用户名: 密码: 验证码:
基于有穷自动机的网络学习活动智能导航服务模型与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统“一对多”的课堂教育相比,远程教育的最大优势在于能够借助各种计算机技术满足学习者的个性化需要,实现“以学生为中心”的差异化教学。为此,近年来一系列支撑个性化学习的应用技术,如智能答疑、自适应测试、个性化推荐等,得到了普遍的发展。
     然而,通过多年的教学与实践观察,笔者发现:即使教学系统能根据学习者的学习偏好、已掌握知识的情况、甚至是考虑情景因素提供或推荐个性化的学习内容,也不能完全保证学习者能够获得预期的学习效果。这是因为目前多数应用系统都是基于内容而不是基于活动来设计和实现的,这会导致学习者在获得所需的教学内容后缺乏必要的活动引导,使自主学习存在一定的盲目性。从教学规律的角度来看,在相同的教学内容上开展不同的活动,例如一段文本内容可以有朗读、背诵、默写等活动,其获得的学习效果也不相同,因此学习过程应当是由一系列学习活动而非仅是内容组成的。根据上述分析,本文认为当前远程教学系统存在一个迫切需要解决的问题:系统在提供给学习者所需学习资源的同时,如何生成与之对应的学习活动规划与调度方案,从而用以导航服务的方式来指导学习者将学习资源转化为知识和能力。
     本文的工作就是研究如何采用基于有穷自动机的方法来解决教学支撑平台中学习活动的规划与调度的问题并实现智能导航服务。论文主要从:建立问题的约束满足(Constraint Satisfaction Problem)模型;设计基于有穷自动机的求解方法;在问题规模较大情况下的蚁群优化算法;特定教学模式下的学习活动调度算法等四方面展开,并分别得出相应的结论。
     1.建立学习活动规划与调度的CSP模型。本文涉及的学习活动规划与调度问题从本质上可看作人工智能领域的智能规划问题,而这类问题常常可以用约束满足问题(即CSP)模型来加以描述。在网络学习环境中,需要将教学目标和教学方法结合起来,在标准化的资源库基础上,首先对学科体系加以规范化;再利用本体技术建立以知识点为核心的课程体系结构;最后根据教学规律定义一系列学习活动(或任务)及这些活动跟知识点的联系。学习者为达到某一学习目标而需要进行的学习活动及其调度方案可以通过CSP模型中的变量来制定,而学习过程中的各约束如访问的并发控制、多个学习者的同步与协同等,可以用约束方程组定义,从而建立起学习活动规划与调度问题的CSP模型。目前,在网络课程的知识点层次上建立学习活动层、并将其转化为约束满足问题来实现智能规划与调度服务的研究尚未见文献报导。
     2.设计基于有穷自动机的求解方法。在不同的网络学习环境中,约束条件往往可能发生不同的变化,而现有CSP的各类常用求解方法又往往缺乏对约束条件的动态适应操作与创建能力。本文提出的基于自动机的求解方法可以将CSP表示为一个具有最小状态的确定有穷自动机MDFA,该自动机接受的语言即为问题的解。该方法最大的优点在于由环境变化产生的新约束条件可通过简单的运算加入到原有的自动机,使之得到扩展。同时,原先自动机的计算结果也可复用以节省时间开销。在网络学习环境中基于自动机理论对学习活动约束满足问题的算法设计及有关理论研究是本文的创新之处。此外,由于利用自动机理论求解CSP的相关文献很少,因此本文的方法对CSP自身的求解技术发展也具有一定的研究价值。
     3.规模较大的CSP的蚁群优化算法。蚁群算法的思想源于蚂蚁在寻找食物过程中发现路径的行为方法。由于本文涉及的CSP本质上属于NP问题,在问题规模较大的情况下,可以将CSP转化为一个优化问题求解。有关蚁群优化算法及其应用研究在较多文献已有讨论,本文借鉴了这些文献中蚁群算法的设计方法来实现了解的启发式搜索。
     4.网络特定教学模式下的学习活动调度算法。在一些特定的网络教学模式下,通过对学习活动CSP模型中的部分变量进行预先赋值,并简化约束条件等方法将问题转化为经典的α|β|γ调度模型求解。目前各类调度模型的求解算法尤其是车间调度模型算法有大量文献可查,但尚无针对网络特定教学模式中的学习活动开展调度模型定义并求解的文章发表。
     综上所述,在本文涉及的四项主要研究工作中,第一、第四部分的研究成果目前还没有文献报导;第二部分相关文献很少;第三部分虽然已有相关研究成果,但本文着重解决在具体模型中的应用技术问题。总体上本文的创新点主要体现在约束满足问题的建模求解技术及相关的自动机理论研究方面。
Compared with the traditional“one to many”educational patterns, the biggest advantage of Elearning lies in its individualized teaching methods which are implemented by various computer technologies. Thus, a series of applications that supports individualized learning have been developed during recent years, such as intelligent FAQ, IRT-based testing, individualized recommendation, etc. However, according to author’s long term observation and teaching experience, the learning effects can not be certified though learning systems can provide learners with invidualized contents which are adapted to their preferences, knowledge level, or even learning circumstance. The cause is that most researches in this field pay too much attention on contents instead of activities, learners are lack of corresponding activity guide after the individualized learning contents are presented. In a pedagogic view, for the same learning material, take a paragraph of text for instance, people can choose to read, recite, or dictate it and obviously the learning effects are different. According to the above analysis, the problem of this thesis can be proposed: how to generate an adaptive activity routine and combine it with individualize learning packges as a guide service so as to assure the final learning effects.
