MAS,从而培育了国内首套陆地棉标准系TM-1背景的海岛棉染色体片段导入系。
     这套导入系共有169个家系,单片段导入系有51个,占30.18%,有的家系最多导入了5个片段,同时一部分家系的替换片段是杂合的。导入片段最短的为3.54cM,最长的是46.03cM,平均长度为17.70cM,总的长度是3526.34cM,覆盖率是80.9%。
     A5 (Chr.5)和A8 (Chr.8)染色体被供体片段完全覆盖,D1 (Chr.15)没有被供体片段覆盖的部分最大,达到了50.8cM, D7(Chr.16)没有被供体片段覆盖的部分最小,只有2.2cM。供体片段没有覆盖的部分主要集中在染色体的两端和中间部分。
     2.高代回交群体和染色体片段导入系进行QTL的定位
     2005年夏在南京江浦棉花试验站种植BC5S1和BC4S1,每隔20行种植对照TM-1;2006年夏在南京江浦棉花试验站种植BC5S2和BC4S2家系,每隔10行种植对照TM-1;2008年夏在南京江浦棉花试验站种植全部染色体片段导入系,完全随机区组试验,两次重复,每隔10行种植对照TM-1。调查BC5S1的叶型、花冠颜色、花瓣基部红心、花药颜色;调查染色体片段导入系各行的铃型、茎秆颜色和茸毛。对三个世代的产量组分(铃重和衣分)及纤维品质性状(纤维长度,纤维强度,马克隆值,整齐度,短纤维率,伸长率及成熟度)进行调查。
     通过调查发现了染色体片段导入系中出现的几种表型变异,包括类im(immaturity,不成熟纤维)、叶脉融合、鸡脚叶、青茎、茎秆光滑和铃形的变异等。
     用MapManager QTXb20在p<0.001的设定下,进行单标记分析。在BC5群体中检测到23个显著性标记,其中纤维品质的17个,产量组分(铃重和衣分)6个。在BC5S1群体中检测到27显著性标记,其中纤维品质的22个,产量组分(铃重和衣分)5个。在CSIL群体中检测到14个显著性标记,其中纤维品质的12个,产量组分(铃重和衣分)2个。
     根据某性状的单标记分析结果进行1000次重排计算(Permutation test)估计各个性状的LR阈值,针对特定的染色体进行区间作图。通过1000次重排计算,得到了低显著水平,显著水平及高显著水平等3个水平的LR阈值。在低显著水平下检测到了所有的显著性标记。同时在三个群体中用区间作图检测到影响多个性状的标记区间,在BC5群体中检测到3个区间影响多个性状;在BC5S1群体中检测到5个区间影响多个性状;在CSIL群体中检测到3个区间影响多个性状。
     3.利用染色体片段导入系精细定位纤维品质的QTL
     在培育染色体片段导入系的过程中,发现一个纯合的单片段导入系在纤维强度上与轮回亲本存在明显差异,从而认为该片段上存在控制纤维强度的QTL。然后该家系与陆地棉遗传标准系TM-1杂交得到F1,种植600个F2和F2:3家系进行连锁作图,进行导入片段的分析和纤维强度QTL的精细定位。得到的结果如下:
     经过F2分离群体重新作图得到了导入片段的长度是70.870cM,是通过已发表图谱计算得到的片段长度(31.10cM)的2.84倍。在F2分离群体中共检测到2个QTL。一个纤维强度的QTL,解释的表型变异是6.15%。1个马克隆值的QTL解释的表型变异是9.27%。F2:3群体中检测到5个QTL,其中纤维强度3个QTL,整齐度2个QTL。纤维强度的3个QTL解释表型变异分别是7.49%,4.96%,5.97%。整齐度2个QTL解释表型变异分别是5.89%,9.61%。
Cotton (Gossypium spp.) is one of the most important cash crops worldwide. Improvements in the standard of living in the country and the elimination of textile quotas are expected to rapidly increase the consumption and export of textile products.
     Upland and Sea Island cotton are two cultivated tetraploid cotton varieties. Upland cotton (Gossypium hirsutum L.) is characterized by high yield and moderate fiber quality performance. Sea Island cotton (G barbadense L.) is characterized by low yield, increased fiber fineness and strength. Sea Island cotton is used as the raw material for fine count yarn. Intraspecific narrow genetic base has become a main problem for genetic improvement of Gossypium hirsutum L.Transmission of valuable genes extensively and efficiently between G.hirsutum Land G.barbadense L.is essential for their breeding improvements, which is limited mainly by linkage drag. Chromosome segment introgression lines (CSIL) consist of a battery of near-isogenic lines covering whole genome of crop. Except for one homozygous chromosome segment transferred from donor parent each line, the remaining parts of genome are the same as the recipient parent. It is an ideal material for genome research and especially for QTL mapping. Based on a advanced backcross population between G.hirsutum L.xG.barbadense L, Sea Island cotton chromosome segment introgression lines of cotton in background of genetic standard line of Upland cotton TM-1 were developed. QTLs were mapped by advanced backcross population and CSIL population. Fine mapping QTL for fiber strength by F2 and F2:3 populations. The main results were summarized as follows:
     1. Development of Gossypium barbadense chromosome segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum
     In the present research, we firstly developed one set of CSILs lines. The development of the CSILs lines:the F1 was generated by a cross using TM-1 as the recipient parent and Hai7124 as the donor parent. The TM-1 x Hai7124 F1 progeny were backcrossed with TM-1 untill BC5 and self-pollinated to produce BC5S1. MAS was conducted to identify individual BC5S1 genotypesan having 1-2 donor chromosome segments in the TM-1 background. The BC5S1 heterozygous individuals were self-pollinated to generate homozygous BC5S2-3. BC4S3 individuals were also identified by MAS.
