用户名: 密码: 验证码:
光纤Raman放大器增益谱平坦化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与奥林匹克运动提倡的“更快、更高、更强”的精神相似,更大的传输带宽、更高的传输速率和更长的传输距离一直是长途干线光纤通信系统的重要发展方向,波分复用(WDM)和光放大器技术是推动上述发展方向的重要技术基础。在各种已知的光放大器中,光纤Raman放大器(FRA)由于具有噪声系数低、增益波段灵活、可实现宽带放大等众多优点,已成为现代WDM光纤通信系统的关键技术之一。对应用于WDM光纤通信系统FRA的一个基本要求是其增益谱要平坦,本文围绕宽带FRA增益谱平坦化这个中心问题进行了以下研究工作。
     (一)分布式宽带FRA的增益谱平坦化研究
     分布式宽带FRA把各类常规传输光纤作为Raman增益介质,由于这些光纤的Raman增益效率系数很小且非常不平坦,所以一般采用多个泵浦源同时泵浦来实现其增益谱的平坦化。在该方面研究中本文主要进行了以下创新性工作:
     (1)提出了3种用于多波长泵浦宽带FRA数学模型求解的高效和稳定的打靶法。在这3种打靶法中,反向泵浦的迭代起始值根据光纤中受激Raman散射的物理规律和引入的有关参数来共同确定。同时,引入并改进了求解非线性方程组的牛顿-拉斐森方法作为反向泵浦迭代初始值的调整机制。多个FRA的仿真计算结果表明,相对于简单打靶法这3种打靶法的计算效率和稳定性均有极大的提高。
     (2)提出了一种由泵浦功率积分求解泵浦输入功率的高效方法。在该方法中,根据Raman耦合方程在给定泵浦功率积分的情况下构造了一个关于泵浦输入功率的非线性耦合方程组,这样就使泵浦输入功率的求解问题变成了非线性方程的求根问题。通过积分中值定理和牛顿-拉斐森求根方法的有机结合应用,上述关于泵浦输入功率的非线性方程组得到了高效的求解。数值仿真的结果表明,该方法比此前有关文献报道的方法的求解效率提高了约2个数量级。
     (3)将粒子群优化(PSO)算法引入到宽带FRA设计领域,并对其进行了改进,提出了一种新的粒子群优化(MPSO)算法。对多个高维复杂的基准测试函数的优化结果表明,MPSO算法能在保持原PSO算法简单易行优点的同时大幅提高算法的优化效率和收敛率。
     (4)在将PSO、MPSO和所提出的3种打靶法、平均功率法进行有机结合的基础上,提出了3种多波长泵浦宽带FRA的增益谱平坦化方法。多个FRA增益谱的优化结果显示,这些优化设计方法的有关性能较有关文献中报道的方法性能均有很大的提升。
     (5)在详细分析多波长泵浦增益谱平坦宽带FRA传统实现方法缺点的基础上,提出了一种智能实现方法。该方法把FRA看成一个黑箱系统,不再根据具体的数学模型精确分析其内部究竟发生了什么、是如何发生的。而是把决定各泵浦功率的驱动电流看成黑箱系统的输入,相应的增益谱看成黑箱系统的输出,通过智能优化方法调整泵浦驱动电流从而实现宽带FRA增益谱的平坦化。为验证所提方法的可行性,文中给出了详细的软、硬件实现方案,并进行了实验验证。多个实验的结果表明,该方法是智能高效的多波长泵浦增益谱平坦宽带FRA的实现途径。
     (二)分立式宽带FRA的增益谱平坦化研究
     第(一)部分提到多波长泵浦法对于分立式FRA的增益谱平坦化同样适用,但由于分立式FRA的增益介质可以有很多种选择,不像分布式FRA那样必须使用传输光纤作为增益介质,这就给分立式FRA的增益谱平坦化设计留下了很大的灵活性。本文在分立式宽带FRA的增益谱平坦化方面主要进行了如下创新性工作。
     (1)提出了一种具有优良Raman增益属性的新型双芯光子晶体光纤(NPCF),通过对其横截面结构的合理设计,使其Raman增益效率系数在一定的波长范围内接近常数,进而为增益谱平坦宽带FRA提供优良的增益介质。数值仿真结果表明,在C波段(1530 ~ 1565 nm)该NPCF的Raman增益效率系数的波动率从普通单模光纤的49.6%骤降为3.3%,同时其数值上也比普通单模光纤有所提高,长波长方向提高约1.3倍,短波长方向提高约2.7倍的。
     (2)利用所提出的上述NPCF设计了一个C波段FRA。数值仿真的结果表明,在仅用一个泵浦的情况下,该NPCF-Raman放大器的平均增益可达8.7 dB,且增益谱波动小于0.9 dB,相对于普通单泵浦FRA的性能有很大的提升。NPCF-Raman放大器对于降低FRA的制造成本和简化FRA的设计复杂度具有重要意义。
As the Olympic motto of“Faster, Higher, Stronger”inspires, a broader transmission bandwidth, a higher transmission rate and a longer transmission distance have always been the target long haul optical fiber communication systems aspire after. Wavelength division multiplexing (WDM) and optical amplifier technologies are the crucial boosters for the evolutions of development. Among various optical amplifiers, fiber Raman amplifier (FRA) is an enable technology for WDM optical fiber communication systems due to their low noise figure, flexibility of gain band and broad bandwidth amplification. In this dissertation, the following progress was made in aiming to flatten the gain spectrum of a broadband FRA.
     (1) Flattening of gain spectrum of a distributed broadband FRA.
     A distributed broadband FRA uses conventional fibers with small and uneven Raman gain efficiency coefficient as gain media. Multiple pumps are usually needed to achieve a flat gain spectrum of an FRA. Regarding this issue, the following creative works are carried out.
     (1.1) Three shooting algorithms were proposed for stably and efficiently solving the Raman coupled equations with multiple counter pumps. In these shooting algorithms, the starting values of counter pumps are determined by the analyses of physical pictures of stimulated Raman scattering in fiber and some newly introduced parameters. In addition, the Newton-Raphson method for solving a set of nonlinear equations was modified to adjust the initial values of counter pumps. The simulations of multiple FRAs showed that the calculation efficiency and stability of these shooting algorithms are improved dramatically when compared with the conventional shooting algorithm.
     (1.2) An efficient method for extraction of input pump powers from pump power integrals was proposed. In this method, a set of coupled nonlinear equations of input pump powers for given target pump power integrals are constructed. Finding the input pump powers corresponding to the target pump power integrals is mapped to finding solution of this set of nonlinear equations. By combined application of Newton-Raphson root-finding method and the mean value theorem for integrals the set of nonlinear equations was solved efficiently. The calculation results showed that the proposed method reduces the computational effort by two orders of magnitude when compared with those previously reported techniques.
     (1.3) The particle swarm optimization (PSO) was modified and introduced to the design of FRA. The application to multiple benchmark functions showed that the modified PSO (MPSO) improves the efficiency and convergence of the program greatly, in the mean time keeps the simple and elegent feature of the basic PSO.