     This paper aims to solve the proposed study guide problem of learning activities based on CSP model and finite automata. The paper’s work can be presented as the following four parts:
     1. CSP model of scheduling and planning of learning activities. The propose problem can be converted as AI planning problem and depicted by Constraint Satisfaction Problem (CSP) model. In the context of education, this paper will combine the teaching purpose with its methods, define a discipline framework, set up a standardized teaching resource storage structure, and create a course ontology based on knowledge points. With CSP methods, the purpose, scheduling scheme of a learning process can be defined as variables in CSP model; constraints, such as learning coordination, synchronization, parallel access control, can be defined as constraint equations. Thus, we can establish a CSP scheduling model for e-learning activities.
     2. A solution based on finite automata. In e-learning environment, constraints are different in various learning scenarios. An automaton based approach shows its advantages in term of constraints handling over other approaches. A CSP problem can be converted as a MDFA whose accepted sentences are solutions of the problem. Using automata to solve CSP problems is rarely discussed so it has theoretical value for research. In addition, the novelty of this paper also lies in the research on applying it to solve learning activities planning and scheduling in e-learning environment.
     3. Ant colony optimization. The idea of ant colony optimization comes from ants’behavior when seeking food. As the proposed problem is an NP problem, heuristics should be adopted when the problem’s scale is large. If we set the number of conflicts among constraints as the target, the problem can be solved as an optimization problem by ant colony optimization.
     4. Scheduling algorithms for special teaching scenarios. In some cases, instructors have designed certain teaching scenarios for a well defined learning purpose. Thus, the problem can be simplified as a classic scheduling problem given by a tripleα|β|γ. The way of establishing and solving such scheduling model is discussed in many references especially for job shop scheduling models, but researches focused on categorizing special teaching scenarios in e-learning and setting up corresponded scheduling models are rarely proposed.
     To summarize, few papers related to the above 1 and 4 researches can be found and the significance of research work 2 and 3 lies in model establishment and its application. This paper is generally an engineering application research.
引文
[1] Min Gao, Zhongfu Wu, Jianjun Du. Incorporating Pragmatic Information in Personalized Recommendation Systems[C]. The 11th International Conference on Informatics and Semiotics in Organizations, 2009. ICISO’09. 11-12 April 2009.
    [2] Min Gao, Zhongfu Wu. Personalized Context-Aware Collaborative Filtering Based on Neural Network and Slope One[J]. Lecture Notes in Computer Science, 2009:109-116.
    [3] Murray W. Goldberg, Sasan Salari, Paul Swoboda. World Wide Web-Course Tool: An Environment for Building WWW-Based Courses[C]. Proceedings of the 5th International World Wide Web Conference. France, Paris, 1996.
    [4] Blackboard在线教学管理平台[EB/01]. http://www.eol.cn/article/20050225/3129529.shtml.
    [5]曾海军,马建萍.网络协作学习系统的应用研究-以WebCL平台为例[J].中国电化教育, 2005(1).
    [6] LUVIT Portal 3.2 [EB/01]. http://services.luvit.se/manuals/LUVIT32/LUVIT_Portal_en.pdf.
