用户名: 密码: 验证码:
胶原在胃癌发病中的作用及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胃癌是全球高发的恶性肿瘤之一,其相关疾病死亡率仅次于肺癌,在全球范围内排名第二位。胃癌预后直接取决于疾病发现的时期。局限于粘膜层或粘膜下层的早期胃癌是唯一可以治愈的胃癌,早期发现并手术切除其5年生存率往往超过90%。但是,胃癌早期缺乏特异性的症状,大多数患者就诊时已到晚期,失去最佳手术时机,常因广泛的侵袭转移或复发而死亡。而以现有的诊断手段,一般早期胃癌的检出率仅15%-20%,远远不能满足临床需要。
     胃癌区别于正常组织的特征就是其细胞的异型性以及组织浸润性。然而,细胞形态学的异型性可见于胃炎性组织修复、胃粘膜肠上皮化生和异型增生或瘤样变,唯有见到异型细胞的组织浸润才能确认为癌。因此单纯通过病理组织形态学水平早期诊断胃癌变得较为困难,常常难以确认,这也成为早期胃癌检出率低的重要原因之一。按照慢性胃炎-萎缩性胃炎-肠上皮化生-不典型增生-胃癌的胃癌变假说来推理,如果对主要的胃癌前病变实施动态监测,从寻找肿瘤浸润的特征性生物学行为着手,研究癌前病变癌变的分子生物学标志物,查找异型细胞浸润组织的分子证据,就能够准确地判别癌前病灶癌变,在病理形态学改变前甄别出早期胃癌,达到早期诊断胃癌目的,为早期治疗和治愈胃癌奠定坚实的基础。
     基于肿瘤分子水平的诊断及其机制的研究逐渐成为热点,并已经显示出肿瘤早期诊断及分子干预特别优势。例如,利用芯片技术建立了胃癌早期诊断的基因预警系统和采用小RNA干扰技术抑制癌变。我们以前的相关基因芯片筛查结果显示,胶原系列的基因表达在胃癌中存在明显的异常表达。本课题作为深入研究,将基因芯片筛查得到的胶原系列基因进行进一步的定量Real-time PCR技术检测,从中筛选可能用于胃癌早期诊断的胶原标记,建立胃癌前病变癌变判别和胃癌早期分子诊断的模型,同时采用现代细胞与分子生物学技术,通过体外胃癌细胞模型研究胃癌中高表达I型间质胶原在胃癌发病中的作用机制,应用RNA干扰技术对胃癌细胞I型胶原实施干预试验,研究COL1A1基因对细胞生物学行为的影响及可能机制,为胃癌早期诊断和分子治疗提供科学的依据。
     一材料和方法:
     1收集手术确诊的胃癌患者,取同一个体不同区域胃粘膜组织样本(癌组织,癌旁癌前病灶及癌切除远端近似正常的胃组织),通过定量Real-time PCR分三阶段检测8个胶原基因(COL1A1, COL1A2, COL3A1, COL4A6, COL6A3, COL8A1, COL10A1, COL11A1) mRNA在这些组织中的表达情况。使用单因素方差分析或非参数检验逐一分析各个胶原基因在胃癌,癌前病灶及相对正常组织中的组间表达差异。将有判癌价值的胶原系列基因在相对正常,癌前病灶,早期胃癌及进展期胃癌不同个体同类样本中的表达情况进行Binary Logistic回归分析(癌与非癌),采用Forward:conditional法,作胃癌与非癌判别,以建立胃癌早期诊断的分子生物信息学判别公式。进一步将判别公式在不同个体、不同类别样本中进行验证并作修正,以获得高敏感性、高特异性的判癌公式。
     2通过体外细胞模型,探讨经PCR验证在胃癌组织中明显高表达的I型胶原作为细胞生长的微环境,对胃癌细胞生物学行为(形态学,细胞骨架,迁徙及增殖)的影响,通过检测相关通路蛋白及基因的改变探讨其可能的作用机制。
     3使用COL1A1-shRNA表达载体转染BGC-823胃癌细胞株,干扰癌细胞I型胶原主要基因COL1A1的表达,通过MTT及Transwell检测研究COL1A1RNA干扰对胃癌细胞增殖及迁移的影响。
     二主要结果:
     1①第一阶段收集22个胃癌手术患者男性19例,女性3例,包括肿瘤部位,癌前病变部位及远端正常部位组织的同个体配对病理样本66个。8个胶原基因定量Real-time PCR结果发现:与癌旁癌前病变组织配对的样本比较,除COL10A1外,肿瘤组织中有6个胶原基因(COL1A1, COL1A2, COL3A1, COL6A3, COL8A1, COL11A1)表达明显上调(P<0.05)。一个胶原基因(COL4A6)表达下调(P<0.05)。
     ②第二阶段收集33个不同疾病状态患者包括癌前病变11例,早期胃癌11例,进展期胃癌11例不同个体的共33个配对病理样本入组。各组均为男性8例,女性3例。7个基因定量Real-time PCR结果发现:与癌前病变组相比,COL11A1在胃癌中表达明显上调,尤其在早期胃癌中更明显(P<0.05),而COL4A6在胃癌中的表达则明显下调(P<0.05)。根据系列胶原基因在胃癌及癌前期病变组织中的相对表达值,采用Binary Logistic回归分析,作癌与非癌判别,结果有3个胶原基因(COL11A1,COL8A1,COL4A6)进入回归方程,初步建立了基于胶原系列基因PCR表达水平的胃癌早期诊断的分子生物信息学判别公式。
     ③第三阶段共收集106个不同患者,男性61例,女性45例,采取不同类别的样本共106个,包括胃镜检查基本正常的20例,癌前病变28例,胃癌58例。4个胶原基因在胃癌及癌前病灶组织表达存在统计学差异,其中COL1A1,1A2,11A1在胃癌组织高表达(P<0.05),而COL4A6则低表达(P<0.05)。根据系列胶原基因在胃癌及癌前期病变组织中的相对表达值,对第二阶段提出的公式进行验证,再次经过Binary logistic回归分析修正了基于胶原系列基因PCR表达水平的胃癌癌变预测公式,修正后公式的敏感性和特异性分别达91.4%和91.7%。
     2①体外细胞实验发现,常规培养三株不同分化程度的胃癌细胞株,在胶原刺激后细胞变形,胞体伸展,表面突起增多,呈现明显增多的丝状伪足和片状伪足,细胞内微丝明显拉长增粗。
     ②Transwell细胞迁移试验表明,在外膜涂有I型胶原的小室内的胃癌细胞通过膜的细胞较未涂胶原组明显增多,提示I型胶原可以明显提高胃癌细胞的迁移能力,这与胶原刺激后细胞形态学改变相一致。
     ③相关通路研究提示:胶原刺激主要使E-cadherin/catenin粘附复合体减少,可溶性的E-cadherin,β-catenin也有轻度下降。提示胶原促进E-cadherin/catenin粘附复合体解聚,破坏细胞间的粘附连接,这些结果可能与FAK磷酸化,β-catenin酪氨酸磷酸化及与β-catenin结合的PTEN下调有关。
     ④MTT试验表明:胃癌细胞在铺有胶原的平板内生长速度明显高于未铺胶原组,提示胶原可促进胃癌细胞增殖。胶原刺激不仅使胃癌细胞P-catenin酪氨酸磷酸化,E-cadherin/catenin复合体解聚,而且使细胞核内β-catenin表达上调,促使其核转位。且3株分化程度不同的细胞株在胶原刺激后,cyclinD1表达均明显上调,尤其是NCI-N87上调最明显,达对照组的3倍。
     3①我们将已构建并经测序鉴定的COL1A1-shRNA质粒载体进行细胞转染,G418筛选,获得3个稳定转染COL1A1-shRNA细胞(COL1A1-shRNA-1, COL1A1-shRNA-2, COL1A1-shRNA-3)及阴性载体对照细胞(Negative control)。转染后见部分细胞边缘圆,细胞核浓缩,细胞中颗粒增多,细胞碎片增多,细胞增殖减慢且易脱落。
     ②Real-time PCR结果示相对于Blank control组,COL1A1-shRNA-1, COL1A1-shRNA-2, COL1A1-shRNA-3转染组细胞COL1A1 mRNA的表达明显下调,尤以COL1A1-shRNA-1转染组效果明显,被抑制了8±0.2倍(P<0.01)。
     ③MTT试验表明:COL1A1-shRNA-1转染组细胞增殖减慢,在各实验点其A值均明显低于Negative control及Blank control (P< 0.05).
     ④Transwell迁移试验表明:COL1A1-shRNA-1转染组细胞明显少于Negative control及Blank control,其细胞数量减少超过3倍以上(P<0.05),提示COLlAl干扰可明显抑制胃癌BGC-823细胞迁移。
     三结论:
     1发现2个胶原基因(COL4A6, COL11A1)可能作为胃癌前病变早期癌变监测指标,COL11A1可能是更为敏感的监测指标。
     2初步建立起了基于胶原系列基因表达水平的胃癌前期病灶癌变判别公式,对临床早期胃癌的生物学诊断提出新的诊断模式。
     3Ⅰ型胶原可诱导胃癌细胞骨架重组,促进细胞增殖及迁移,主要与β-catenin酪氨酸磷酸化及核转位有关。
     4成功建立和筛选体外稳定转染COL1A1-shRNA的胃癌BGC-823细胞株,COL1A1-shRNA转染可抑制胃癌细胞增殖迁移,有望成为胃癌治疗新的基因靶标。