     (1.4) By organic combination of PSO, MPSO and the 3 shooting algorithms, average power analysis, three design methods for a multiple-wavelength-pumped broadband gain-flattened FRA were proposed. The design results of multiple FRAs indicated that the performances of these methods are all improved when compared with the old, traditional methods in literatures.
     (1.5) An intelligent implement method of FRA was proposed based on the thorough analyses of drawbacks of conventional implement methods. In this new method, an exact mathematical model of FRA to determine what happens and how it happens is not needed. Instead, a FRA is regarded as a black-box. The driving currents that determine the pump powers are treated as the input of the black box and the corresponding gain spectrum are treated as the output of the black box. The method achieves the flattening of gain spectrum of a FRA by adjusting the driving currents via an intelligent approach. In order to verify the feasibility of this intelligent implement method, detailed schemes of software and hardware were presented and design of multiple intelligent FRAs were carried out. The experimental results showed that the proposed method is an efficient and intelligent approach for the implementation of multiple-wavelength-pumped broadband gain-flattened FRA.
     (2) Flattening of gain spectra of a discrete broadband FRA.
     The above-mentioned methods of flat-spectrum design of a distributed FRA are also applicable to a discrete broadband FRA. On the other hand, a discrete FRA has its own methods to achieve flat gain spectrum because fibers of various special feature can be adopted as gain media in this case, in contrast with the distributed FRA where the transmission fiber is the gain media. On the flattening of a gain spectrum of a discrete broadband FRA, the following creative works were made in this dissertation.
     (2.1) A novel twin-core photonic crystal fiber (NPCF) was proposed. This NPCF possesses a higher and flatter Raman gain efficiency (RGE) spectrum over a specified band of wavelength than a conventional fiber. This feature is achieved by appropriate design of its cross-section. Therefore, it is a good candidate of gain medium for a flat, broad gain band FRA. It was numerically demonstrated that the relative fluctuations of RGE of the NPCF reduces to 3.3% in the C (1530 ~ 1565 nm) band, while that of a conventional single mode fiber (SMF) is 49.6% in this band. Moreover, its value of RGE is 1.3 times and 2.7 times larger than that of a SMF respectively at the long and short wavelength end.
     (2.2) By using the NPCF as gain medium a C-band FRA was designed. It was numerically demonstrated that when pumped with a single source, an average gain of 8.7 dB with a fluctuation of less than 0.9 dB is achievable. It is a remarkable improvement over a conventional FRA. The NPCF reduces the complexity and cost of an FRA greatly.
引文
[1] F. P. Kapron, D. B. Keck, and R. D. Maurer. Radiation losses in glass optical waveguides. Appl. Phys. Lett., 1970, 17(10):423-425.
    [2] I. Hayashi, M. B. Panish, P. W. Foy et al. Junction lasers which operate continuously at room temperature. Appl. Phys. Lett., 1970, 17(3):109-111
    [3]王加强.光纤通信技术.武汉:武汉大学出版社, 2007.
    [4] Joseph C. Palais. Fiber optic communications. Fifth Edition. Beijing: Publishing House of Electronics Industry, 2009.
    [5]张明德,孙小菡.光纤通信原理与系统.南京:东南大学出版社, 2009.
    [6]李玲,黄永清.光纤通通信基础.北京:国防工业出版社, 1999.
    [7]王延恒,王黎明.光纤通信系统与光纤网.天津:天津大学出版社, 2007.
    [8]邱昆,王晟,邱琪.光纤通信系统.成都:电子科技大学出版社, 2005.
    [9]毛谦.我国光通信产业的竞争力发展和竞争力探讨.中国通信. 2010, (3):114-118.
    [10] K. C. Kao and G. A. Hockham. Dielectric-fiber surface waveguides for optical frequencies. Proc. Inst. Elect. Eng., 1966, 113 (7):1151-1158.
    [11]原荣.光纤通信.北京:电子工业出版社, 2010.
    [12]杨祥林等.光放大器及其应用.北京:电子工业出版社, 2000.
    [13] G. P. Agrawal. Fiber-optic communication systems.北京:清华大学出版社, 2004.
    [14]吴重庆.光通信导论.北京:清华大学出版社, 2008
    [15] F. Ginovart, J. C. Simon, I. Valiente, et al. Gain recovery dynamics in semiconductor optical amplifier. Opt. Commun., 2001, 199(1-4):111-115.
    [16] M. Eiselt, W. Pieper, H. G. Weber. SLALOM: semiconductor laser amplifier in a loop mirror. J. Lightwave Technol., 1995, 13(10):2099-2111.
    [17] C. Headly and G. P. Agarwal. Raman amplification in fiber optical communication systems. San Diego: Elsevier Academic, 2005.
    [18] J. Bromage. Raman amplification for fiber communications systems. J. Lightwave Technol., 2004, 22(1):79–93.
    [19] M. N. Islam. Raman amplifiers for telecommunications. IEEE J. Select. Topics Quantum Electron., 2002, 8(3):548–559.
    [20]童治,魏淮,简水生.光纤喇曼放大器的特性及其在宽带通信中的应用.光学技术, 2001, l27(3):196-199.
    [21]张在宣,刘红林,戴碧智等.分布式光纤拉曼放大器研制的进展.中国计量学院学报, 2005, 16(2):93-99.
    [22] P. Kaewplung, K. Kikuchi. Simultaneous cancellation of fiber loss, dispersion, and Kerr effect in ultralong-haul optical fiber transmission by midway optical phase conjugation incorporated with distributed Raman amplification. J. Lightwave Technol., 2007, 25(10):3035-3050.
    [23] A. Puc, D. I. Chang, G. Grosso, et al. L-band unrepeatered WDM experiment over 451 km using all-Raman amplification and ROPA. LEOS, 2008, p. 485-486.
    [24] M. C. Fugihara, A. N. Pinto. Low-cost L-band Raman amplifier for CWDM systems. IEEE/LEOS Summer Topical Meetings, 2008, p. 143-144.
    [25] L. A. M. Saito, P. D. Taveira, et al. Multi-pump discrete Raman amplifier for CWDM system in the O-band. Opt. Fiber Technol., 2008, 14(4):294-298.
    [26] D. V. da Silva, A. S. L. Gomes. Performance of analog optical links employing fiber Raman amplifiers. Opti. Commun., 2009, 282(15):3085-3088.
    [27] B. Zhu. Entirely passive reach extended GPON using Raman amplification. Opt. Express, 2010, 18(22):23428-23434.
    [28] S. Sergeyev, S. Popov, A. T. Friberg. Virtually isotropic transmission media with fiber Raman amplifier. 2010, IEEE J. Select. Topics Quantum Electron., 46(10):1492-1497.
    [29] S. Zhou, T. Takamido, S. Imai, et al. Exploitation of stimulated Raman scattering in short-pulse fiber amplifiers. 2010, Opt. Lett., 35(14):2397-2399.