    [7]毕世飞.约束满足问题算法研究及其应用[D]. 2004,东北大学.
    [8]陈源,史忠植.约束满足问题求解途径之比较与分析[J].计算机科学, 1998, 25(1):8-12.
    [9] SEI. The IDEAL Model[Z]. http://www.sei.cmu.edu/ideal/ideal.html.
    [10] Z. Collin, R. Dechter, and S. Katz. On the Feasibility of Distributed Constraint Satisfaction[C]. Proceedings of the 12th International Joint Conference on Artificial Intelligence. San Fransisco, 1991:318?324.
    [11] Y. Zhang, Mackworth A. Parallel. Distributed Algorithms for Finite Constraint Satisfaction Problems[C]. Proceedings of the 3rd IEEE Symposium on Parallel and Distributed Processing. Los Alamitos: IEEE Computer Society Press, 1991:394?397.
    [12] Claude Le Pape. Constraint-Based Programming for Scheduling: An Historical Perspective[J]. Operations Research Society Seminar on Constraint Handling Techniques, London,1994.
    [13]徐新黎.生产调度问题的智能优化方法研究及应用[D]. 2009,浙江工业大学:浙江.
    [14] B. Gershwin. A Control Perspective on Recent Trends in Manufacturing Systems[J]. IEEE Control System, Vol.10(2):1986.
    [15]段黎明,陈进,刘飞.基于约束分析的Job Shop调度算法的综述[J].重庆大学学报, 1998, 21(1):133-138.
    [16]陈恩红,薛瀚宏.基于约束满足的Job Shop调度问题求解方法研究[J].软件学报, 1998, 12(9):946-948.
    [17]杨宏安,孙树栋,王荪馨等.基于CSP的Job Shop调度算法研究[J].系统工程, 2004,22(11):15-18.
    [18]杨宏安,孙树栋,王荪馨等.基于约束满足的Job Shop调度算法研究[J].计算机工程与应用, 2003, 39(31):36-37.
    [19]郭冬芬,李铁克.基于约束满足的车间调度算法综述[J].计算机集成制造系统, 2007, 13(1):117-125.
    [20] Mark S. Fox. Constraint-Directed Search: A Case Study of Job-Shop Scheduling. PhD thesis[D].Department of Computer Science, Carnegie-Mellon University, 1983.
    [21] Peter Brucker. Scheduling Algorithms 5th Edition[M]. Germany: Springer-Verlag, 2007:12-29.
    [22]顾晓芬.基于智能算法的车间生产调度研究[D]. 2009,沈阳理工大学:沈阳.
    [23] Rios R. Z., Bard J. F.. A Branch-and-bound Algorithm for Permutation Flow Shops with Sequence-dependent Setup Times[J]. IIE Transactions, 31(8), 1999:721-731.
    [24] Rabadi G., Mollaghasemi M., Anagnostopoulos G. C.. A Branch-and-bound Algorithm for the Early/tardy Machine Scheduling Problem with a Common Due-date and Sequence-dependent Setup Time[J]. Computer&Operations Research, 31(10), 2004:1727-1751.
    [25] Gupta J., Darrow W. P.. The Two-machine Sequence Dependent Flow Shop Problem[J]. European Joural of Operational Research, 24(3), 1986:439-446.
    [26] Chen M.. A Mathmatical Programming Model for System Reconfiguration in a Dynamic Cellular Manufacturing Environment[J]. Annals of Operations Research, 1998(77):109-128.
    [27] Matta D., Guignard M.. The Performance of Rolling Production Schedules in a Process Industry[J]. IIE Transactions, 1995(27):564-574.
    [28] Foo Y. S., Takafuji Y. Stochastic Neural Networks for Solving Job-shop Scheduling(I), Problem Representation[C]. Proceedings of IEEE International Conference on Neural Networks, 1988:275-282.
    [29] Foo Y. S., Takafuji Y. Stochastic Neural Networks for Solving Job-shop Scheduling(II), Architecture and Simulations[C]. Proceedings of IEEE International Conference on Neural Networks, 1988:283-290.
    [30] Foo Y. S., Takafuji Y. Integer Linear Programming Neural Networks for Job-shop Scheduling[C]. Proceedings of IEEE International Conference on Neural Networks, 1988(2):341-348.
    [31] Van Hulle M.. A Goal Programming Network for Mixed Integer Linear Programming: a Case Study for the Job-shop Scheduling Problem[J]. Internation Journal of Neural Networks, 1991(3):201-209.