     The CSILs consist of 169 different lines. Single segment introgression lines have 51 lines,30.18% percentage of total CSIL lines. There are more than 5 segments or heterozygous segments in few lines. The length of the substituted segments covered 3526.34cM in total with an average distance of segment by 17.70cM. The substituted segments of each line are different in length, ranging from the shortest segment 3.5 4cM to the longest 46.03cM.
     There are no absent segments in Chr.A5 (Chr.5) and Chr.A8 (Chr.8).50.8cM, most length segment, are absent in the Chr.Dl (Chr.15) and 2.2cM, shortest length segment are absent in the Chr.D7 (Chr.16). The absent segments were in the terminal and middle parts of each chromosome.
     2. QTLs mapping by advanced backcross population and CSIL population
     BC5S1 and BC4S1 seeds were planted at intervals in twenty rows, including one row of TM-1 as a control in 2005. BC5S2and BC4S2seeds were planted at intervals in ten rows, including one row of TM-1 as a control in 2006. CSIL seeds were planted using a randomized block design having 2 replications at intervals in ten rows, including one row of TM-1 as a control in 2008. The phenotype variance of BC5S1 and CSIL individuals were evaluated including leaf shape, corollaceous colour, bottom red corolla, smooth stem and boll shape. Two yield components traits including boll weigth, lint percentage and seven fiber quality traits including fiber length, fiber strength, fiber maturity, micronaire, short fiber index, fiber uniformity ratio, fiber elongation were measured from BC5S1, BC5S2and CSIL individuals.
     In the present research, similar Immaturity fiber, nervate amalgamation, chicken-paw leaves, green stem, smooth stem and boll shape lines were indentified from the CSIL population.
     Marker regression was done by MapManagerQTXb20 at p<0.001. Significant makers were detected in the BC5 population including 17 significant makers for fiber quality and 6 significant makers for components of yield (boll weight and lint percentage).27 significant makers were detected in the BC5S1 population including 22 significant makers for fiber quality and 5 significant makers for components of yield (boll weight and lint percentage).14 significant makers were detected in the CSIL population including 12 significant makers for fiber quality and 2 significant makers for components of yield (boll weight and lint percentage).
     Interval mapping was done by MapManagerQTXb20. All the significant markers could be detected with interval mapping.3 QTLs identified in the BC5 population could affect more than one trait.5 QTLs identified in the BC5S1 population could affect more than one trait.3 QTLs identified in the CSIL population could affect more than one trait.
     3. Fine mapping QTLs for fiber strength using CSIL
     One CSIL line was found during the development of the CSIL, which carried single segment for fiber strength. The CSIL line was crossed with TM-1 in summer at Jiangpu Cotton Breeding Station, NAU. Seven fiber quality traits including fiber length, fiber strength, fiber maturity, micronaire, short fiber index, fiber uniformity ratio, fiber elongation were measured from 600 F2 and F2:3 individuals.
     2 QTLs for fiber quality were identified in F2 population including 1QTL for fiber strength,1 QTL for micronaire. They separately explained 6.51%、9.27% of the phenotypic variance.5 QTLs for fiber quality were identified in F2:3 population including3 QTLs for fiber strength,2 QTLs for fiber uniformity ratio. They separately explained 7.49%,4.96%,5.97%,5.89% and 9.61% of the phenotypic variance.
引文
1. 白建荣,郭季荣,侯变英.分子标记的类型、特点及在育种中的作用[J].山西农业科学,1999,27:33-38.
    2. 陈旭升,狄佳春,许乃银,等.海陆杂种棉研究现状及发展趋势[J].江西棉花,2002,24(4):3-6.
    3. 杜雄明.陆地棉纤维初始发育和纤维突变体遗传研究[D].南京:南京农业大学,1998:72-76.
    4. 方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2002:2-21.
    5. 高振宏.对试验族群进行数量性状基因座定位的统计方法评价[J].中国统计学报(台湾),2000,38(1):223-230.
    6. 郝伟,金健,孙世勇,等.覆盖野生稻基因组的染色体片段替换系的构建及其米质相关数量性状基因座位的鉴定[J].植物生理与分子生物学学报,2006,32(3):354-362.
    7. 吴雄英,边红彪.美国第242号通报对我国纺织品出口影响[J].WTO经济导刊,2007,51(9):78-79.
    8. 何风华,席章营,曾瑞珍,等.利用单片段代换系定位水稻株高及其构成要素QTL[J].中国水稻科学,2005,19(5):387-392.