    [30] G. P. Agrawal. Nonlinear Fiber Optics. San Diego: Elsevier Academic, 1989.
    [31]钱士雄,王恭明.非线性光学-原理与进展.上海:复旦大学出版社, 2001.
    [32] C. V. Raman and K. S. Krishnan. A new type of secondary radiation. Nature, 1928, 121(3048):501-502.
    [33] R. H. Stolen, E. P. Ippen and A. R. Tynes. Raman Oscillation in glass optical waveguide. Appl. Phys. Lett., 1972, 20(2):62-64.
    [34] R. H. Stolen and E. P. Ippen. Raman gain in glass optical waveguides. Appl. Phys. Lett., 1973, 22(6):276-278.
    [35] S. Namiki and Y. Emori. Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes. IEEE J. Sel. Top. Quantum Electron., 2001, 7(1):3-16.
    [36] N.布洛姆伯根.非线性光学.吴存恺,沈文达,沃新能译.北京:科学出版社, 1987.
    [37] Simon P. Parry. Dynamically flattened optical amplifiers. OFC, 2001, vol. 2, p. TuA4/1-TuA4/3.
    [38]黄宇,戴碧智,张在宣等.宽带光纤拉曼放大器的增益平坦化实验研究.光电工程, 2008, 35(3):126-130.
    [39] T. Matsuda, M. Murakami and T. Imai. Long-haul WDM transmission experiments with 33-nm optical bandwidth by using broadband Raman amplification and highly precise gain equalization. LEOS, 2000, vol. 1, p. 21-22.
    [40] F. Koch, S. A. E. Lewis, S. V. Chernikov, et al. Broadband gain flattened Raman amplifier to extend operation in the third telecommunication window. OFC, 2000, vol. 4, p. 103–105.
    [41] Shu Namiki, Koji Seo, Naoki Tsukiji, et al. Challenges of Raman amplification. Proc. of the IEEE, 2006, 94(5):1024-1034.
    [42] R. H. Stolen, L. Clinton, R. K. Jain. Development of stimulated Raman spectrum in single-mode silica fibers. J. Opt. Soc. Am. B, 1984, 1(4):652-657.
    [43] R. H. Stolen. Polarization effects in fiber Raman and Brillouin lasers. Quant. Electron., 1979, 15 (10):1157-1160.
    [44] A. R. Chraplyvy. Optical power limits in multi-channel wavelength-division multiplexed systems due to stimulated Raman scattering. Electron. Lett., 1984, 20(2):58-59.
    [45] D. N. Christodoulides, R. B. Jander. Evolution of stimulated Raman crosstalk in wavelength division multiplexed systems. IEEE Photon. Technol. Lett., 1996, 8(12):1722-1724.
    [46] X. Zhou, C. Lu, P. Shum, and T.H. Cheng. A simplified model and optimal design of a multiwavelength backward-pumped fiber Raman amplifier. IEEE Photon. Technol. Lett., 2001, 13(9):945-947.
    [47]何敬锁,郭同文,顾畹仪等.拉曼光纤放大器的一种简化模型.光电子·激光14(3):228- 231.
    [48] Shirley Peroni Neves Cani, Luiz de Calazans Calmon, Maria JoséPontes, et al. An analytical approximated solution for the gain of broadband Raman amplifiers with multiple counter-pumps. 2009, J. Lightwave Technol. 27(7)944-951.
    [49] Sun H. Chang, Seung Kim, Moo-Jung Chu. Simple numerical characterization of double Rayleigh scattering noise in fiber Raman amplifiers. OFC, 2002, vol. 70, p. 651-653.
    [50] E. A. Kunarajah, J. J. Lepley, A. S. Siddiqui. An accurate numerical model for distributed Raman amplifiers. ECOC, 2001, vol. 2, p. 234-235.
    [51] M. Karásek, J. Kanka, P. Honzátko, P. Peterka. Time-domain simulation of power transients in Raman fibre amplifiers. Int. J. Numer. Model., 2004, 17(2):165-176.
    [52]常建华,张明德,孙小菡.计算多波长抽运光纤拉曼放大器传输方程的新方法.中国激光. 2004, 31(5):579-582.
    [53]常建华,张明德,孙小菡.光纤拉曼放大器传输方程快速计算方法的研究.东南大学学报(自然科学版). 2003, 33(6):712-716.
    [54] X. Liu, H. Zhang and Y. Guo. A novel method for Raman amplifier propagation equations. IEEE Photon. Technol. Lett., 2003, 15(3):392-394.
    [55] X. Liu and B. Lee. A fast and stable method for Raman amplifier propagation equations. Opt. Express, (2003), 11(18):2163–2176.
    [56] Z. Lalidastjerdi, F. Kroushavi, and M. Rahmani. An efficient shooting method for fiber amplifiers and lasers. Opt. Laser Technol., 2008, 40(8):1041-1046.
    [57] X. Liu and B. Lee. Effective shooting algorithm and its application to fiber amplifiers. Opt. Express, 2003, 11(12):1452–1461.
    [58] J. Ning, Q. Han, Z. Chen, et al. A powerful simple shooting method for designing multi- pumped fibre Raman amplifiers. Chin. Phys. Lett., 2004, 21(11):2184–2187.
    [59] J. Hu, B. S. Marks, Q. Zhang, et al. Modeling backward-pumped Raman amplifiers. J. Opt. Soc. Am. B, 2005, 22(10):2083-2090.
    [60] Q. Han, J. Ning, H. Zhang, et al. Novel shooting algorithm for highly efficient analysis of fiber Raman amplifiers. J. Lightwave Technol. 2006, 24(4):1946–1952.
    [61] X. Liu, M. Zhang. An effective method for two-point boundary value problems in Raman amplifier propagation equations. Opt. Commun., 2004, 235(1-3):75-82.
    [62] B. Min, W. J. Lee and N. Park. Efficient formulation of Raman amplifier propagation equation with average power analysis. 2000, IEEE Photon. Technol. Lett. 12(11):1486-1488.
    [63] T. G. Hodgkinson. Average power analysis technique for erbium-doped fiber amplifiers. IEEE Photon. Technol. Lett., 1991, 3(12):1082-1084.
    [64] M. J. Adams, J. V. Collins and I. D. Henning. Analysis of semiconductor laser optical amplifiers. IEE Proc. J., 1985, 132(1):58-63.
    [65] Z. Tong, H. Wei, and S. Jian. An efficient method to optimize gain spectra of fiber Raman amplifiers pumped by multiple laser diodes. Microw. Opt. Technol. Lett., 2002, 35(5):381- 383.
    [66]童治,魏淮,简水生.多波长抽运宽带光纤拉曼放大器的数值模拟与优化.光学学报.2003, 23(2):193-196.
    [67]王勇,潘炜,罗斌.宽带FRA中多波长抽运功率的自动优化方法.光电子·激光. 2004, 15(5):537-540.
    [68] X. Liu. An automatic step adjustment method for average power analysis technique used in fiber amplifiers. Opt. Express, 2006, 14(7):2589-2595.