    [32] Willems T. M., Rooda J. E.. Neural Networks for Job-shop Scheduling[J]. Control Engineering Practice, 1994(2):31-39.
    [33] Zhou D. N., Cherkasky V., Baldwin R. T., Olson E. D.. A Neural Network Approach to Job-shop Scheduling. IEEE Transactions on Neural Network, 1991(2):175-179.
    [34] Gang S., Shuchun W.. Job-shop Scheduling Solution with Neural Networks[J]. Chinese Journal of Electronics, 1994(3):48-52.
    [35] Nonobe Koji, Ibaraki Toshihide. Tabu search approach to the constraint satisfaction problem as a general problem solver[J]. European Journal of Operational Research, Vol.106, No.2-3, 1998:599-623.
    [36]张长水,阎平凡.解Job-shop调度问题的神经网络方法[J].自动化学报, 1995(21):706-712.
    [37] Sabuncuglu I., Gurgun B.. A Neural Network Model for Scheduling Problems[J]. European Journal of Operational Research, 1996(93):288-299.
    [38]杨圣祥,汪定伟.神经网络和启发式算法混合策略Job-shop调度问题[J].系统工程学报, 1999(14):140-144.
    [39]于海斌,薛劲松,王浩波.一种基于神经网络的生产调度方法[J].自动化学报, 1999(25):449-456.
    [40]王秀宏,乔清理,王正欧. Job-shop调度问题的瞬态混沌神经网络解法[J].系统工程, 2001(19):43-48.
    [41] Wang W. L., Xu X. L., Wu D. Q.. Hopfield Neural Networks Approach for Job Shop Scheduling Problems[C]. Proceedings of the IEEE International Symposium on Intelligent Control, 2003:935-940.
    [42]徐新黎,王万良,吴启迪.改进计算能量函数下作业车间调度的混沌离散神经网络方法[J].控制理论与应用, 2004(21):311-314.
    [43] Akyol D. E., Bayan G. M.. A Coupled Gradient Network Approach for the multi machine earliness and tardiness scheduling problem[C]. Proceedings of ICCSA, 2005:596-605.
    [44] Rabelo L. C., Alptekin S.. Adaptive Scheduling and Control using Artificial Neural Networks and Expert Systems for a Hierarchical/distributed fms Architecture[C]. Proceedings of Rensselaer’s Second International Conference on Computer Integrated Manufacturing, 1990:538-545.
    [45] Sim S. K., Yeo K. T., Lee W. H.. An Expert Neural Network System for Dynamic Job-shop Scheduling[J]. International Journal of Production Research, 1994(32):1759-1773.
    [46] Dagli C. H., Sittsathanchai S.. Genetic Neuro-scheduler : a New Approach for Job-shop Scheduling[J]. International Journal of Production Economics, 1995:135-145.
    [47] Park Y., Kim S., Lee Y. H.. Scheduling Jobs on Parallel Machines Applying Neural Network and Heuristic rules[J]. Computers and Industrial Engineering, 2000(38):189-202.
    [48]张洁,翟文彬,严隽琪,马登哲.基于模糊神经网络的半导体生产线重调度策略[J].机械工程学报, 2005(41):679-696.
    [49] Min H. S., Yih Y., Kim O. C.. A Competitive Neural Network Approach to Multi-objective FMS Scheduling[J]. Internatioal Journal of Production Research, 1998(36):1749-1765.
    [50] Van Laarhoven, Aarts E. H., Lenstra J. K.. Job Shop Scheduling by Simulated Annealing[J]. Operational Research, 1992(40):113-125.
    [51] Kim D. W., Kim K. H., Jang W., Chen F. F.. Unrelated Parallel Machine Scheduling with Setup Times using Simulated Annealing[J]. Robotics and Computer-Integrated Manufacturing, 2002(18):223-231.
    [52] Bozejko W., Wodeck M.. Parallel Tabul Search Method Approach for Very Difficult Permutation Scheduling Problems[C]. International Conference on Parallel Computing in Electrical Engineering, 2004:156-161.
    [53] Nowiki E., Smutnicki C.. A Fast Taboo Search Algorithm for the Job Shop Problem[J]. Management Science, 1996(42):797-813.
    [54] Dell A. M., Truian M.. Applying Tabu Search to the Job-shop Scheduling Problem[J]. Annals of Operation Research, 1993(41):231-252.