Gastric cancer is a common malignant tumor worldwide. It remains the second most common cause of cancer death. Early detection and resection improve the long-term survival, as gastric cancer could be more curable if diagnosed at earlier stage. The prognosis of advanced cancer remains poor due to high recurrence and metastasis. Most patients are asymptomatic in the early stages of GC. With current histopathological diagnostic approaches, only about 15% to 20% of GC patients are eligibly detected in early stages. With no reliable marker or diagnostic model available for the early diagnosis of GC, it is imperative to identify and develop new biomarkers and/or diagnostic model to improve the early detection of GC.
     The malignancy is evidenced by the presence of the morphological atypia and biological invasive behavior of the cell. Cell atypia is also observed in the inflammation, premalignant lesions, such as metaplasia or dysplasia gastric epithelium, which is one of the contributions to low diagnostic rate of early gastric cancer (EGC). It is widely accepted that atrophy-metaplasia-dysplasia-carcinoma is sequential development of GC carcinogenesis. Atrophic gastritis, intestinal metaplasia and/or dysplasia are believed to be precancerous or predisposing conditions for GC and the majority of GC results from precancerous lesions. The traditional histopathological classification systems of GC, on the basis of cell morphological atypia, are difficult to efficiently predict the risk of sequential development from precancerous lesions. From molecular mechanism of cancer cell invasion, we can search for more molecular information so as to earlier discriminate EGC from premalignant lesions than traditional histopathological level.
     Molecular mechanisms of neoplastic transformation have been under the thorough investigation. Novel techniques and new genes involved into the gastric cancer development have been indentified and showed promising prospect. For example, Cui and his colleagues developed a microarray-based prewarning system for early detection of gastric cancer and precancerous lesions. Yu found several novel genes associated with early gastric carcinogenesis and development by microarray analysis. Our previous microarray analysis has shown the aberrant expression profile of collagens in GC, suggesting that collagens have a great potential to be used as a diagnostic and prognostic marker in GC and maybe become biomarkers of atypical cell invasion. To identify potential biomarkers or diagnostic model for the early detection of GC, we compared the expression of collagen genes from different group patients'gastric tissues including normal group (chronic superficial gastritis), premalignant lesions, EGC and advanced gastric cancer (AGC). In addition, we investigated the effects of collagen type I that upregulated in gastric cancer tissues on gastric carcinoma cell lines as tumor microenvironment and by siRNA technology to silence COL1A1 gene.
     Material and Methods
     1 To identify potential biomarkers or diagnostic model for the early detection of GC, we compared the expression levels of collagen genes among different group patients' gastric tissues including normal group (chronic superficial gastritis), premalignant lesions, EGC and advanced gastric cancer (AGC) by three sequential phase. Gastric tissues samples were obtained from 106 patients who underwent gastrectomy or gastroscopy. Eight collagen genes were further determined by our microarray analysis and related literature. The expression levels of eight genes in clinical tissue samples of stomach were detected by real-time quantitative reverse transcription-PCR (qRT-PCR). The significance of eight collagens mRNA levels among different groups (phaseⅠ:normal, premalignant and GC; phaseⅡ:Premalignant, EGC and AGC; phaseⅢ:normal, premalignant and GC) was determined by ANOVA or Kruskal-Wallis Test where appropriate. Binary logistic regression analysis was performed to predict the probability that a sample was from a GC patient (disease) or not (control), and to propose the possible cancerous predictive formula for early diagnosis of gastric cancer.