    [69] V. E. Perlin, H. G. Winful. Optimal design of flat-gain wide-band fiber Raman amplifiers. J. Lightwave Technol., 2002, 20(2):250-254.
    [70] V. E. Perlin, H. G. Winful. On distributed Raman amplification for ultrabroad-band long-haul WDM systems. J Lightwave Technol., 2002, 20(3):409-416
    [71] V. E. Perlin, H. G. Winful. Optimal design of multi-pump Raman amplifiers. CLEO, 2002, p. 444.
    [72] J. Zhou, J. Chen and X. Li. A novel method to optimize optical-fiber Raman amplifiers using equally spaced low-power laser diode pumps. Microw. Opt. Technol. Lett., 2004, 40(2):124- 127.
    [73]周俊鹤,陈建平.多波长小功率泵浦拉曼光纤放大器的优化设计.光电子·激光. 2005, 16(3):286-288.
    [74] S. Cui, J. Liu, and X. Ma. A novel efficient optimal design method for gain-flattened multiwavelength pumped fiber Raman amplifier. IEEE Photon. Technol. Lett., 2004, 16(11):2451-2453.
    [75] M. Giltrelli, M. Santagiustina. Semianalytical approach to the gain ripple minimization in multiple pump fiber Raman amplifiers. IEEE Photon. Technol. Lett., 2004, 16(11):2454- 2456.
    [76]康立山,谢云,尤矢勇等.非数值并行算法(第一册)模拟退火算法.北京:科学出版社, 1994.
    [77] E. Aarts and J. Korst. Simulated annealing and Boltzmann machine. New York: Wiley, 1989.
    [78] M. Yan, J. Chen, W. Jiang, et al. Automatic design scheme for optical-fiber Raman amplifiers backward-pumped with multiple laser diode pumps. IEEE Photon. Technol. Lett., 2001, 13(9):948–950.
    [79] M. Yan, J. Chen, W. Jiang, et al. New design scheme for multiple-pump Raman fiber amplifiers using a simulated annealing algorithm. Microw. Opt. Technol. Lett., 2001, 30(6):434-436.
    [80] M. Yan, J. Chen, J. Li. Optimal configuration of multiple pump power and wavelengths forbalanced pre- and post-pumped Raman fiber amplifiers. Chin. J. Lasers B, 2002, 11(2):91-95.
    [81] D. Geng, Z. Zhang, L. Li, et al. Optimal design and experimental research of multiwave pumped dispersion compensation distributed fiber Raman amplifier (FRA). SPIE, 2004, 5623(PART 2):1009-1015.
    [82] J. Chang, S. Xiao. Novel hybrid optimal algorithm for broad-band Raman amplifier. J. Southeast Univ. Engl. Ed., 2006, 22(4):465-469.
    [83] Z. Michalewicz. Genetic Algotithms + Data Structures = Evolution Programs. New York: Springer-Verlag, 1992.
    [84] M. Mitchell. An Introduction to Genetic Algorithms. Massachusetts: MIT Press, 1998.
    [85] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning Massachusetts: Addison-Wesley, 1989.
    [86]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社, 1999.
    [87]李敏强等.遗传算法的基本理论与应用.北京:科学出版社, 2002.
    [88] J. Hu, B. S. Marks and C. R. Menyuk. Flat-gain fiber Raman amplifiers using equally spaced pumps. J. Lightwave Technol., 2004, 22(6):1519-1522.
    [89]马永红,谢世钟.宽带光纤拉曼放大器的优化设计与分析.光学学报. 2004, 24(1):42-47.
    [90] X. Liu, B. Lee. Optimal design of fiber Raman amplifier based on hybrid genetic algorithm. IEEE Photon. Technol. Lett., 2004, 16(2):428-430.
    [91] X. Liu, Y. Li. Optimizing the bandwidth and noise performance of distributed multi-pump Raman amplifiers. Opt. Commun., 2004, 230(4-6):425-431.
    [92] X. Liu, Y. Li. Efficient algorithm and optimization for broadband Raman amplifiers. Opt. Express, 2004, 12(4):564-573.
    [93] X. Liu. Optimization for various schemes of distributed fibre Raman amplifiers. J. Opt. A: Pure Appl. Opt., 2004, 6(11):1017-1026.
    [94] B. Neto, A. L. Teixeira, et al. Efficient use of hybrid Genetic Algorithms in the gain optimization of distributed Raman amplifiers. Opt. Express, 2007, 15(26):17520-17528.
    [95] H. Wen, X. Yang and W. Gu. Novel methods for fast fiber Raman amplifier pump configuration. J. Lightw. Technol., 2005, 23(4):1713-1720.
    [96]闻和,杨昕,顾畹仪.宽带平坦增益光纤喇曼放大器泵浦配置的快速搜索算法.电子学报. 2004, 32(11):1894-1896
    [97] R. Eberhart, J. Kennedy. A new optimizer using particle swarm theory. Int. Symp. Micromechatronics. Hum. Sci., 1995, p. 39-43.
    [98] J. Kennedy, R. Eberhart. Particle swarm optimization. IEEE Int. Conf. Neural Networks, 1995, p. 1942-1948.
    [99] Y. Shi, R. Eberhart. A modified particle swarm optimizer. IEEE Conf. Evol. Comput., 1998, p. 69-73.
    [100]姜海明,谢康,王亚非.基于粒子群算法的拉曼光纤放大器的多抽运源优化.光电子·激光. 2004, 15(10):1190-1193.
    [101] A. Mowla, N. Granpayeh. Design of a flat-gain multipumped distributed fiber Raman amplifier by particle swarm optimization. J. Opt. Soc. Am. A, 2008, 25(12):3059-3066.
    [102] A. Mowla, N. Granpayeh. Optimum design of a hybrid erbium-doped fiber amplifier/fiber Raman amplifier using particle swarm optimization. Appl. Opt., 2009, 48(5)979-984.
    [103] H. Afkhami, A. Mowla, N. Granpayeh, et al. Wideband gain flattened hybrid erbium-doped fiber amplifier/fiber raman amplifier. 2010, J. Opt. Soc. Korea, 14(4):342-350.
    [104] L. K. Choi, P. Kim, J. Park, et al. Adiabatic, closed-form approach to the highly efficient analysis of a fiber Raman amplifier problem. Opt. Lett., 2005, 30(2):126-128.
    [105] J. Park, P. Kim, J. Park, et al. Closed integral form expansion of Raman equation for efficient gain optimization process. 2004, IEEE Photon. Technol. Lett., 16(7):1649-1651.
    [106] N. Park, P. Kim, J. Park, et al. Integral form expansion of fiber Raman amplifier problem. Opt. Fiber Technol., 2005, 11 (2):111-130.
    [107] Z. Li, C. Lu, J. Chen, et al. Raman amplifier design using geometry compensation technique. 2004, Opt. Express, 12(3):436-441.
    [108] P. Xiao, Q. Zeng, J. Huang et al. A new optimal algorithm for multipump sources of distributed fiber Raman amplifier. IEEE Photon. Technol. Lett., 2003, 15(2):206-208.