    [55] Bilge U., Kirac F., Kurtulan M., Pekgun P. A.. Tabu Search Algorithm for Parallel Machine Total Tardiness Problem[J]. Computers and Operations Research, 2004(31):397-414.
    [56] Tucci M., Rinald R.. From Theory to Application: Tabu Search in Textile Production Scheduling[J]. Production Planning&Control, 1999(10):365-374.
    [57] Jian A. K., Elmaraghy H. A.. Production Scheduling/rescheduling in Flexible Manufacturing[J]. International Journal of Production Research, 1997(35):281-309.
    [58] Holsapple C. W., Jacop V. S., Pacart R., Zaveri J. S.. A Genetics-based Hybrid Scheduling for Generating Static Schedules in Flexible Manufacturing Contexts[J]. IEEE Transactions on Systems, Man and Cybernetics, 1993(23):953-971.
    [59] Lee C. Y., Piramuthu S., Tsai Y. K.. Job Shop Scheduling with a Genetic Algorithm and Machine Learning[J]. International Journal of Production Research, 1997(35):1171-1191.
    [60]姜思杰,张付亮,王孔茂.基于遗传和禁忌算法求解一类车间调度问题[J].计算机集成制造系统-CIMS, 2003(11):984-988.
    [61] Sim S. K., Yeo K. T., Lee W. H.. An Expert Neural Network System for Dynamic Job Shop Scheduling[J]. International Journal of Production Research, 1994(32):1773-1795.
    [62]李岩,吴智铭.遗传算法在柔性动态调度中的应用[J].上海交通大学学报, 2001(35):250-255.
    [63]王涛,付宜利.一种改进的遗传算法在车间调度中的应用[J].计算机集成制造系统, 2002(8):392-396.
    [64] Huang M., Wang D. W.. Genetic Algorithm Solution for a Risk-based Partner Selection Problem in a Virtual Enterprise[J]. Computers and Operations Research, 2003(30):213-231.
    [65]王万良,宋毅,吴启迪.求解作业车间生产调度问题的改进自适应遗传算法[J].系统工程理论与实践, 2004(24):58-62.
    [66]王万良,宋毅,吴启迪.求解作业车间生产调度问题的双倍体遗传算法与软件实现[J].计算机集成制造系统-CIMS, 2004(10):65-69.
    [67] Malve S., Uzsoy R.. A Genetic Algorithm for Minimizing Maximum Lateness on Parallel Identical Batch Processing Machines with Dynamic Job Arrivals and Incompatible Job Families[J]. Computers&Operations Research, 2007(3)3016-3028.
    [68] Chen K. J., Ji P.. A Genetic Algorithm for Dynamic Advanced Planning and Scheduling (DAPS) with a Frozen Interval[J]. Expert System with Applications, 2007(33):1004-1010.
    [69] Colomi A., Dorigo M., Manizzo V., Trubian M.. Ant System for Job-shop Scheduling[J]. Belgian Journal of Operations Research, Statistics and Computer Science, 1994(34):39-53.
    [70] Xu X. L., Wang W. L., Guan Q.. Adaptive Immune Algorithm for Solving Job-shop Scheduling Problem[J]. Lecture Notes in Computer Science, 2005:795-799.
    [71] Storn R., Price K.. Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J]. Journal of Global Optimization, 1997(11):341-359.
    [72] Han K. H., Kim J. H.. Quantum-inpired Evolutionary Algorithm for a Class of Combinatorial Optimization[J]. IEEE Transactions on Evolutionary Computation, 2002(6):580-593.
    [73] Christophe Lecoutre. Constraint Networks: Techniques and Algorithms[M]. 2009: Hardback, University of Artois, France.
    [74]刘涛.约束满足问题:算法和复杂性.博士论文[D]. 1995,中国科学院:北京.
    [75]廖乐健.约束满足系统研究,博士论文[D]. 1994,中国科学院:北京.
    [76] Gu J., Wang W.. A Novel Discrete Relaxtion Architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992(14):857-865.
    [77] Selman B., Levesque H., Mitchell D.. A New Method for Solving Hard Satisfibility Problems[C]. AAAI’92, 1992:440-446.
    [78] Gu J.. Constraint-based search[M]. Cambridge University Press, New York, 1993.