    9. 何风华,席章营,曾瑞珍,等.利用高代回交和分子标记辅助选择建立水稻单片段代换系[J].遗传学报,2005,32(8):825-831.
    10.何风华,席章营,曾瑞珍,等.利用单片段代换系定位水稻抽穗期QTL[J].中国农业科学,2005,38(8):1505-1513.
    11.华兴鼎,周行,黄骏麒.海岛棉与陆地棉杂种一代优势利用的研究[J].作物学报,1963,2(1):1-24.
    12.江铃,曹雅君,王春明,等.利用RIL和CSSL群体检测水稻种子休眠性QTL[J].遗传学报,2003,30(5):453-458.
    13.李成奇,郭旺珍,马晓玲,等.陆地棉衣分差异群体产量及产量构成因素的QTL标记和定位[J].棉花学报,2008,20(3):163-169.
    14.李建雄,余四斌,徐才国,等.以性状和分子标记为基础的水稻近等基因系的分离[J].作物学报,2000,26(5):627-630.
    15.李莲.陆海杂种高代回交重组近交系纤维品质、产量、抗病性状的分子标记研究[D].安阳:中国农科院棉花研究所,2008:68.
    16.李卫华,胡新燕,申温文,等.陆地棉主要经济性状的遗传分析[J].棉花学报,2000,12(2):81-84.
    17.刘飞虎,梁雪妮,等.杂交棉产量优势及其成因分析[J].中国棉花,1999,26(2):11-13.
    18.刘冠明,李文涛,曾瑞珍,等.水稻单片段代换系代换片段的QTL鉴定[J].遗传学报,2004,31(]2):]395-1400.
    19.刘冠明,李文涛,曾瑞珍,等.水稻亚种间单片段代换系的建立[J].中国水稻科学,2003,17(3):201-204.
    20.刘万清,贺林.SNP一为人类基因组描绘新的蓝图[J].遗传,1998,20(6):38-40.
    21.栾明宝,郭香墨,张永山.利用陆地棉置换系进行海岛棉主要性状基因的染色体定位[J].棉花学报,2008,1:70-72.
    22.马淑萍.明确棉花定位发展国内生产[J].中国棉麻流通经济,2007,151(4):25-29.
    23.梅捍卫.水稻正反交导入系群体构建和重要农艺性状的分子定位[D].武汉:华中农业大学,2003:87-88.
    24.秦鸿德.陆地棉产量与纤维品质性状QTL定位和标记辅助轮回选择[D].南京:南京农业大学,2008:60-65.
    25.宋国立,张春庆,贾继曾,等.棉花AFLP银染技术及品种指纹图谱应用初报[J].棉花学报,1999,11(6):281—283.
    26.万建林,翟虎渠,万建民,等.利用粳稻染色体片段置换系检测水稻抗亚铁毒胁迫有关性状QTL[J].遗传学报,2003,30(10):893-898.
    27.万向元,刘世家,王春明,等.利用CSSLs群体研究稻米粒型QTL的表达稳定性[J].遗传学报,2004,31(11):1275-1283.
    28.王芙蓉,刘任重,王留明,等.陆地棉品种抗黄萎病性状的分子标记及其辅助选择效果[J].棉花学报,2007,19(6):424-430.
    29.王娟,郭旺珍,张天真.渝棉1号优质纤维QTL的标记与定位[J].作物学报,2007,33(12):1915-1921.
    30.王立秋,赵永锋,薛亚东,等.玉米衔接式片段导入系群体的构建和评价[J].作物学报,2007,33(4):663-668.
    31.翁建峰,万向元,吴秀菊,等.利用CSSL群体研究稻米Ac和Pc相关QTL表达稳定性[J].作物学报,2006,32(1):14-19.
    32.吴为人,唐定中,李维明.数量性状遗传剖析和分子剖析[J].作物学报,2000,26(4):501-507.
    33.吴新儒,刘树兵,刘爱峰,等.小麦重要农艺性状QTL近等基因导入系的选育[J].麦类作物学报,2007,27(4):583-588.
    34.项时康,余楠,胡育昌,等.论我国棉花质量现状[J].棉花学报,1999,11(1):1-10.
    35.徐云碧,朱丽煌.分子数量遗传学[M].北京:中国农业出版社,1994:86-88.
    36.严长杰,徐辰武,裔传灯,等.利用SSR标记定位水稻糊化温度的QTLs[J].遗传学报,2001,28(11):1006-1011.
    37.杨德卫,朱文银,林静,等.利用染色体片段置换系定位水稻粒型QTL[J].江苏农业学报,2008,24(6):226-231.
    38.殷剑美,武耀廷,张天真.陆地棉产量性状QTLs的分子标记及定位[J].生物工程学报,2002,
    18(2):162-166.
    39.英加,陈佩度,刘大钧.将外源染色体加速导入普通小麦的研究[J].南京农业大学学报,1999,22(4):1-4.
    40.余传元,万建民,翟虎渠,等.利用CSSL研究水稻籼粳亚种间产量性状的杂种优势[J].科学通报,2005,50(1):32-37.
    41.余四斌,穆俊祥,赵胜杰,等.以珍汕97B和9311为背景的导入系构建及其筛选鉴定[J].分子植物育种,2005,3(5):629-636.