    [109] A. R. Bahrampour, A. Ghasempour, L. Rahimi. Gain ripple minimization in fiber Raman amplifiers based on variational method. Opt. Commun., 281(6):1545-1557
    [110] J. Ning, Z. Chen, Q. Han. A new method for adjusting the gain flatness of Raman amplifiers. SPIE, 2006, 6344(0Z):1-8.
    [111] W. Zhang, X. Feng, J. Peng, et al. A simple algorithm for gain spectrum adjustment of backward-pumped distributed fiber Raman amplifiers. IEEE Photon. Technol. Lett., 2004, 16(1):69-71.
    [112] J. Zhou, J. Chen, X. Li, et al. A novel pump adjustment method for WDM pumped optical Raman amplifier. Opt. Commun., 2005, 248(4-6):407-413.
    [113] Y. Emori, S. Namiki. 100 nm bandwidth flat gain Raman amplifiers pumped andgain-equalized by 12-wavelength-channel WDM high power laser diodes. OFC, 1999, PD19/1-PD19/3.
    [114] Y. Emori, K. Tanaka, S. Namiki. 100 nm bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit. Electron. Lett., 1999, 35(16):1355-1356.
    [115]王著元,夏林,王芳等. C+L波段分布式拉曼光纤放大器实验研究.东南大学学报(自然科学版). 2004, 34(3):315-317.
    [116]葛旭亮,王春华,黄肇明.光纤拉曼放大器的设计及实验研究.上海大学学报(自然科学版). 2003, 19(6):480-483.
    [117] M. A. Mahdi, S.-J. Sheih. Gain-flattened distributed Raman amplifier with 38-nm bandwidth using dual-pump wavelength. Microw. Opt. Technol. Lett., 2006, 48(6):1025-1028.
    [118]颜玢玢,王葵如,余重秀等.增益平坦的多波长泵浦宽带拉曼光纤放大器.光学精密工程. 2006, 14(2):155-158.
    [119]张锦龙,余重秀,刘兵,等.高精度控制多泵浦实现宽带平坦的拉曼放大.光学技术. 33(6):926-928.
    [120]张锦龙,余重秀,胡晓明等.基于PID和FPGA的宽带增益平坦拉曼放大器的实现.光电子·激光. 2007, 18(12):1402-1406.
    [121] D. Sperti, P. S. André, B. Neto, et al. Experimental assessment of some Raman fiber amplifiers solutions for coarse wavelength division multiplexing applications. Photon. Netw. Commun., 2008, 16(3):195-202.
    [122]忻向军,余重秀,李安俭.一种简单实用的调节RFA增益平坦的方法.光通信研究, 2004,总第122(2):61-63.
    [123] Y. Emori, S. Kado, S. Namiki. Simple gain control method for broadband Raman amplifiers gain-flattened by multi-wavelength pumping. ECOC, 2001, vol. 2, p. 158-159.
    [124] J. D. Ania-Casta(n|~)ón, S. M. Kobtsev, A. A. Pustovskikh et al. Simple design method for gain-flattened three-pump Raman amplifiers. LEOS, 2002, vol. 2, p. 500-501.
    [125] J. D. Ania-Casta(n|~)ón, A. A. Pustovskikh, S. M. Kobtsev et al. Simple design method for gain-flattened three-pump Raman amplifiers. Opt. Quant. Electron., 2007, 39(3):213-220.
    [126] X. Zhang, L. Shao, Z. Yu, et al. Automatic real-time control for gain-flattened fiber Raman amplifiers. Opt. Commun., 2004, 239(1-3):79-84.
    [127] X. Zhang, Z. Yu. Automatic control algorithm of Raman amplifiers. SPIE, 2005, 5625(PART 2):1150-1157.
    [128] X. Feng, X. Liu, W. Zhang, et al. Investigation of dynamical pump control for backward-pumped fiber Raman amplifiers. Opt. Commun., 245(1-6):211-225.
    [129] X. Feng, W. Zhang, X. Liu, et al. Experimental demonstration of output power spectrum clamping for multi-channel backward-pumped distributed fiber Raman amplifiers. Chin. Opt. Lett., 2004, 2(10):571-573.
    [130] L. Wang, F. Yan, T. Gong, et al. Analysis and optimization of wide-band flat-gain telluride-based fiber Raman amplifier. SPIE, 2006, 6351(63512E):1-6.
    [131] H. Masuda, A. Mori, K. Shikano, et al. Design and spectral characteristics of gain-flattened tellurite-based fiber Raman amplifiers. J. Lightw. Technol., 2006, 24(1):504-515.
    [132] G. Qin, R. Jose, Y. Ohishi. Design of ultimate gain-flattened O-, E-, and S + C + L ultrabroadband fiber amplifiers using a new fiber Raman gain medium. J. Lightw. Technol., 2007, 25(9):2727-2738.
    [133] R. Jose, G. Qin, Y. Arai, et al. Gain flattened fiber Raman amplifiers by tailoring Raman amplification bandwidth of tellurite glasses. SPIE, 2008, 6998(69981K):1-12.
    [134] R. Jose, G. Qin, Y. Arai, et al. Tailoring of Raman gain bandwidth of tellurite glasses for designing gain-flattened fiber Raman amplifiers. J. Opt. Soc. Am. B, 2008, 25(3):373-382.
    [135] A. Mori, H. Masuda, K. Shikano, et al. Ultra-wide-band tellurite-based fiber Raman amplifier,”J. Lightw. Technol., 2003, 21(5):1300-1306.
    [136] A. Mori, H. Masuda, K. Shikano, et al. Ultra-wideband tellurite-based Raman fibre amplifier. Electron. Lett., 2001, 37(24):1442-1443.
    [137] E. M. Dianov, A. A. Abramov, M. M. Bubnov, et al. 30 dB gain Raman amplifier at 1.3μm in low-loss high GeO2-doped silica fibres. Electron. Lett., 1995, 31(13): 1057-1058.
    [138]刘涛,黄德修,张在宣等. DCF光纤拉曼放大器的实验研究.光电子技术与信息, 2004, 17(3):13-16.
    [139] L. E. Nelson, C. G. Jorgensen, M. Du, et al. Terminal-only compensation of a 6×80 km 10-Gb/s WDM metro link using Raman-pumped dispersion-compensating fiber amplifiers. IEEE Photon. Technol. Lett., 2006, 18(1):139-141.
    [140] P. B. Hansen, G. Jacobovitz-Veselka, L. Gruner-Nielsen, et al. Loss compensation in dispersion compensating fiber modules by Raman amplification. OFC, 1998, p.20-21.
    [141] R. Kjr, B. Palsdottir, L. K. Oxenlwe, et al. Applications of dispersion compensating Raman amplifiers. SPIE, 2007, 6781(67810W):1-10.
    [142] S. Wen, S. Chi. DCF-based fiber Raman amplifiers with fiber grating reflectors for tailoringaccumulated-dispersion spectra. 2007, Opt. Commun., 272(1):247-251.