    [79] Minton S., Johnson M. D., Philips A. B., Laird P.. Solving Large-scale Constraint Satisfaction and Scheduling Problems using a Heuristic Repair Method[C]. Proceedings of AAAI’90, 1990:17-24.
    [80] Subbiah S, Tometzki T, Panek S, et al. Multi-product batch scheduling with intermediate due dates using priced timed automata models[C]. 18th European Symposium on Computer Aided Process Engineering (ESCAPE-18), JUN 01-04, 2008 Lyon FRANCE, V33(10), 2009:1661-1676.
    [81] Vidal V., Geffner H. Branching and Pruning: An Optimal Temporal POCL Planner Based on Constraint Programming[J]. Artificial Intelligence, 2006, 170:298–335.
    [82] Penberthy J., Weld D.S. UCPOP: A Sound, Complete, Partial-order Planner for ADL[J]. Proceedings of the International Conference on Principles of KnowledgeRepresentation and Reasoning. Kaufmann, 1992:103–114.
    [83] Long D., Fox M. Encoding Temporal Planning Domains and Validating Temporal Plans[J]. Proceedings of the 20th UK Planning and Scheduling SIG Workshop, 2001:167–180.
    [84] Haslum P. Improving Heuristics Through Relaxed Search—An Analysis of TP4 and HSP[J]. Journal of Artificial Intelligence Research 2006(25):233–267.
    [85] Bonet B., Geffner H. Planning as Heuristic Search[J]. Artificial Intelligence, 2001, 129:5–33.
    [86] Marco Dorigo, Thomas Stützle. Ant Colony Optimization[M]. Cambridge, Massachusetts, USA: The MIT Press, 2004.
    [87] Michael Pinedo. Scheduling: Theory, Algorithms, and Systems[M]. Prentice-Hall, 2001.
    [88] The Overview Report: Computing Curricula 2005[R]. ACM, IEEE, 2005.
    [89] Web Course in a Box[EB/01]. http://www.vcu.edu/mdcweb/iat/iat.html.
    [90] Yokoo Makoto, Durfee Edmund H., Ishida Toru, Kuwabara Kazuhiro. Distributed constraint satisfaction problem: formalization and algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, Vol.10, No.5, 1998:673-685.
    [91]杨轻云,孙吉贵,张居阳.最大度二元约束满足问题粒子群算法[J].计算机研究与发展, 2006, 43(3).
    [92]杨轻云,孙吉贵,张居阳,王纯杰.基于值序的二元约束满足问题粒子群算法[J].计算机工程, 2006, 32(17).
    [93]姚向华,杨清宇,施仁.约束满足问题中一致性算法的分析与研究[J].计算机应用与软件, 2007:24(8).
    [94]韩靖,陈恩红,蔡庆生.求解过程中约束一致性维护的多层次策略研究[J].软件学报, Vol. 9, No.8, 1998:622-627.
    [95] Herroelen W., De Reyck B., Demeulemeester E. Resourceconstrained project scheduling: A survey of recent developments[J]. Journal of Computers and Operations Research, vol. 25 (4), 1998:279-302.
    [96] D.E. Goldberg. Genetic Algorithms: in Search, Optimization, and Machine Learning[M]. Addison-Wesley Publishing Company, Inc.,Reading, MA, 1989.
    [97] The Choco Team. Choco: an Open Source Java Constraint Programming Library[D]. Third International CSP Solver Competition, 2008.
    [98]王荪馨.基于约束满足技术的作业车间调度问题研究[D]. 2007,西安理工大学.
    [99] Sally C. Brailsford, Chris N. Potts, Barbara M. Smith. Constraint Satisfaction Problems: Algorithms and Applications[J]. European Journal of Operational Research, 1999:557-581.
    [100] Y. Abdeddaim, E. Asarin, O. Maler. Scheduling with Timed Automata[J]. Theoretical Computer Science, Vol354, 2006:272–300.
    [101] Hopcroft, John E., Ullman, Jeffrey D. Introduction to Automata Theory, Languages and Computation[M]. Addison-Wesley, 1979: 56-71.
    [102] N. R. Vempaty. Solving Constraint Satisfaction Problems Using Finite State Automata. AAAI, 1992:453–458.
    [103] Chang S. H., Nam B. H.. Linear Programming Neural Networks for Job-shop Scheduling[C]. Proceedings of International Joint Conference on Neural Networks, 1993(2):1557-1560.