    42.袁有禄.优质纤维特性的遗传及分了标记研究[D].南京:南京农业大学,2000:65-70.
    43.曾瑞珍,Akshay T D,刘芳,等.利用单片段代换系定位水稻粒型QTL[J].中国农业科学,2006,39(4):674-654.
    44.曾瑞珍,施军琼,黄朝锋,等.籼稻背景的单片段代换系群体构建[J].作物学报,2006,32(1):88-95.
    45.张金发,彩祥,孙济中,等.陆地棉与海岛棉种间杂种经济性状的基因效应分析[J].棉花学报,1994,6(3):163-168.
    46.张军等.棉花微卫星标记的PAGE/银染快速检测[J].棉花学报,2000,12:267-269.
    47.张培通,朱协飞,郭旺珍,等.高产棉花品种泗棉3号产量及其产量构成因素的遗传分析[J].作物学报,2006,32(7):1011-1017.
    48.张天真,靖深蓉.棉花雄性不育杂交种选育的理论与实践[M].北京:中国农业出版社,1998:25-30.
    49.张天真.棉花纤维品质分子育种的现状及展望[J].棉花学报,2000,12:321-326.
    50.甄瑞,王省芬,马峙英,等.海岛棉抗黄萎病基因SSR标记研究[J].棉花学报,2006,18(5):269-272.
    51.郑康乐,黄宁.标记辅助选择在水稻改良中的应用前景[J].遗传,1997,19(2):40-44.
    52.朱文银,杨德卫,林静,等.利用染色体片段置换系定位水稻粒型QTL[J].江苏农业学报,2008,24(3):226-231.
    53.朱文银,杨德卫,林静,等.利用染色体片段置换系定位水稻落粒性主效QTL[J].植物学通报,2008,25(4):443-448.
    54.邹喻平,葛颂.新一代分子标记—SNPs及其应用[J].生物多样性,2003,11(5):370-382.
    55. Ahmad I N, Albar L, Presso I R G, et al. Genetic basis and mapping of the resistance to rice yellow mottle virus. Ⅲ. Analysis of QTL efficiency in introgressioned progenies confirmed the hypothesis of complementary epistasis between two resistance QTLs [J]. Theor Appl Genet,2001,103:1084-1092.
    56. Aida Y, Tsunematsu H, Doi K, et al. Development of a series of introgression lines of japonica in the background of indica rice [J]. Rice Genet Newsl,1997,14:41-43.
    57. Apuya N R, Frazier B L, Keim P, et al. Restriction fragment length polymorphisms as genietic markers in soybean, Glycine max (L.) Merrill [J]. Theor Appl genet,1998,75:889-901.
    58. Bernacch I D, Beck-Bunn T, Eshed Y, et al. Advanced backcross QTL analysis in tomato. Ⅰ. Identification of QTLs for traits of agronomic importance for lycopersicon hirsutum [J]. Theor Appl Genet,1998a,97:381-397.
    59. Bernacch I D, Beck-Bunn T, Eshed Y, et al. Advanced backcross QTL analysis of tomato. Ⅱ Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from lycopersicon hirsutum and L. pimpinellifolium[J]. Theor Appl Genet,1998b,97:170-180.
    60. Bolek Y, El-Zik K M, Pepper A E, et al. Mapping of Verticillium wilt resistance genes in cotton [J]. Plant Sci,2005,168(66):1581-1590.
    61. Botein B, White R L, Skolnick M, et al. Construction of a genetic linkage map using restriction fragment length polymorphisms [J]. J Hum Genet,1980,32:314-331.
    62. Burr B, Burr F A, Thompson K H, et al. Gene mapping with recombinant inbreds in maizes. Genetics, 1988,118:519-526.
    63. Causse M A, Fulton T M, Cho Y G, et al. Saturated Molecular Map of the Rice Genome Based on an Interspecific Backcross Population [J]. Genetics,1994,138:1251-1274.
    64. Chee P, Draye X, Jiang C X, et al. Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense(cotton)by a backcross-self approach:Ⅰ.Fiber elongation [J]. Theor. Appl. Genet.,2005,111:757-763.
    65. Chee P, Draye X, Jiang C X, et al. Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense(cotton)by a backcross-self approach:Ⅲ. Fiber length [J]. Theor. Appl. Genet.,2005,111:772-781.
    66. Chee P, Rong J K, Williams-Coplin D, et al. EST derived PCR-based markers homologues in cotton [J]. Genome,2004,47:449-462.
    67. Chittenden L M, Schertz K F, Lin Y R, et al. A detailed RFLP map of Sorghum bicolor x S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments [J]. Theor. Appl. Geneti.,1994,87:925-930
    68. Cockerham C C. An extension of the concept of partitioning hereditary variance for analysis of covariance among relatives when epistasis is present [J]. Genetics,1954,39:859-875.
    69. Culp TW, Harrell DC, Kerry T. Some genetic implications in the transfer of high fiber strength genes to Upland cotton [J]. Crop Sci.,1979,19:481-484.
    70. Darvasi A, Weinreb A, Minke V, et al. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map[J]. Genetics,1993,134:943-951.