     2 To investigate the role of collagen typeⅠon invasion and metastasis of gastric cancer, we emplyed three gastric cancer cell lines originated from various differentiation stages to explore the effects of collagen typeⅠon gastric cancer cell behavior including cell morphology, cytoskeleton organization, migration and proliferation as tumor microenvironment.In addition, the possible molecular mechanism was explored by detecting the expression levels of related signal protein and gene.
     3 COL1A1 in BGC-823 cell lines was knocked down by small interference RNA. MTT assay and Transwell migration assay were performed to investigate the effects of COL1A1 silencing on cell proliferation and migration.
     Results
     1①PhaseⅠ:66 matched tissue samples from different regions of resected stomach of 22 surgery patients (22 malignant lesions,22 premalignant lesions and 22 normal tissues) were chosen for qRT-PCR analysis by 8 collagen genes. Seven genes were statistically significantly different between pair-matched malignant and premalignant groups (P<0.05). Six of these genes (COL1A1, COL1A2, COL3A1, COL6A3, COL8A1 and COL11A1) were significantly overexpressed and only one (COL4A6) were under-expressed in GC patients as compared with premalignant controls.
     ②PhaseⅡ:33 samples from different patients (11 premalignant lesions,11 EGC and 11 AGC) were chosen for further qRT-PCR analysis by 7 collagen genes. COL11A1 was up-regulated in GC patients than those premalignant group control, especially up-regulated in EGC patients(P< 0.05); COL4A6 were significantly down-regulated in GC patients than those premalignant group control (P< 0.05). Binary logistic regression analysis resulted in a predictive formula with COL11A1, COL8A1 and COL4A6 to be the best grouping as variables that predicted GC with an overall correct classification of 100%.
     ③PhaseⅢ:106 from different patients (20 normal tissues,28 premalignant lesions, 58 GC) were chosen for further qRT-PCR analysis by 7 collagen genes. Four genes were statistically significantly different between premalignant group and GC groups (P<0.05). Three of these genes (COL1A1, COL1A2 and COL11A1) were overexpressed and COL4A6 was under-expressed in GC patients. On the basis of the relative expression values of collagen genes in the tissues of GC patients and premalignant lesions, the model from phase II was validated and Binary logistic regression analysis resulted in a new predictive formula with COL1A1, COL1A2, COL3A1, COL4A6, COL6A3 and COL11A1 to be the best grouping as variables that predicted GC with an overall correct classification of 91.5%.
     2①Gastric carcinoma cell lines BGC-823 and SGC-7901 showed apparent changes in cell morphology after 24 h collagen type I stimulation. Cells cultured on collagen type I exhibited elongated or enlarged shape with a higher cytoplasm/nucleus ratio as compared with the cells directly cultured on dishes. They groveled on the collagen type I substrate with spreading of pseudopodia and a loss of cell-cell contacts typically observed in mesenchymal cells. Immunofluorescence microscopy demonstrated that cells grown on collagen type I were scattered with a loss of cell-cell contacts but more lamellipodia and filopodia, characteristic of a great motility.
     ②Transwell migration assays showed that BGC-823 and SGC-7901 cells showed eightfold increase in cell migration towards the collagen type I-coated outer-side porous membranes compared with uncoated ones, which indicated collagen type I induced cell migration in the similar way as chemotactic factors, corresponding to cell morphology change and cytoskeleton reorganization.
     ③Related signal pathway study showed that the E-cadherin/catenin adhesion complex associated with the actin cytoskeleton were reduced after collagen type I stimulation, Whereas, the amount of E-cadherin remained constant in NCI-N87 and BGC-823 cells after collagen type I stimulation; the amount ofβ-catenin was slightly reduced in BGC-823 cells or remained constant in NCI-N87 cells after 2 days of collagen type I treatment. These results suggested that collagen type I treatment causes disruption of the E-cadherin/catenin adhesion complex and dissociation from the actin cytoskeleton in gastric carcinoma cells, subsequently resulted in a decrease in cell-cell adhesion. These results maybe associated with the phosphorylation of FAK, tyrosine phosphorylation ofβ-catenin and the dissociation of endogenous PTEN andβ-catenin.
     ④MTT assays showed the proliferation rates of BGC-823 cells and SGC-7901 cells grown on collagen type I were significantly increased compared with the controls on dishes, which was related withβ-catenin nuclear translocation and the activation ofβ-catenin-LEF/TCF pathway.
     3①Three recombinant plasmids targeting COL1A1 using pSilencerTM 4.1-CMV neo siRNA expression vector were constructed successfully and were transfected into gastric cancer BGC-823 cells.
     ②The expression of COL1A1 mRNA and protein in BGC-823 cells was significantly inhibited by small interfering RNAs (siRNA) transfectants, especially by COL1A1-shRNA-1 transfectant.
     ③MTT assays showed that the proliferation rate of BGC-823 cells with COL1A1-shRNA-1 trasfected was significantly decreased compared with the parental cells and the negative control cells.
     ④Transwell migration assays showed that the migration capacity of BGC-823 cells with COL1A1-shRNA-1 trasfected was decreased compared with the parental cells and the negative control cells.
     Conclusions
     1 COL4A6 and COL11A1 can be potential mRNA markers for early gastric cancer, and COL11A1 was more sensitive than COL4A6.
     2 The possible cancerous predictive formula was developed and showed remarkerble discriminatory power for the diagnosis of early gastric cancer. This provided new biological diagnose model for clinical diagnosis of early gastric cancer.
     3 Collagen type I not only induced gastric carcinoma cells scattering and cytoskeleton remodeling, but also prompted cell migration and proliferation,which was related to tyrosine phosphorylation and nuclear translocation ofβ-catenin.
     4 Gastric cancer BGC-823 cell transfected with COL1A1-shRNA was successfully established, whose COL1A1 expression was clear decreased and resulted in a clear reduction of cell proliferation and migration. This maybe provided potent therapy target for gastric cancer.
引文
[1]Forman D, Burley VJ. Gastric cancer:global pattern of the disease and an overview of environmental risk factors. Best Pract Res Clin Gastroenterol 2006;20:633-49.
    [2]Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol 2006;12:354-62.
    [3]Correa P. Human gastric carcinogenesis:a multistep and multifactorial process--First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 1992;52:6735-40.
    [4]Stemmermann GN. Intestinal metaplasia of the stomach. A status report. Cancer 1994;74:556-64.