    [104] R. L. Haupt, S. E. Haupt. Practical Genetic Algorithm[M]. John Wiley &Sons, 2004.
    [105] Bulatov, Andrei A., Dalmau Víctor. Towards a dichotomy theorem for the counting constraint satisfaction problem[C]. Annual Symposium on Foundations of Computer Science Proceedings, 2003:562-571.
    [106] Sadeh Norman, Sycara Katia, Xiong Yalin. Backtracking techniques for the job shop scheduling constraint satisfaction problem[J]. Artificial Intelligence, Vol.76, No.1-2, 1995:455-480.
    [107] Schmidt Linda C., Shi Hai, Kerkar Sameer. A constraint satisfaction problem approach linking function and grammar-based design generation to assembly[J]. Journal of Mechanical Design, Transactions of the ASME, Vol.127, No.2, ,2005:196-205.
    [108] Bulatov Andrei A., The complexity of the counting constraint satisfaction problem[J]. Lecture Notes in Computer Science. Vol.5125, PART 1, ,2008:646-661.
    [109] Tounsi Mohamed, Ouis Samir. An Iterative local-search framework for solving constraint satisfaction problem[J]. Applied Software Computing Journal, Vol.8, No.4, ,2008:1530-1535.
    [110] Kolisch R., Hartmann S. Experimental investigation of heuristics for resource-constrained project scheduling[J]. European Journal of Operational Research, Vol. 174, 2006:23-37.
    [111] Huang Ye, Miles Roger. Using case-based techniques to enhance constraint satisfaction problem solving[J]. Applied Artificial Intelligence, Vol.10, No.4, 1996:307-328.
    [112] Rigi Mohammad Amin, Mohammadi Shahriar. Finding a hybrid genetic algorithm-constraint satisfaction problem based solution for resource constrained project scheduling[C]. 2009 International Conference on Emerging Technologies, ICET 2009, December 9, 2009:52-56.
    [113] Sadeh N. M., Fox M. S. Variable and Value Ordering Heuristics for the Job Shop Scheduling Constraint Satisfaction Problem[R]. Report: CMU-RI-TR-95-39, 58p, Nov 1995.
    [114] Dirakkhunakon Sipang, Suansook Yoothana. Stochastic search algorithm for constraint satisfaction problem[C]. Proceedings of the 2008 International Conference on Computer and Electrical Engineering, ICCEE 2008, 2008:682-686.
    [115] Mu?oz Jorge, Gutierrez German, Sanchis Araceli. Evolutionary techniques in a constraint satisfaction problem: Puzzle eternity II[C]. 2009 IEEE Congress on Evolutionary Computation, CEC 2009, 2009:2985-2991.
    [116] Bennaceur Hachemi, Plateau Gerard. An exact algorithm for the constraint satisfaction problem: application to logical inference[J]. Information Processing Letters, Vol.48, No.3, 1993: 151-158.
    [117] S. Panek, O. Stursberg, S. Engel. Efficient Synthesis of Production Schedules by Optimization of Timed Automata[J]. Control Engineering Practice, Vol.14, 2006:1183–1197.
    [118] Gabrielli Silvia, Mirabella Valeria, Teso Massimiliano, Catarci Tiziana. The design of an authoring interface to make eLearning content accessible[J]. Lecture Notes in Computer Science, Vol.3585, 2005:1100-1103.
    [119] Stergioulas Lampros K., Minetou Christina, Koskinen Tapio, Klein Michel. Roadmap for the future of eTraining/eLearning Technologies in Europe[C]. Proceedings IEEE International Conference on Advanced Learning Technologies, ICALT 2004, 2004:460-464.
    [120] Nazemi Kawa, Cuku?ic Maja, Granic Andrina. eLearning 2.0 - Technologies for knowledge transfer in European-wide network of schools[J]. Journal of Software, Vol.4, No.2, 2009: 108-115.
    [121] Sadeh N. M., Fox M. S. Variable and Value Ordering Heuristics for Hard Constraint Satisfaction Problems: An Application to Job Shop Scheduling[R]. Report: CMU-RI-TR-91-23, 56p, Nov 1991.
    [122] Oliveira F. S. Limitations of learning in automata-based systems[J]. European Journal of Operational Research, 2010:684-691.
    [123] Chatzikokolakis K., Palamidessi C. Making random choices invisible to the scheduler[J]. Information and Computation, 2010:694-715.