    71. Doebley J, Stec A, Gustus C. Teosinte branchedl and the Origin;of Maize:Evidence for Epistasis and the Evolution of Dominance [J]. Genetics,1995,141:333-346.
    72. Doi K, Wata N, Yoshimura A. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of Japonica rice (O. sativa L.) [J]. Rice Genet Newsl, 1997,14:39-41.
    73. Draye X, Chee P, Jiang C X, etal. Molecular dissection of interspecific variation between Gossypium hirsutum and G.barbadense(cotton)by a backcross-self approach:Ⅱ. Fiber fineness. Theor.Appl.Genet., 2005,111:764—771
    74. Edwards M D, Stuber C W, Wendel J F. Molecular-Marker-Facilitated Investigations of Quantitative-Trait Loci in Maize. I. Numbers, Genomic Distribution and Types of Gene Action [J].Genetics,1987,116:113-125.
    75. Eshed Y, Zamir D. An introgression line population of lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL [J]. Genetics,1995,141:1147-1162.
    76. Eshed Y, Zamir D. Less-than-additive epistatic interactions of quantitative trait loci in tomato [J]. Genetics,1996,143:1807-1817.
    77. Fang Z, Polacco M, Chen S, et al. cMap:the comparative genetic map viewer [J]. Bioinformatics Application Note,2003,19:416-417.
    78. Flint-Garcia S A, Thornsberry J M, Buckler E S. Structure of linkage disequilibrium in plants [J]. Annu. Rev. Plant Biol,2003,54:357-374.
    79. Forabosco P, Falchi M, Devoto M. Statistical tools for linkage analysis and genetic association studies. Expert Review of Molecular Diagnostics,2005,5:781-796.
    80. Frary A, Nesbitt T C, Orandill O S, et al. fw2.2 A quantitative trait locus key to the evolution of tomato fruit size [J]. Science,2000,289:85-88.
    81. Frelichowski J E, Palmer M B, Main D, et al. Cotton genome mapping with new microsatellites from Acala'Maxxa'BAC-ends [J]. Mol Gen Genomics,2006,275(5):479-491.
    82. Gelderman H. Investigation on inheritance of quantitative characters in animals by gene markers. I. Methods [J]. Theor. Appl. Genet.,1975,46:300-319.
    83. Guo W Z, Cai C P, Wang C B, et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium [J]. Genetics,2007,176:527-541.
    84. Guo W Z, Cai C P, Wang C B, et al. A preliminary analysis of genome structure and composition in Gossypium hirsutum [J]. BMC Genomics,2008,9:314.
    85. Hackett C A, Pande B, Bryan G J. Constructing linkage maps in autotetraploid species using simulated annealing [J]. Thero. Appl. Genet.,2003,106:1107-1115.
    86. Han Z G, Guo W Z, Song X L, et al. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboretum in allotetraploid cotton [J]. Mol Genet Genomics,2004,272:308-327.
    87. Han Z G, Wang C B, Song X L, et al. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton [J]. Theor Appl Genet,2006,112:430-439.
    88. He D H, Lin Z X, Zhang X L, et al. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton[J]. Euphytica,2005,144:141-149.
    89. Howell PM, Marshall D F, Lydiate D J. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection [J]. Genome,1996,39:248-358.
    90. Jansen R C. Interval mapping of multiple quantitative trait loci [J]. Genetics,1993,135:205-211.
    91. Jiang C X, Wright R J, El-Zik K M, et al. Polyploid formation created unique avenues for response to selection in Gossypium (cotton) [J]. Proc Natl Acad Sci USA,1998,95:4419-4424.
    92. Jiang C X, Wright R J, Woo S S, et al. QTL analysis of leaf morphology in tetraploid Gossypium(cotton)[J]. Thero Appl Genet,2000,100:409-418.
    93. Jiang C, Zeng Z B. Multiple trait analysis of genetic mapping for quantitative trait loci [J]. Genetics, 1995,140:1111-1127.
    94. Jiang C, Zeng Z B. Multiple Trait Analysis of Genetic Mapping for Quantitative Trait Loci [J]. Genetics,1995,140:1111-1127.
    95. Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci [J]. Genetics, 1999,152:1203-1216.
    96. Kao C H, Zeng Z B. General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm [J]. Biometrics,1997,53:359-371.
    97. Khan M A, Steward J M, Zhang J, et al. Addition of new markers to the trispecific cotton map[C]// Proc of the beltwide cotton conference. National Cotton Council, Memphis, TN,1999:439.
    98. Kohel R J, Lewis C F, Richmond T R. Texas marker-1:Description of a genetic standard for Gossypium hirsutum L [J]. Crop Sci,1970,10:670—671.
    99. Kohel R J, Yu J, Park Y H, et al. Molecular mapping and characterization of traits controlling fiber quality in cotton [J]. Euphytica,2001,121:163-172.
    100. Kojima S, Takahash I Y, Kobayash I Y, et al. Hd3a a rice ortholog of the A rabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day condition [J]. Plant Cell Physiol, 2002,43:1096-1105.
    101. Korff M, Wang H, Leon J, et al. Development of candidate introgression lines using an exotic barley accession (Hordeumvul gare ssp. spontaneum) as donor [J]. Theor Appl Genet,2004,109:1736-1745.