    [5]Cui DX, Zhang L, Yan XJ, Zhang LX, Xu JR, Guo YH, Jin GQ, Gomez G, Li D, Zhao JR, Han FC, Zhang J, Hu JL, Fan DM, Gao HJ. A microarray-based gastric carcinoma prewarning system. World J Gastroenterol 2005;11:1273-82.
    [6]Yu CD, Xu SH, Mou HZ, Jiang ZM, Zhu CH, Liu XL. Gene expression profile differences in gastric cancer, pericancerous epithelium and normal gastric mucosa by gene chip. World J Gastroenterol 2005; 11:2390-7.
    [7]Zhao Y, Zhou T, Li A, Yao H, He F, Wang L, Si J. A potential role of collagens expression in distinguishing between premalignant and malignant lesions in stomach. Anat Rec (Hoboken) 2009;292:692-700.
    [8]Roder DM. The epidemiology of gastric cancer. Gastric Cancer 2002;5 Suppl 1:5-11.
    [9]Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin 2008;58:71-96.
    [10]朱慰祺,沈铭昌,廉养德,等.现代肿瘤学胃癌现代肿瘤学2002;第二版.
    [11]Stadtlander CT, Waterbor JW. Molecular epidemiology, pathogenesis and prevention of gastric cancer. Carcinogenesis 1999;20:2195-208.
    [12]Busuttil RA, Boussioutas A. Intestinal metaplasia:a premalignant lesion involved in gastric carcinogenesis. J Gastroenterol Hepatol 2009;24:193-201.
    [13]Hu M, Polyak K. Microenvironmental regulation of cancer development. Curr Opin Genet Dev 2008; 18:27-34.
    [14]De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol 2003;200:429-47.
    [15]Condeelis J, Singer RH, Segall JE. The great escape:when cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol 2005;21:695-718.
    [16]Yamaguchi H, Wyckoff J, Condeelis J. Cell migration in tumors. Curr Opin Cell Biol 2005;17:559-64.
    [17]Paget S. The distribution of secondary growths in cancer of the breast.1889. Cancer Metastasis Rev 1989;8:98-101.
    [18]Comoglio PM, Trusolino L. Cancer:the matrix is now in control. Nat Med 2005;11:1156-9.
    [19]Yang S, Shin J, Park KH, Jeung HC, Rha SY, Noh SH, Yang WI, Chung HC. Molecular basis of the differences between normal and tumor tissues of gastric cancer. Biochim Biophys Acta 2007; 1772:1033-40.
    [20]Oue N, Hamai Y, Mitani Y, Matsumura S, Oshimo Y, Aung PP, Kuraoka K, Nakayama H, Yasui W. Gene expression profile of gastric carcinoma: identification of genes and tags potentially involved in invasion, metastasis, and carcinogenesis by serial analysis of gene expression. Cancer Res 2004;64:2397-405.
    [21]Stull RA, Tavassoli R, Kennedy S, Osborn S, Harte R, Lu Y, Napier C, Abo A, Chin DJ. Expression analysis of secreted and cell surface genes of five transformed human cell lines and derivative xenograft tumors. BMC Genomics 2005;6:55.
    [22]Abe M, Yamashita S, Kuramoto T, Hirayama Y, Tsukamoto T, Ohta T, Tatematsu M, Ohki M, Takato T, Sugimura T, Ushijima T. Global expression analysis of N-methyl-N'-nitro-N-nitrosoguanidine-induced rat stomach carcinomas using oligonucleotide microarrays. Carcinogenesis 2003;24:861-7.
    [23]Fischer H, Salahshor S, Stenling R, Bjork J, Lindmark G, Iselius L, Rubio C, Lindblom A. COL11A1 in FAP polyps and in sporadic colorectal tumors. BMC Cancer 2001;1:17.
    [24]Chong IW, Chang MY, Chang HC, Yu YP, Sheu CC, Tsai JR, Hung JY, Chou SH, Tsai MS, Hwang JJ, Lin SR. Great potential of a panel of multiple hMTHl, SPD, ITGA11 and COL11A1 markers for diagnosis of patients with non-small cell lung cancer. Oncol Rep 2006;16:981-8.
    [25]Fischer H, Stenling R, Rubio C, Lindblom A. Colorectal carcinogenesis is associated with stromal expression of COL11A1 and COL5A2. Carcinogenesis 2001;22:875-8.
    [26]Baba Y, Iyama K, Ikeda K, Ishikawa S, Hayashi N, Miyanari N, Honda Y, Sado Y, Ninomiya Y, Baba H. Differential expression of basement membrane type IV collagen alpha chains in gastric intramucosal neoplastic lesions. J Gastroenterol 2007;42:874-80.
    [27]Baba Y, Iyama K, Ikeda K, Ishikawa S, Hayashi N, Miyanari N, Sado Y, Ninomiya Y, Baba H. The expression of type IV collagen alpha6 chain is related to the prognosis in patients with esophageal squamous cell carcinoma. Ann Surg Oncol 2008;15:555-65.
    [28]Hiki Y, Iyama K, Tsuruta J, Egami H, Kamio T, Suko S, Naito I, Sado Y, Ninomiya Y, Ogawa M. Differential distribution of basement membrane type IV collagen alphal(Ⅳ), alpha2(Ⅳ), alpha5(Ⅳ) and alpha6(Ⅳ) chains in colorectal epithelial tumors. Pathol Int 2002;52:224-33.
    [29]Ikeda K, Iyama K, Ishikawa N, Egami H, Nakao M, Sado Y, Ninomiya Y, Baba H. Loss of expression of type IV collagen alpha5 and alpha6 chains in colorectal cancer associated with the hypermethylation of their promoter region. Am J Pathol 2006;168:856-65.
    [30]Reguart N, He B, Taron M, You L, Jablons DM, Rosell R. The role of Wnt signaling in cancer and stem cells. Future Oncol 2005;1:787-97.
    [31]Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006;127:469-80.
    [32]Clements WM, Wang J, Sarnaik A, Kim OJ, MacDonald J, Fenoglio-Preiser C, Groden J, Lowy AM. beta-Catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res 2002;62:3503-6.
    [33]Oshima H, Matsunaga A, Fujimura T, Tsukamoto T, Taketo MM, Oshima M. Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway. Gastroenterology 2006; 131:1086-95.
    [34]Woo DK, Kim HS, Lee HS, Kang YH, Yang HK, Kim WH. Altered expression and mutation of beta-catenin gene in gastric carcinomas and cell lines. Int J Cancer 2001;95:108-13.
    [35]van Es JH, Barker N, Clevers H. You Wnt some, you lose some:oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev 2003; 13:28-33.