    [143] L. A. M. Saito, J. F. L. De Freitas, C. J. S. De Matos, et al. Measurement of Raman gain efficiency in a DCF and its application in optical amplification for the O-band. IMOC, 2007, p. 38-40.
    [144] M. Fuochi, F. Poli, S. Selleri, et al. Study of Raman amplification properties in triangular photonic crystal fibers. J. Lightw. Technol., 2003, 21(10):2247-2254.
    [145] M. Bottacini, F. Poli, A.Cucinotta, et al. Modeling of photonic crystal fiber Raman amplifiers. J. Lightw. Technol., 2004, 22(7):1707-1713.
    [146] F. Poli, L. Rosa, M. Bottacini, et al. Multipump flattened-gain Raman amplifiers based on photonic-crystal fibers. IEEE Photon. Technol. Lett., 2005, 17(12):2556-2558.
    [147]刘艳格,孙婷婷,王超等.光子晶体光纤与普通光纤混合的Raman放大器.光电子.激光, 2006, 17(10):1162-1165.
    [148] C. E. S. Castellani, S. P. N. Cani, M. E. V. Segatto, et al. Design methodology for multi-pumped discrete Raman amplifiers: Case-study employing photonic crystal fibers. 2009, Opt. Express, 17(16):14121-14131.
    [149] C. Fukai, K. Nakajima, K. Kurokawa, et al. Applicability of silica core photonic crystal fiber for distributed Raman amplification transmission. 2008, Opt. Fiber Technol., 14(3):196-202.
    [150]尚韬,李锋,刘增基.基于光子晶体光纤的拉曼放大器特性研究.通信学报. 2008, 29(8):63-68.
    [151]陶在红等.基于光子晶体光纤的分立式拉曼放大器.中国激光, 2008, 35(s2):50-53.
    [152] K. Sasaki, S. K.Varshney, K.Wada, et al. Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band. Opt. Express, 2007, 15(5):2654-2668.
    [153] C. J. S. De Matos, K. P. Hansen, J. R. Taylor. Experimental characterisation of Raman gain efficiency of holey fibre. Electron. Lett., 2003, 39(5):424-425.
    [154] Z. Yusoff, J. H. Lee, W. Belardi, et al. Raman effects in a highly nonlinear holey fiber: amplification and modulation. Opt. Lett., 2002, 27(6):424-426.
    [155] K. Thyagarajan, C. Kakkar. Fiber design for broad-band gain-flattened Raman fiber amplifier. IEEE Photon. Technol. Lett., 2003, 15(12):1701-1703.
    [156] K. Thyagarajan, C. Kakkar. Novel fiber design for flat gain Raman amplification using single pump and dispersion compensation in S band. J. Lightw. Technol., 2004, 22(10):2279-2286.
    [157] C. Kakkar, K. Thyagarajan. High gain Raman amplifier with inherent gain flattening anddispersion compensation. Opt. Commun., 2005, 250(1-3):77-83.
    [158] S. K. Varshney, K. Saitoh, T. Fujisawa, et al. Design of gain-flattened highly nonlinear photonic crystal fiber Raman amplifier using a single pump: A leakage loss approach. OFC/NFOEC, 2006, p. OWD4.
    [159] S. K. Varshney, T. Fujisawa, K. Saitoh, et al. Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band. 2005, Opt. Express, 13(23):9516-9526.
    [160] S. K. Varshney, T. Fujisawa, K. Saitoh, et al. Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band. Opt. Express, 2006, 14(8):3528-3540.
    [161] S. K. Varshney, K. Saitoh, M. Koshiba, et al. A novel design for dispersion compensating photonic crystal fiber Raman amplifier. IEEE Photon. Technol. Lett., 2005, 17(10):2062- 2064.
    [162] C. Kakkar, K. Thyagarajan. Broadband, lossless DCF utilizing single pump Raman amplification. CLEO, 2004, p. 959-960.
    [163] C. Kakkar, K. Thyagarajan. Broadband, lossless, dispersion-compensating asymmetrical twin-core fiber design with flat-gain Raman amplification. Appl. Opt., 2005, 44(12): 2396-2401.
    [164] H. S. Seo, Y. G. Choi, B. J. Park, et al. Simultaneous Amplification by Er Ions and SRS in an Er-Doped Germano–Silica Fiber. IEEE Photon. Technol. Let., 2003, 15(9):1198-1120.
    [165] H. S. Seo, W.J. Chung, J. T. Ahn. S+C bands amplification in a distributed Er-doped Raman fiber. IEEE Photon. Technol. Let., 2005, 17(6):1181-1183.
    [166] P. J. Winzer, K. Sherman, M. Zirnbibl. Time-division multiplexed Raman pump experiment using a tunable C-band laser. IEEE Photon. Technol. Lett., 2002, 14(6):789-791.
    [167] L. F. Mollenauer, A. R. Grant, P. V. Mamyshev. Time-division multiplexing of pump wavelengths to achieve ultrabroadband, flat, backward-pumped Raman gain. Opt. Lett., 2002, 27(8):592-594.
    [168] A. A. B. Tip, P. Shum. Gain properties of multi-wavelength time division multiplexed Raman amplifier. Opt. Express, 2006, 14(12):5061-5066.
    [169] J. Zhou, P. Gallion. Analytical design, analysis, and optimization of Raman fiber amplifiers with TDM pumps. IEEE J. Quantum Electron., 2010, 46(11):1597-1604.
    [170] M. Karásek, J. Radil, J. Vojtech. Transmission of 20 channels over 238 km of non-zerodispersion shifted fibre using distributed time-division multiplexing-pumped Raman amplification. IET Optoelectron., 2010, 4(2):78-84.
    [171] T. Zhang, X. Zhang, G. Zhang. Distributed fiber Raman amplifiers with incoherent pumping. IEEE Photon. Technol. Lett., 2005, 17(6):1175-1177.
    [172] S. Wen, C.-C. Chen, J.-W. Ou. Optimizing the incoherent pump spectrum of low-gain-ripple distributed fiber Raman amplifier for a given main pump wavelength. Opt. Express, 2007, 15(1):45-55.
    [173] A. M. Rocha, B. Neto, M. Fac?o, et al. Study of Raman amplification with low cost incoherent pumps. Microw. Opt. Technol. Lett., 2008, 50(2):301-303.
    [174] A. M. Rocha, B. Neto, M. Fac?o, et al. Low cost incoherent pump solution for Raman fiber amplifier. Opti. Appl., 2009, 39(2):287-293.
    [175]过巳吉.非线性光学.西安:西北电讯工程学院出版社, 1986.
    [176] J. Stoer, R. Bulirsch. Introduction to Numerical Analysis. 3rd ed. New York: Springer, 2002.
    [177]邓建中,刘之行.计算方法.第2版,西安:西安交通大学出版社, 2001.
    [178]聂铁军.数值计算方法.西安:西安工业大学出版社, 1990.
    [179]陈忠,朱建伟.数值计算方法.北京:石油工业出版社, 2001.