    102. Kubo T, Aida Y, Nakamurak, et al. Reciprocal chromosome segment substitution series derived from Japonica and Indica cross of rice (Oryza sativa L.) [J]. Breeding Science,2002,52:319-325.
    103. Kubo T, Nakamura K, Yoshimura A. Development of a series of indica chromosome segment substitution lines in japonica background of rice [J]. Rice Gene Newsl,1999,16:104-105.
    104. Lacape JM, Nguyen TB, Brigitte C, et al. QTL Analysis of Cotton Quqlity Using Multiple Gossypium hirsutum X Gossypium barbadense Backcross Generations [J]. Crop Science,2005,45:123-140.
    105. Lander E S, Botstein D. Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps [J]. Genetics,1989,121:185-199.
    106. Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica [J]. Theor Appl Genet., 2001,103:455-461.
    107. Lin H X, Ashikar I M, Yamanouch I U, et al. Identification and characterization of a quantitative trait locus Hd9, was controlling heading date in rice [J]. Breeding Science,2002,52:35-41.
    108. Lin H X, Liang Z W, Sasak I T, et al. Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice [J]. Breeding Science,2003,53:51-59.
    109. Lin Z X, Zhang X L, Nie Y X, et al. Construction of a genetic linkage map for cotton based on SRAP [J]. Chinese Sci Bull,2003,48:2063-2067.
    110. Liu Ben-hui. Statistical Genomics [M]. New York:CRC Press,1998:25-30
    111. Liu S B, Zhou R H, Dong Y C, et al. Development, utilization of introgression lines using a synthetic wheat as donor [J]. Theor Appl Genet,2006,112(7):1360-1373.
    112. Lizk, Shenl S, Courtois B. Development of near isogenic introgression line (NIL) sets for QTLs associated with drought tolerance in rice [C]//Workshop on Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water Limited Environments. CIMMYT headquarters:Mexico,1999:21-25.
    113. Lyon. DNA markers and molecular breeding of cotton [J]. The Australian cotton grower,1999,20 (5): 80-83.
    114. Mackay I, Powell W. Methods for linkage disequilibrium mapping in crops [J]. Trends Plant Sci,2007, 12:57-63.
    115. March R E. Gene mapping by linkage and association analysis [J]. Mol Biotechnol,1999,13:113 122。
    116. Masijc P. The application of molecular markers in the process of selection [J]. Cell Mol. Biol. Lett., 2002,7:499-509.
    117. Mei M, Syed N H, Gao S, et al. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium) [J]. Theor Appl Genet,2004,108:280-291.
    118. Meredith WR. Cotton breeding for Fiber strength. In Proceedings from cotton fiber cellulose: structure, function, and utilization conference. Memphis, TN. National cotton council of Amarican, 1992, pp 289-302.
    119. Monforte A J, Tanksley S D. Development of a set of near isogenic and backcross recombinant inbred lines containing most of the lycopersicon hirsutum genome in a L. esculentum genetic background:a tool for gene mapping and gene discovery [J], Genome,2000a,43:803-813.
    120. Nesbitt T C, Tanksley S D. fw2.2 Directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosynthate distribution [J]. Plant Physiol,2001,127:575-583.
    121. Nguyen T B, Giband M, Brottier P, et al. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers [J]. Theor Appl Genet,2004,109:167-175.
    122. Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP and PCR analysis [J]. Plant MolBiol Rep,1993,11:122-127.
    123. Paterson A H, Deverna JW, Lanin I B, et al. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato[J]. Genetics,1990,124: 735-742.
    124. Paterson A H, Estill J C, Rong J K, Williams-Coplin D T, Marler B S. Toward agenetically-anchored physical map of cotton genomes. The third ICGI workshop, Nanjing,2002,31.
    125. Paterson A H, Lander E S, Hewitt J D, et al. Resolution of quantitative traits into mendelian factors by using a complete linkage map of restriction fragment length polymorphisms [J]. Nature,1988,335: 721-726.
    126. Paterson A H, Saranga Y, Menz M, et al. QTL analysis of genotype × environment interaction affecting cot ton fiber quality[J]. Theor Appl Genet,2003,6:384-396.
    127. Peleman J D, vander Voort J R. Breeding by design [J]. Trends in Plant Sci,2003,8:330-334
    128. Rae A M, Howell E C, Kearsey M J. More QTL for flower in time revealed by substitution lines in Brassica oleracea [J]. Heredity,1999,83:586-596.
    129. Ramasay L D, Jennings D E, Bohuone J R, et al. The constructi on of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci [J]. Genome,1996,39:558-567.
    130. Reddy O U K, Pepper A E, Saha S. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research [J]. J Cotton Sci,2001,5:103-113.
    131. Reinisch A J, Dong J M, Brubaker C L, et al. A detailed RFLP map of cotton, Gossypium hi rsutum ×Gossypium barbadance:chromosome organization and evolution in disomic polyploidy genome [J]. Genetics,1994,138:829-847.
    132. Rong J K,, Alex Feltus F, Waghmare, V N, et al. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development[J]. Genetics,2007,176:2577-2588.