    [36]Cheng XX, Wang ZC, Chen XY, Sun Y, Kong QY, Liu J, Li H. Correlation of Wnt-2 expression and beta-catenin intracellular accumulation in Chinese gastric cancers:relevance with tumour dissemination. Cancer Lett 2005;223:339-47.
    [37]Sweeney SM, Guy CA, Fields GB, San Antonio JD. Defining the domains of type I collagen involved in heparin-binding and endothelial tube formation. Proc Natl Acad Sci U S A 1998;95:7275-80.
    [38]Tanaka K, Abe M, Sato Y Roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the signal transduction of basic fibroblast growth factor in endothelial cells during angiogenesis. Jpn J Cancer Res 1999;90:647-54.
    [39]Koenig A, Mueller C, Hasel C, Adler G, Menke A. Collagen type I induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res 2006;66:4662-71.
    [40]Shintani Y, Maeda M, Chaika N, Johnson KR, Wheelock MJ. Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor-beta signaling. Am J Respir Cell Mol Biol 2008;38:95-104.
    [41]Imamichi Y, Menke A. Signaling pathways involved in collagen-induced disruption of the E-cadherin complex during epithelial-mesenchymal transition. Cells Tissues Organs 2007; 185:180-90.
    [42]Giehl K, Menke A. Microenvironmental regulation of E-cadherin-mediated adherens junctions. Front Biosci 2008;13:3975-85.
    [43]Howlett AR, Bissell MJ. The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithelial Cell Biol 1993;2:79-89.
    [44]Nerenberg PS, Salsas-Escat R, Stultz CM. Collagen--a necessary accomplice in the metastatic process. Cancer Genomics Proteomics 2007;4:319-28.
    [45]Kirkland SC. Type Ⅰ collagen inhibits differentiation and promotes a stem cell-like phenotype in human colorectal carcinoma cells. Br J Cancer 2009; 101:320-6.
    [46]Hinck L, Nathke IS, Papkoff J, Nelson WJ. Dynamics of cadherin/catenin complex formation:novel protein interactions and pathways of complex assembly. J Cell Biol 1994; 125:1327-40.
    [47]Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139:871-90.
    [48]Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 2009;28:15-33.
    [49]Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002;2:442-54.
    [50]Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005;17:548-58.
    [51]Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer:role of phosphatidylinositol 3'kinase/AKT pathways. Oncogene 2005;24:7443-54.
    [52]Nawshad A, Lagamba D, Polad A, Hay ED. Transforming growth factor-beta signaling during epithelial-mesenchymal transformation:implications for embryogenesis and tumor metastasis. Cells Tissues Organs 2005;179:11-23.
    [53]Kemler R. From cadherins to catenins:cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 1993;9:317-21.
    [54]Nakajima S, Doi R, Toyoda E, Tsuji S, Wada M, Koizumi M, Tulachan SS, Ito D, Kami K, Mori T, Kawaguchi Y, Fujimoto K, Hosotani R, Imamura M. N-cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma. Clin Cancer Res 2004;10:4125-33.
    [55]Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006;7:131-42.
    [56]Troyanovsky SM. Mechanism of cell-cell adhesion complex assembly. Curr Opin Cell Biol 1999;11:561-6.
    [57]Rodrigo I, Cato AC, Cano A. Regulation of E-cadherin gene expression during tumor progression:the role of a new Ets-binding site and the E-pal element. Exp Cell Res 1999;248:358-71.
    [58]Menke A, Philippi C, Vogelmann R, Seidel B, Lutz MP, Adler G, Wedlich D. Down-regulation of E-cadherin gene expression by collagen type I and type III in pancreatic cancer cell lines. Cancer Res 2001:61:3508-17.
    [59]Reynolds AB, Roczniak-Ferguson A. Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene 2004;23:7947-56.
    [60]Kuroda S, Fukata M, Nakagawa M, Fujii K, Nakamura T, Ookubo T, Izawa I, Nagase T, Nomura N, Tani H, Shoji I, Matsuura Y, Yonehara S, Kaibuchi K. Role of IQGAP1, a target of the small GTPases Cdc42 and Racl, in regulation of E-cadherin-mediated cell-cell adhesion. Science 1998;281:832-5.
    [61]Roura S, Dominguez D. Inducible expression of p120Cas1B isoform corroborates the role for p120-catenin as a positive regulator of E-cadherin function in intestinal cancer cells. Biochem Biophys Res Commun 2004;320:435-41.
    [62]Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A 2001;98:10356-61.
    [63]Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004;303:1483-7.
    [64]Ostman A, Hellberg C, Bohmer FD. Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 2006;6:307-20.
    [65]Roura S, Miravet S, Piedra J, Garcia de Herreros A, Dunach M. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 1999;274:36734-40.
    [66]Lilien J, Balsamo J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 2005:17:459-65.
    [67]Behrens J, Vakaet L, Friis R, Winterhager E, Van Roy F, Mareel MM, Birchmeier W. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J Cell Biol 1993;120:757-66.
    [68]Birchmeier W, Weidner KM, Behrens J. Molecular mechanisms leading to loss of differentiation and gain of invasiveness in epithelial cells. J Cell Sci Suppl 1993;17:159-64.
    [69]Irby RB, Yeatman TJ. Increased Src activity disrupts cadherin/catenin-mediated homotypic adhesion in human colon cancer and transformed rodent cells. Cancer Res 2002;62:2669-74.
    [70]Avizienyte E, Frame MC. Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr Opin Cell Biol 2005;17:542-7.
    [71]Persad S, Troussard AA, McPhee TR, Mulholland DJ, Dedhar S. Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation. J Cell Biol 2001;153:1161-74.
    [72]Vogelmann R, Nguyen-Tat MD, Giehl K, Adler G, Wedlich D, Menke A. TGFbeta-induced downregulation of E-cadherin-based cell-cell adhesion depends on P13-kinase and PTEN. J Cell Sci 2005;118:4901-12.
    [73]Li J, Simpson L, Takahashi M, Miliaresis C, Myers MP, Tonks N, Parsons R. The PTEN/MMAC1 tumor suppressor induces cell death that is rescued by the AKT/protein kinase B oncogene. Cancer Res 1998;58:5667-72.
    [74]Li Z, Wang L, Zhang W, Fu Y, Zhao H, Hu Y, Prins BP, Zha X. Restoring E-cadherin-mediated cell-cell adhesion increases PTEN protein level and stability in human breast carcinoma cells. Biochem Biophys Res Commun 2007;363:165-70.