    [180]李清善,宋士仓.数值方法.郑州:郑州大学出版社, 2007.
    [181]施吉林,刘淑珍,陈桂芝.计算机数值方法.北京:高等教育出版社, 1999.
    [182] S. M. Roberts, J. S. Shipman. Two-point boundary value problems: shooting methods. New York: American Elsevier, 1972.
    [183]凌复华,殷学纲,何冶奇.常微分方程数值方法及其在力学中的应用.重庆:重庆大学出版社, 1990.
    [184]郑慧娆,陈绍林,莫忠息等.数值计算方法.武汉:武汉大学出版社, 2002.
    [185]李建良,蒋勇,王光先.计算机数值方法.南京:东南大学出版社, 2000.
    [186] R. L. Burben, J. D. Faires. Numerical Analysis, 3rd ed. Boston MA: Prindle, Weber & Schmidt, 1985.
    [187] H. Kidorf, K. Rottwitt, M. Nissov, et al. Pump interactions in a 100-nm bandwidth Raman amplifier. IEEE Photon. Technol. Lett., 1999, 11(5):530-532.
    [188] K. Imai, I. Morita, H. Sakata, et al. A Study on gain modulation dynamics of 80nm-band high-power Raman amplifier. OFC, 2003, Vol. 2, p. 158–159.
    [189] Z. Tong, H. Wei, S. Jian. Theoretical investigation and optimization of bi-directionally pumped broadband fiber Raman amplifiers. Opti. Commun., 2003, 217(1-6):401-413.
    [190] X. Liu, B. Lee. Effective shooting algorithm and its application to fiber amplifiers. Opt. Express, 2003, 11(12):1452-1461.
    [191]刘京莉.高等数学.北京:北京师范大学出版社, 2009.
    [192]清华大学数学科学系微积分编写组.微积分.北京:清华大学出版社, 2010.
    [193] J. Stewart. Calculus: concepts and contexts. Calif.: Cole Pub. Co., 1998.
    [194] A. Mohammad Nezhad, H. Mahlooji. A revised particle swarm optimization based discrete Lagrange multipliers method for nonlinear programming problems. Comp. Oper. Res., 2011, 38(8):1164-1174.
    [195] A. Kornelakis. Multiobjective Particle Swarm Optimization for the optimal design of photovoltaic grid-connected systems. Sol. Energy, 2010, 84(12):2022-2033.
    [196] T. Datta, I. S. Misra. A comparative study of optimization techniques in adaptive antenna array processing: The bacteria-foraging algorithm and particle-swarm optimization. IEEE Antennas Propag. Mag., 2009, 51(6):69-81.
    [197] S. Ulker. Particle swarm optimization application to microwave circuits. Microw. Opt. Technol. Lett., 2008, 50(5):1333-1336.
    [198] K. Mahadevan, P. S. Kannan. Lagrangian relaxation-based particle swarm optimization for unit commitment problem. Int. J. Power Energy Syst., 2007, 27(4):320-329.
    [199] B. Bochenek, P. Forys. Structural optimization for post-buckling behavior using particle swarms. Struct. Mutltidiscip. Opt., 2006, 32(6):521-531.
    [200] H.-M. Feng. Self-generation fuzzy modeling systems through hierarchical recursive-based particle swarm optimization. Cybern. Syst., 2005, 36(6):623-639.
    [201] S. P. Ghoshal. Optimizations of PID gains by particle swarm optimizations in fuzzy based automatic generation control. Electr. Power Syst. Res., 2004, 72(3):203-212.
    [202] A. A. Adly, S. K. Abd-El-Hafiz. Utilizing particle swarm optimization in the field computation of non-linear magnetic media. Appl. Comput. Electromagn. Soc. J., 2003, 18(3):202-209.
    [203] E. C. Laskari, K. E. Parsopoulos, M. N. Vrahatis. Particle swarm optimization for minimax problems. IEEE Conf. Evol. Comput., 2002, p. 1576-1581.
    [204] R. Mendes, P. Cortez, M. Rocha, et al. Particle swarms for feed forward neural network training. Int. Jt. Conf. Neural Networks, 2002, p. 1895-1899.
    [205] A. A. A. Esmin, A. R. Aoki, G. Lambert-Torres. Particle swarm optimization for fuzzy membership functions optimization. IEEE Int. Conf. Syst. Man Cybern., 2002, pp. 106-111.
    [206] E. Bonabeau, M. Dorigo, G. Theraulaz. Inspiration for optimization from social insect behavior. Nature. 2000, 406(6791):39-41.
    [207] J. Kennedy. The particle swarm: Social adaptation of knowledge. IEEE Conf. Evol. Comput., 1997, p. 303-308.
    [208] E. L. Thorndike. Animal Intelligence: Empirical Studies. New York: Mac Millan, 1911.
    [209] A. Bandura. Social Foundations of Thought and Action: A Social Cognitive Theory. New Jersey: Prentice Hall, 1986.
    [210] X. Liu, J. Chen, C. Lu,et al. Optimizing gain profile and noise performance for distributed fiber Raman amplifiers. Opt. Express, 2004, 12(24)6053-6066.
    [211] A. Stacey, M. Jancic, I. Grundy. Particle swarm optimization with mutation. IEEE Conf. Evol. Comput., 2003, Vol. 2, p. 1425-1430.
    [212] Z. Lu, Z. Hou, J. Du. Particle swarm optimization with adaptive mutation. Front. Electr. Electron. Eng. China. 2006,1(1):99-104
    [213] M. Clerc. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. IEEE Conf. Evol. Comput., 1999, Vol. 3, p. 1951-1957.
    [214] M. Clerc, J. Kennedy. The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput., 2002, 6(1):58-73.
    [215] P. N. Suganthan. Particle swarm optimiser with neighbourhood operator. IEEE Conf. Evol. Comput., 1999, Vol. 3, p. 1958-1962.
    [216] Y. Shi, R. Eberhart. Fuzzy Adaptive particle swarm optimization. IEEE Conf. Evol. Comput., 2001, Vol. 2, p. 101-106.
    [217]张选平,杜玉平,秦国强等.一种动态改变惯性权的自适应粒子群算法.西安交通大学学报. 2005, 39(10):1039-1042.
    [218]陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究.西安交通大学学报. 2006, 40(1):53-56+61.
    [219]王俊伟,汪定伟.一种带有梯度加速的粒子群算法.控制与决策. 2004, 19(11):1298-1300.
    [220] D. Anghinolfi, R. Montemanni, M. Paolucci, et al. A hybrid particle swarm optimization approach for the sequential ordering problem. Comp. Oper. Res., 2011, 38(7):1076-1085.
    [221] T. Niknam, H. D. Mojarrad, H. Z. Meymand. A novel hybrid particle swarm optimization for economic dispatch with valve-point loading effects. Energy Convers. Manage., 2011, 52(4):1800-1809.
    [222] P. K. Dash, S. Hasan, B. K. Panigrahi. A hybrid unscented filtering and particle swarmoptimization technique for harmonic analysis of nonstationary signals. Meas. J. Int. Meas. Confed., 43(10):1447-1457.