    133. Rong J K, Abbery C, Bowers J E, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium) [J]. Genetics,2004,166:389-417.
    134. Saha S, WU J. Effect of chromosome substitutions from Gossypium barbadense L.3-79 into G..hirsutum L.TM-1 on agronomic and fiber traits[J]. J cotton Sci.2004,8:162-169.
    135. Salvi S, Tuberosa R. To clone or not to clone plant QTLs:present and future challenges [J].Trends Plant Sci,2005,10:297-304.
    136. Sawkins M C, Farmer A D, Hoisington D, et al. Comparative Map and Trait Viewer (CMTV):an integrated bioinformatic too to construct consensus maps and compare QTL and functional genomics data across genomes and experiments [J]. Plant Molecular Biology,2004,56:465-480.
    137. Sears E R. Transfer of alien genetic material to wheat. In:L.F.Euans(eds). Wheat Science-Today and Tomorrow.Cambridge Uni.1981.75-89
    138. Shappley Z W, Jenkins J N, Meredith W R, et al. An RFL P linkage map of upland cotton, Gossypium hirsutum L. [J]. Theor Appl Genet,1998,97:756-761.
    139. Shen L, Courto ISB, Mcnally KL, et al. Evaluation of near-isogenic lines of rice introgressioned with QTLs for root depth through market-aided selection[J]. Theor Appl Genet,2001,103:75-83.
    140. Shen X L, Guo W Z, Lu Q X, et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton[J]. Euphytica,2007,155:371-380.
    141. Shen X L, Guo W Z, Zhu X F. Molecular mapping of QTL for fiber qualities in three diverse lines in upland cot ton using SSR markers [J]. Mol Breed,2005,15:169-181.
    142. Shepherd K W, et al. Fourth compendium of wheat-alien chromosome lines. In:T. E. Miller (eds). Prec.7th Wheat Genet. Sym., Cambridge, England.1988.1373-1395.
    143. Snape J W. The detection and estimation of linkage using double haploid of single seed descent populations [J]. Theor Appl Genet,1988,78:125-128.
    144. Sobriza L K, Iked A K, Sanche Z P L, et al. Development of oryza glum aepatula introgression lines in rice, O. sativa L [J]. Rice Genet Newsl,1999,16:107-108.
    145. Song X L, Wang K, Guo W Z, et al. A comparison of genetic map s constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L.× Gossypium barbadense L. [J]. Genome,2005,48:378-390.
    146. Stelly D M, Saha S. Registration of 17 Upland cotton germplasm lines disomic for different G.barbadense chromosome or arm substitutions [J]. Crop Sci.2005,45:2663-2665.
    147. Stuber C W, Wendel J F, Goodman M M, Smith J S C. Techniques and scoring procedures for starch
    gel electrophoresis for maize (Zea mays L.) [J].Tech Bull,1988,286.
    148. Szalma S J, Hostert B M, Ledeaux J R, et al. QTL mapping with near-isogenic lines in maize[J]. TheorAppl Genet,2007,114:1211-1228.
    149. Takai T, Nonoue Y, Yamamoto S, et al. Development of Chromosome segment substitution lines derived from backcross between indica donor rice cultivar'Koshihikari'[J]. Breeding Science,2007, 57:257-261.
    150. Taliercio E,Allen R D,Essenberg M,et al.Analysis of ESTs from multiple Gossypium hirsutum tissues and identification of SSRs [J]. Genome,2006,49:306-319.
    151. Tanksley S D, Ganal M W, Prince J P, et al. High Density Molecular Linkage Maps of the Tomato and Potato Genomes [J]. Genetics,1992,132:1141-1160.
    152. Tanksley SD, Nelson JC. Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer valuable QTLs from unadapted germplasm into elite breeding lines [J]. Theor appl Genet, 1996,92:191-203.
    153. Temnykh S, Par WD, Ayres N, et al. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor App Genet,2000,100:697-712.
    154. Ulloa M, Meredith W R J r, Shappley Z W, et al. RFLP genetic linkage maps from four F2:3 populations and ajoinmap of Gossypium hirsutum L.[J]. Theor Appl Genet,2002,104:200-208.
    155. Ulloa M, Cantrell R G, Percy R G, et al. QTL analysis of stomatal conductance and relationship to lint yield in an interspecific cotton [J]. J Cotton Sci,2000,4:10-18.
    156. Ulloa M, Meredith W R. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population [J]. J Cotton Sci,2000,4:161-170.
    157. Van Ooijen J W, Voorrips R E. JoinMap Version 3.0:Software for the Calculation of Genetic Linkage Maps:Wageningen:CPRO-DLO,001.
    158. Wang B H, Guo W Z, Zhu X F, et al. QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton [J]. Euphytica,2006,152:367-378.
    159. Wehrhahn C, Allard W. The detection and measurement of the effects of individual genes involved in the inheritance of a quantitative character in wheat [J]. Genetics,1965,51:109-119.
    160. Wissuw A M, Wegne R J, Aen, et al. Substitution mapping of Pupl:a major QTL in creasing phosphorus uptake of rice from a phosphorus deficient soil[J]. Theor Appl Genet,2002,105:890-897.