    [75]Kawaguchi T, Yamashita Y, Kanamori M, Endersby R, Bankiewicz KS, Baker SJ, Bergers G, Pieper RO. The PTEN/Akt pathway dictates the direct alphaVbeta3-dependent growth-inhibitory action of an active fragment of tumstatin in glioma cells in vitro and in vivo. Cancer Res 2006;66:11331-40.
    [76]Raftopoulou M, Etienne-Manneville S, Self A, Nicholls S, Hall A. Regulation of cell migration by the C2 domain of the tumor suppressor PTEN. Science 2004;303:1179-81.
    [77]Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A, Kirchner T. Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 2005;179:56-65.
    [78]Brabletz T, Jung A, Kirchner T. Beta-catenin and the morphogenesis of colorectal cancer. Virchows Arch 2002;441:1-11.
    [79]Nakatani Y, Masudo K, Miyagi Y, Inayama Y, Kawano N, Tanaka Y, Kato K, Ito T, Kitamura H, Nagashima Y, Yamanaka S, Nakamura N, Sano J, Ogawa N, Ishiwa N, Notohara K, Resl M, Mark EJ. Aberrant nuclear localization and gene mutation of beta-catenin in low-grade adenocarcinoma of fetal lung type: up-regulation of the Wnt signaling pathway may be a common denominator for the development of tumors that form morules. Mod Pathol 2002; 15:617-24.
    [80]Yang L, Lin C, Liu ZR. P68 RNA helicase mediates PDGF-induced epithelial mesenchymal transition by displacing Axin from beta-catenin. Cell 2006;127:139-55.
    [81]Kikuchi A. Regulation of beta-catenin signaling in the Wnt pathway. Biochem Biophys Res Commun 2000;268:243-8.
    [82]Kolligs FT, Bommer G, Goke B. Wnt/beta-catenin/tcf signaling:a critical pathway in gastrointestinal tumorigenesis. Digestion 2002;66:131-44.
    [83]Klausner RD. The fabric of cancer cell biology-Weaving together the strands. Cancer Cell 2002;1:3-10.
    [84]Folkman J. Tumor angiogenesis:therapeutic implications. N Engl J Med 1971;285:1182-6.
    [85]Kadler KE, Baldock C, Bella J, Boot-Handford RP. Collagens at a glance. J Cell Sci 2007;120:1955-8.
    [86]Othman MI, Majid MI, Singh M, Man CN, Lay-Ham G. Isolation, identification and quantification of differentially expressed proteins from cancerous and normal breast tissues. Ann Clin Biochem 2008;45:299-306.
    [87]Linder S, Castanos-Velez E, von Rosen A, Biberfeld P. Immunohistochemical expression of extracellular matrix proteins and adhesion molecules in pancreatic carcinoma. Hepatogastroenterology 2001;48:1321-7.
    [88]Sakakibara K, Suzuki T, Motoyama T, Watanabe H, Nagai Y. Biosynthesis of an interstitial type of collagen by cloned human gastric carcinoma cells. Cancer Res 1982;42:2019-27.
    [89]Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 2007;7:139-47.
    [90]Honma K, Miyata T, Ochiya T. Type I collagen gene suppresses tumor growth and invasion of malignant human glioma cells. Cancer Cell Int 2007;7:12.
    [91]Hanna E, Quick J, Libutti SK. The tumour microenvironment:a novel target for cancer therapy. Oral Dis 2009;15:8-17.
    [92]Ramaswamy G, Slack FJ. siRNA. A guide for RNA silencing. Chem Biol 2002;9:1053-5.
    [93]Li SD, Huang L. Gene therapy progress and prospects:non-viral gene therapy by systemic delivery. Gene Ther 2006;13:1313-9.
    [1]Kadler KE, Baldock C, Bella J, Boot-Handford RP. Collagens at a glance. J Cell Sci 2007;120:1955-8.
    [2]Ortega N, Werb Z. New functional roles for non-collagenous domains of basement membrane collagens. J Cell Sci 2002; 115:4201-14.
    [3]蒋新农,周柔丽.肿瘤细胞黏附、迁移与转移的相关性.生物化学与生物物理进展1998;25:404-407.
    [4]Yamaguchi H, Wyckoff J, Condeelis J. Cell migration in tumors. Curr Opin Cell Biol 2005;17:559-64.
    [5]Kalluri R. Basement membranes:structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 2003;3:422-33.
    [6]Aumailley M, Timpl R. Attachment of cells to basement membrane collagen type IV. J Cell Biol 1986; 103:1569-75.
    [7]Havenith MG, Arends JW, Simon R, Volovics A, Wiggers T, Bosman FT. Type IV collagen immunoreactivity in colorectal cancer. Prognostic value of basement membrane deposition. Cancer 1988;62:2207-11.
    [8]Tanaka K, Iyama K, Kitaoka M, Ninomiya Y, Oohashi T, Sado Y, Ono T. Differential expression of alpha 1(Ⅳ), alpha 2(Ⅳ), alpha 5(Ⅳ) and alpha 6(Ⅳ) collagen chains in the basement membrane of basal cell carcinoma. Histochem J 1997;29:563-70.
    [9]Perry J, Tam S, Zheng K, Sado Y, Dobson H, Jefferson B, Jacobs R, Thorner PS. Type IV collagen induces podocytic features in bone marrow stromal stem cells in vitro. J Am Soc Nephrol 2006; 17:66-76.
    [10]Colorado PC, Torre A, Kamphaus G, Maeshima Y, Hopfer H, Takahashi K, Volk R, Zamborsky ED, Herman S, Sarkar PK, Ericksen MB, Dhanabal M, Simons M, Post M, Kufe DW, Weichselbaum RR, Sukhatme VP, Kalluri R. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 2000;60:2520-6.
    [11]Hiki Y, Iyama K, Tsuruta J, Egami H, Kamio T, Suko S, Naito I, Sado Y, Ninomiya Y, Ogawa M. Differential distribution of basement membrane type IV collagen alphal(IV), alpha2(IV), alpha5(IV) and alpha6(IV) chains in colorectal epithelial tumors. Pathol Int 2002;52:224-33.
    [12]Kamphaus GD, Colorado PC, Panka DJ, Hopfer H, Ramchandran R, Torre A, Maeshima Y, Mier JW, Sukhatme VP, Kalluri R. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 2000;275:1209-15.
    [13]Hamano Y, Zeisberg M, Sugimoto H, Lively JC, Maeshima Y, Yang C, Hynes RO, Werb Z, Sudhakar A, Kalluri R. Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 2003;3:589-601.