    [223] S. Katare, A. Kalos, D. West. A hybrid swarm optimizer for efficient parameter estimation. IEEE Conf. Evol. Comput., 2004, Vol. 1, p. 309-315.
    [224]陈宝林.最优化理论与算法.北京:清华大学出版社, 2005.
    [225]胡适耕,施保昌.最优化原理.武汉:华中理工大学出版社, 2000.
    [226]薛毅.最优化原理与方法.北京:北京工业大学出版社, 2001.
    [227] X. Yao, Y. Liu, G. Lin. Evolutionary programming made faster. IEEE Trans. Evol. Comput., 1999, 3(2):82-102.
    [228]王凌.智能优化算法及其应用.北京:清华大学出版社, 2001.
    [229] Y. Chen, A. W. Snyder. Saturation and depletion effect of Raman scattering in optical fibers. J. Lightw. Technol., 1989, 7(7):1109-1117.
    [230] M. F. Ferreira, J. F. Rocha, J. L. Pinto. Impact of stimulated Brillouin scattering on fibre Raman amplifiers. Electron. Lett., 1991, 27(17):1576-1577.
    [231] S. Burtsev, W. Pelouch, P. Gavrilovic. Multi-path interference noise in multi-span transmission links using lumped Raman amplifiers. OFC, 2002, p.120–122.
    [232]蒋慰孙.系统控制.上海:华东化工学院出版社, 1988.
    [233]卢泽生.控制理论及其应用.北京:高等教育出版社, 2009.
    [234]李训经,雍炯敏,周渊控.制理论基础.北京:高等教育出版社, 2010.
    [235]郭雷.控制理论导论-从基本概念到研究前沿.北京:科学出版社2005.
    [236] Stanley M. Shinners. Control system design. New York: Wiley, 1964.
    [237] B. Friedland. Control system design: an introduction to state-space methods. New York: McGraw-Hill, 1986.
    [238] Y. A. Semerenko. Interfacing the instrumental GPIB with a personal computer through the LPT port. Instrum. Exp. Tech., 2005, 48(5):608-610.
    [239] N. Subramanian. Using object-oriented technology to design efficient IEEE-488.2 (GPIB) interface instruments. Comput. Stand. Interfaces, 2000, 22(3):217-225.
    [240] T. Ozkul. New experimental enhancement to GPIB standard: General purpose serial interface network (GPSI). Comput. Stand. Interfaces, 1994, 16(2):133-138.
    [241] National Instruments Corporation. NI-488.2TM User Manual. 2005.
    [242]周琴. GPIB总线及应用技术.低压电器. 2008, (1):37-40.
    [243]马丁,马浩歌,耿东华. GPIB接口及应用实例.开封大学学报. 2006, 20(3):79-81.
    [244]李建华,钟达,梅刚华等.数据接口总线GPIB及其应用.中国测试技术. 2004, 30(6):63-65.
    [245]王勤.一种通用的计算机─仪器接口─GPIB接口.声学技术. 1989, 8(1)36-38.
    [246] Allan W. Snyder, John D. Love. Optical waveguide theory. London & New York: Chapman and Hall, 1983.
    [247]吴重庆.光波导理论.第2版.北京:清华大学出版社, 2000.
    [248] N. S. Kapany. Optical waveguides. New York: Academic, 1972.
    [249]张克潜,李德杰.微波与光电子学中的电磁理论.北京:电子工业出版社, 2001.
    [250]范崇澄,彭吉虎.导波光学.北京:北京理工大学出版社, 1988.
    [251]叶培大.光纤理论.北京:知识出版社, 1985.
    [252] Allan W. Snyder, Adrian Ankiewicz. Optical fiber couplers-optimum solution for unequal cores. J. Lightw. Technol., 1988, 6(3):463-474.
    [253]阿莫·亚里夫.现代通信光电子学.第5版.北京:电子工业出版社, 2002.
    [254] A. Yariv. Coupled-mode theory for coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron., 1973, 9(9):919-933
    [255] E. Yablonovitch. Inhibited spontaneous emission in solid-state physic and electronics. Phys. Rev. Lett., 1987, 58(20):2059-2062.
    [256] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58(23):2486-2488.
    [257] E. G. J. Judith. Willem L. Vos. Wijnhoven. Preparation of photonic crystals made of air spheres in titania. Science, 1998, 281(5378):802-804.
    [258] O. Toader, S. John. Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals. Science, 2001, 292(5519): 1133-1135.
    [259] S. Ogawa, M. Imada, S. Yoshimoto, et al. Control of light emission by 3D photonic crystals. Science, 2004, 305(5681):227-229.
    [260] H.-G. Park, S.-H. Kim, S.-H. Kwon, et al. Electrically driven single-cell photonic crystal laser. Science, 2004, 305(5689):1444-1447.
    [261] J. C. Knight, T. A. Birks, P. St. J. Russell, et al. All silica single-mode optical fibre with photonic crystal cladding. Opt. Lett., 1996, 21(19):1547-1549.
    [262] D. Mogilevtsev, T. A. Birks, P. St. J. Russell. Group-velocity dispersion in photonic crystal fibers. Opt. Lett., 1998, 23(21):1662-1664.
    [263] N. G. R. Broderick, T. M. Monro, P. J. Bennett, et al. Nonlinearity in holey fibers:measurement and future opportunities. Opt. Lett., 1999, 24(20):1395-1397.
    [264] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al. Highly birefringent photonic crystal fibers. Opt. Lett., 2000, 25(18):1325-1327.
    [265] T. A. Birks, J. C. Knight, P. St. J. Russell. Endlessly single-mode photonic crystal fiber.Opt. Lett., 1997, 22(13):961-963.
    [266] T. M. Monro, P. J. Bennett, N. G. R. Broderick, et al. Holey fibers with random cladding distributions. Opt. Lett., 2000, 25(4):206-208.
    [267] J. C. Knight, J. Broeng, T. A. Birks, et al. Photonic band gap guidance in optical fibers. Science, 1998, 282(5393):1476-1478.
    [268] P. Russell. Photonic crystal fiber. Science. 2003, 299(5605)58-362.
    [269]任国斌,娄淑琴,王智等.等效折射率模型研究光子晶体光纤的色散特性.光学学报. 2004, 24(3):319-323.
    [270] A. Pourkazemi, M. Mansourabadi, M. S. Abrishamian. Comparison of basic parameters of photonic crystal fibers calculated by scalar effective index method, fully vectorial effective index method and empirical relations method. Nonlinear Opt. Quantum Opt., 2010, 41(2-3):165-177.
    [271] K. N. Park, K. S. Lee. Improved effective-index method for analysis of photonic crystal fibers. Opti. Lett., 2005, 30(9):958-960.
    [272] C. Kakkar, K. Thyagarajan. Segmented-Clad Fiber Design for Tunable Leakage Loss. J. Lightw. Technol., 2005, 23(11):3444-3453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700