    161. Wright R J, Thaxton P M, EL-Zik K M, et al. D-subgenome bias of Xcm resistance genes in tetraploid Gossypium(cotton) suggests that polyploid formation has created novel avenues for evolution[J]. Genetics,1998,149:1987-1996.
    162. Wright R J, Thaxton P M, El-Zik K M, et al. Molecular mapping of genes affecting pubescence of
    cotton[J]. J Hered,1999,90:215-219.
    163. Wu M Q, Zhang X L, Nie Y C, et al. Localization of QTLs for yield and fiber quality traits of tetraploid cotton cultivar[J]. Acta Genet Sin,2003,30:443-452.
    164. Xi Z Y, He F H, Zeng R Z, et al. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryzasativa L.) [J]. Genome, 2006,49:476-484.
    165. Xiao J H, Li J M, Yuan L P, et al. Dominace is the major genetic basis of heterosis in rice as revealed by QTLanalysis using molecular markers [J]. Genetics,1995,140:745-754.
    166. Xiao Y H, Liu L L, Jiang L, et al. Development of the chromosome segment substitution lines (CSSLs) derived from a hybrid rice cross, Pai64S ×93-11 with super high yield potential [J]. Rice Genet Newsl, 2005,22:17.
    167. Yamamoto T, Kubok I Y, Lin S Y, et al. Characterization and detection of epistatic interactions of 3 QTL, Hdl, Hd2, and Hd3, controlling heading date in rice using nearly isogonic lines [J]. Theor Appl Genet,2000,101:1021-1028.
    168. Yamamoto T, Kuboki Y, Lins Y, et al. Fine mapping of quantitative trait loci Hd1, Hd2, and Hd3, controlling heading date of rice, as single mendelian factors [J]. Theor Appl Genet,1998,97:37-44.
    169. Yamamoto T, Sasaki T, Yano M. Genetic analysis of spreading stubusing indica xjaponica backcrossed progenies in rice [J]. Breeding Science,1997,47:1412144.
    170. Yano M, Katayose Y, Ashikar I M, et al. Hd-1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS[J]. Plant Cell,2000,12: 2473-2483.
    171. Young ND, Tanksley SD. Restriction fragment length polymorphism maps and the concept of graphical genotypes [J]. Theor Appl Genet,1989,77:95-101.
    172. Yu J W, Yu S X, Lu C R, et al. A high-density linkage map of cultivated allotertrapoid cotton based on SSR, TRAP, SRAP and AFLP markers [J]. Intergrated Plant Biol,2007,49:716-724.
    173. Yu J, Edward S B. Genetic association mapping and genome organization of maize [J]. Curr Opin Biotechnol,2006,17:155-160.
    174. Yu J, Park Y H, Lazo G H, et al. Mapping cotton genome with molecular markers[R]. USA:Proc Beltwide Cotton Conf,1997:447.
    175. Yu S B, Li J X, Xu C G, et al. Importance of espistasis as the geneti basis of the heterosis in an elite rice hybrid [J]. Proc Nati Acad Sci USA,1997,94:9226-9231.
    176. Yu Z H, Park Y H, Lazo G R, et al. Molecular mapping of cotton genome and its application to cotton improvementt[J]. Proc Belt Cotton Pro Res Conf,1996:636-637.
    177. Zabean M, Vos P. Selective restriction fragment ampliation:a general method for DNA fingerprinting. EuroPean Patent Application no.92402629, Publication No. EP0534858AI 1993.
    178. Zamir D. Improving plant breeding with exotic genetic libraries [J]. Nature Reviews Genetics,2001, 2:983-989.
    179. Zeller F J. IB/IR wheat-rye chromosome substitutions and translations.In:Proc.4th Int. Wheat Genet.Sump. Colunbia, Missouri.1973.209-221.
    180. Zeng Z B, Kao C H, Basten C J. Estimating genetic architecture of quantitative traits[J]. Gent. Res., 1999,74:279-289.
    181. Zeng Z B. Precision mapping of quantitative trait loci [J]. Genetics,1994,136:1457-1468.
    182. Zeng Z B. Theoretical basis for seperation of multiple linked gene effects in mapping of quantitative trait loci [J]. Proc. Natl. Acad. Sci,1993,90:10972-10976.
    183. Zhang J, Guo W Z, Zhang T Z. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population [J]. Theor Appl Genet,2002,105:1166-1174.
    184. Zhang J, Wu Y T, Guo W Z, et al. Fast screening of microsatellite markers in cotton with PAGE/silver staining. Cotton Sci Sin,2000,12:267—269.
    185. Zhang T Z, Yuan Y L, Yu J, et al. Molecular tagging of a major QTL for fiber strength in upland cotton and its marker-assisted selection[J]. Theor Appl Genet,2003,106:262-268.
    186. Zhang X Z. Production and identification of three 4 Ag (4D) substitution lines of Triticum aestivum-Agropyron relative transmission rate of alien chromosomes [J]. Theor Appl Genet,1992,83: 707-714.
    187. Zhang Z S, Xiao Y H, Luo M, et al. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton(Gossypium hirsutum L.)[J]. Euphytica,2005,144:91-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700