    [14]Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR, Sonenberg N, Hynes RO, Kalluri R. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 2002;295:140-3.
    [15]Ikeda K, Iyama K, Ishikawa N, Egami H, Nakao M, Sado Y, Ninomiya Y, Baba H. Loss of expression of type IV collagen alpha5 and alpha6 chains in colorectal cancer associated with the hypermethylation of their promoter region. Am J Pathol 2006;168:856-65.
    [16]吴晓华,高奉浔,陈俐.大肠癌细胞黏液分泌功能分化与浸润、转移的关系.临床与实验病理学杂志1998;14 322-324.
    [17]张健康,李晓丽,李亮成,徐大毅.Ⅳ型胶原、层粘连蛋白、纤维粘连蛋白在胃癌中表达的意义.山西医科大学学报2000;31:44-46.
    [18]Pichard V, Honore S, Kovacic H, Li C, Prevot C, Briand C, Rognoni JB. Adhesion, actin cytoskeleton organisation and the spreading of colon adenocarcinoma cells induced by EGF are mediated by alpha2betal integrin low clustering through focal adhesion kinase. Histochem Cell Biol 2001;116:337-48.
    [19]Kim TS, Kim YB. Correlation between expression of matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9) and angiogenesis in colorectal adenocarcinoma. J Korean Med Sci 1999; 14:263-70.
    [20]Feng G, Tan Y. [Expression and significance of MMP2 and type IV collagen in gastric cancer]. Zhonghua Wai Ke Za Zhi 2000;38:775-7,45.
    [21]Opdenakker G, Paemen L, Norga K, Masure S. Proteinase inhibition in invasive cancer therapy:four control levels of matrix degradation. Int J Cancer 1997;70:628-30.
    [22]Yantiss RK, Bosenberg MW, Antonioli DA, Odze RD. Utility of MMP-1, p53, E-cadherin, and collagen IV immunohistochemical stains in the differential diagnosis of adenomas with misplaced epithelium versus adenomas with invasive adenocarcinoma. Am J Surg Pathol 2002;26:206-15.
    [23]Clement B. [The liver, collagen XVIII and hepatocarcinogenesis]. Ann Pathol 1999;19:S73.
    [24]Myers JC, Dion AS, Abraham V, Amenta PS. Type XV collagen exhibits a widespread distribution in human tissues but a distinct localization in basement membrane zones. Cell Tissue Res 1996;286:493-505.
    [25]Eklund L, Piuhola J, Komulainen J, Sormunen R, Ongvarrasopone C, Fassler R, Muona A, Ilves M, Ruskoaho H, Takala TE, Pihlajaniemi T. Lack of type XV collagen causes a skeletal myopathy and cardiovascular defects in mice. Proc Natl Acad Sci U S A 2001;98:1194-9.
    [26]Amenta PS, Scivoletti NA, Newman MD, Sciancalepore JP, Li D, Myers JC. Proteoglycan-collagen XV in human tissues is seen linking banded collagen fibers subjacent to the basement membrane. J Histochem Cytochem 2005;53:165-76.
    [27]Amenta PS, Briggs K, Xu K, Gamboa E, Jukkola AF, Li D, Myers JC. Type XV collagen in human colonic adenocarcinomas has a different distribution than other basement membrane zone proteins. Hum Pathol 2000;31:359-66.
    [28]Paget S. The distribution of secondary growths in cancer of the breast.1889. Cancer Metastasis Rev 1989;8:98-101.
    [29]Howlett AR, Bissell MJ. The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithelial Cell Biol 1993;2:79-89.
    [30]De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol 2003;200:429-47.
    [31]Comoglio PM, Trusolino L. Cancer:the matrix is now in control. Nat Med 2005;11:1156-9.
    [32]Yang S, Shin J, Park KH, Jeung HC, Rha SY, Noh SH, Yang WI, Chung HC. Molecular basis of the differences between normal and tumor tissues of gastric cancer. Biochim Biophys Acta 2007;1772:1033-40.
    [33]Yasui W, Oue N, Ito R, Kuraoka K, Nakayama H. Search for new biomarkers of gastric cancer through serial analysis of gene expression and its clinical implications. Cancer Sci 2004;95:385-92.
    [34]Oue N, Hamai Y, Mitani Y, Matsumura S, Oshimo Y, Aung PP, Kuraoka K, Nakayama H, Yasui W. Gene expression profile of gastric carcinoma: identification of genes and tags potentially involved in invasion, metastasis, and carcinogenesis by serial analysis of gene expression. Cancer Res 2004;64:2397-405.
    [35]Cui DX, Zhang L, Yan XJ, Zhang LX, Xu JR, Guo YH, Jin GQ, Gomez G, Li D, Zhao JR, Han FC, Zhang J, Hu JL, Fan DM, Gao HJ. A microarray-based gastric carcinoma prewarning system. World J Gastroenterol 2005;11:1273-82.
    [36]Plebani M, Basso D, Roveroni G, De Paoli M, Galeotti F, Corsini A. N-terminal peptide of type III procollagen:a possible predictor of colorectal carcinoma recurrence. Cancer 1997;79:1299-303.
    [37]Fischer H, Stenling R, Rubio C, Lindblom A. Colorectal carcinogenesis is associated with stromal expression of COL11A1 and COL5A2. Carcinogenesis 2001;22:875-8.
    [38]Sweeney SM, Guy CA, Fields GB, San Antonio JD. Defining the domains of type I collagen involved in heparin-binding and endothelial tube formation. Proc Natl Acad Sci U S A 1998;95:7275-80.
    [39]Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002;2:442-54.
    [40]Hinck L, Nathke IS, Papkoff J, Nelson WJ. Dynamics of cadherin/catenin complex formation:novel protein interactions and pathways of complex assembly. J Cell Biol 1994;125:1327-40.
    [41]Takeichi M. Cadherins:a molecular family important in selective cell-cell adhesion. Annu Rev Biochem 1990;59:237-52.
    [42]Koenig A, Mueller C, Hasel C, Adler G, Menke A. Collagen type I induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res 2006;66:4662-71.
    [43]Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A 2001;98:10356-61.
    [44]Menke A, Philippi C, Vogelmann R, Seidel B, Lutz MP, Adler G, Wedlich D. Down-regulation of E-cadherin gene expression by collagen type I and type III in pancreatic cancer cell lines. Cancer Res 2001;61:3508-17.
    [45]Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004;303:1483-7.
    [46]Lilien J, Balsamo J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 2005;17:459-65.
    [47]Roura S, Miravet S, Piedra J, Garcia de Herreros A, Dunach M. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 1999;274:36734-40.
    [48]Piedra J, Martinez D, Castano J, Miravet S, Dunach M, de Herreros AG. Regulation of beta-catenin structure and activity by tyrosine phosphorylation. J Biol Chem 2001;276:20436-43.
    [49]Imamichi Y, Menke A. Signaling pathways involved in collagen-induced disruption of the E-cadherin complex during epithelial-mesenchymal transition. Cells Tissues Organs 2007; 185:180-90.
    [50]Vogelmann R, Nguyen-Tat MD, Giehl K, Adler G, Wedlich D, Menke A. TGFbeta-induced downregulation of E-cadherin-based cell-cell adhesion depends on P13-kinase and PTEN. J Cell Sci 2005;118:4901-12.
    [51]Avizienyte E, Wyke AW, Jones RJ, McLean GW, Westhoff MA, Brunton VG, Frame MC. Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nat Cell Biol 2002;4:632-8.
    [52]Giehl K, Menke A. Microenvironmental regulation of E-cadherin-mediated adherens junctions. Front Biosci 2008;13:3975-85.
    [53]Li J, Simpson L, Takahashi M, Miliaresis C, Myers MP, Tonks N, Parsons R. The PTEN/MMAC1 tumor suppressor induces cell death that is rescued by the AKT/protein kinase B oncogene. Cancer Res 1998;58:5667-72.
    [54]Raftopoulou M, Etienne-Manneville S, Self A, Nicholls S, Hall A. Regulation of cell migration by the C2 domain of the tumor suppressor PTEN. Science 2004;303:1179-81.
    [55]Trueb B, Odermatt BF. Loss of type VI collagen in experimental and most spontaneous human fibrosarcomas. Int J Cancer 2000;86:331-6.
    [56]Iyengar P, Espina V, Williams TW, Lin Y, Berry D, Jelicks LA, Lee H, Temple K, Graves R, Pollard J, Chopra N, Russell RG, Sasisekharan R, Trock BJ, Lippman M, Calvert VS, Petricoin EF,3rd, Liotta L, Dadachova E, Pestell RG, Lisanti MP, Bonaldo P, Scherer PE. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J Clin Invest 2005; 115:1163-76.
    [57]Folkman J. Tumor angiogenesis:therapeutic implications. N Engl J Med 1971;285:1182-6.
    [58]Scappaticci FA. Mechanisms and future directions for angiogenesis-based cancer therapies. J Clin Oncol 2002;20:3906-27.
    [59]O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin:an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997;88:277-85.
    [60]Zhang G, Wang Y, Zhang M, Wang Q, Luo Y, Han C, Lu Y, Rao Y. [Inhibition of growth and metastasis of human gastric cancer implanted in nude mice by the angiogenesis inhibitor endostatin]. Zhonghua Wai Ke Za Zhi 2002;40:59-61.
    [61]Zheng AQ, Song XR, Yu JM, Wei L, Wang XW. Liposome transfected to plasmid-encoding endostatin gene combined with radiotherapy inhibits liver cancer growth in nude mice. World J Gastroenterol 2005; 11:4439-42.
    [62]Zhang GF, Wang YH, Zhang MA, Wang Q, Luo YB, Wang DS, Han CR. [Inhibition of growth and metastases of human colon cancer xenograft in nude mice by angiogenesis inhibitor endostatin]. Ai Zheng 2002;21:50-3.
    [63]Noro T, Miyake K, Suzuki-Miyake N, Igarashi T, Uchida E, Misawa T, Yamazaki Y, Shimada T. Adeno-associated viral vector-mediated expression of endostatin inhibits tumor growth and metastasis in an orthotropic pancreatic cancer model in hamsters. Cancer Res 2004;64:7486-90.
    [64]Tysome JR, Briat A, Alusi G, Cao F, Gao D, Yu J, Wang P, Yang S, Dong Z, Wang S, Deng L, Francis J, Timiryasova T, Fodor I, Lemoine NR, Wang Y. Lister strain of vaccinia virus armed with endostatin-angiostatin fusion gene as a novel therapeutic agent for human pancreatic cancer. Gene Ther 2009.
    [65]Feldman AL, Alexander HR, Jr., Bartlett DL, Kranda KC, Miller MS, Costouros NG, Choyke PL, Libutti SK. A prospective analysis of plasma endostatin levels in colorectal cancer patients with liver metastases. Ann Surg Oncol 2001;8:741-5.
    [66]te Velde EA, Reijerkerk A, Brandsma D, Vogten JM, Wu Y, Kranenburg O, Voest EE, Gebbink M, Borel Rinkes IH. Early endostatin treatment inhibits metastatic seeding of murine colorectal cancer cells in the liver and their adhesion to endothelial cells. Br J Cancer. Volume 92.2005/02/09 ed, 2005:729-35.
    [67]Sudhakar A, Nyberg P, Keshamouni VG, Mannam AP, Li J, Sugimoto H, Cosgrove D, Kalluri R. Human alphal type IV collagen NCI domain exhibits distinct antiangiogenic activity mediated by alphalbetal integrin. J Clin Invest 2005;115:2801-10.
    [68]Panka DJ, Mier JW. Canstatin inhibits Akt activation and induces Fas-dependent apoptosis in endothelial cells. J Biol Chem 2003;278:37632-6.
    [69]Maeshima Y, Colorado PC, Kalluri R. Two RGD-independent alpha vbeta 3 integrin binding sites on tumstatin regulate distinct anti-tumor properties. J Biol Chem 2000;275:23745-50.
    [70]Maeshima Y, Colorado PC, Torre A, Holthaus KA, Grunkemeyer JA, Ericksen MB, Hopfer H, Xiao Y, Stillman IE, Kalluri R. Distinct antitumor properties of a type IV collagen domain derived from basement membrane. J Biol Chem 2000;275:21340-8.
    [71]Floquet N, Pasco S, Ramont L, Derreumaux P, Laronze JY, Nuzillard JM, Maquart FX, Alix AJ, Monboisse JC. The antitumor properties of the alpha3(Ⅳ)-(185-203) peptide from the NC1 domain of type IV collagen (tumstatin) are conformation-dependent. J Biol Chem 2004;279:2091-100.
    [72]Maeshima Y, Manfredi M, Reimer C, Holthaus KA, Hopfer H, Chandamuri BR, Kharbanda S, Kalluri R. Identification of the anti-angiogenic site within vascular basement membrane-derived tumstatin. J Biol Chem 2001;276:15240-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700