    [124] Zhijian Pan, Reggia J.A. Computational Discovery of Instructionless Self-Replicating Structures in Cellular Automata[J]. Artificial Life. 2010:39-63.
    [125] Wakatake M., Nishi T., Inuiguchi M. Decomposition of timed automata for solving jobshop scheduling problems[C]. 2009 ICROS-SICE International Joint Conference. ICCAS-SICE 2009, Fukuoka Japan, 2009:1722-1727.
    [126] Ghafarian T., Deldari H., Akbarzadeh-T M.-R. Multiprocessor scheduling with evolving cellular automata based on ant colony optimization[C]. 2009 14th International CSI ComputerConference (CSICC 2009), 2009:431-436.
    [127] Witkowski T., Antczak A., Elzway S., et al. Evolving cellular automata-based flexible job shop scheduling[C]. Proceedings of the Fifth International Conference on Natural Computation, ICNC 2009, 2009:8-13.
    [128] Julia Pet-Edwards. A simulation and genetic algorithm approach to stochastic research constrained project scheduling[C]. IEEE Southcon’96, Conference Record, 1996:333-338.
    [129] Abdolzadeh M., Rashidi H. Solving job shop scheduling problem using cellular learning automata[C]. Proceedings of the 2009 Third UKSim European Symposium on Computer Modeling and Simulation, EMS 2009, 2009:49-54.
    [130] Jahanshahi M., Meybodi M.R., Dehghan M. A new approach for task scheduling in distributed systems using learning automata[C]. 2009 IEEE International Conference on Automation and Logistics (ICAL). 2009:62-67|1138.
    [131] Wakatake M., Nishi T., Inuiguchi M. Decomposition and coordination method for flowshop scheduling problems represented by timed automata[J]. Transactions of the Society of Instrument and Control Engineers, 2009:369-378.
    [132] Madl G, Dutt N, Abdelwahed S. A Conservative Approximation Method for the Verification of Preemptive Scheduling using Timed Automata[C]. 15th IEEE Real-Time and Embedded Technology and Application Symposium, APR 13-16, 2009 San Francisco CA. 2009:255-264.
    [133] Nishi T., Wakatake M., Inuiguchi M. Decomposition of timed automata for solving scheduling problems[C]. 2008 IEEE International Conference on Systems, Man and Cybernetics, SMC 2008, 2008:2459-2464.
    [134] T. Nishi, R. Maeno. Petri Net Modeling and Decomposition Method for Solving Production Scheduling Problems[J]. Journal of Advanced Mechanical Design, Systems and Manufacturing, Vol.1, No.2, 2007:262–271.
    [135] Valls V., Quintanilla S., Ballest N. F. Resource-constrained project scheduling: A critical activity reordering heuristic[J]. European Journal of Operational Research, Vol.149, 2003:282-301.
    [136] Vicente Valls, Francisco Ballestn, Sacramento Quintanilla. A hybrid genetic algorithm for the resource-constrained project scheduling problem[J]. European Journal of Operational Research, Vol.185, 2008:495-508.
    [137] Russel S., Norrvige P. Artificial Intelligence a Modern Approach, 2nd Edition[M]. printice hall, 2003.
    [138] Brucker P., Drexl A., Mohring R., Neumann K., Pesch E. Resource-constrained project scheduling: notation, classification,models, and methods[J]. European Journal of OperationalResearch, Vol.112, 1999:3-41.
    [139] Runwei Cheng, Mitsuo Gen. Evolution program for resource constrained project scheduling problem[C]. International Conference on Evolutionary Computation, Orlando, Florida, USA, 1994:736-741.
    [140] R. Alur, D. Dill. A Theory of Timed Automata[J]. Theoretical Computer Science, Vol.126, 1994:183-235.
    [141] D.Y. Lee, F. DiCesare. Scheduling Flexible Manufacturing Systems using Petri Nets and Heuristic Search[J]. IEEE Transactions on Robotics and Automation, Vol.10, 1994:123–132.
    [142] S. Minton, M.D. Johnston, A.B. Philips, P. Laird. Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems[J]. Artificial Intelligence. 1992(58):161-205.
    [143] Bralsford S. C., Potts C. N., Smith B.M. Constraint Satisfaction Problems: Algorithms and Applications, Invited Review[J]. European Journal of Operational Research, Vol.119, No.3, 1999:57-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700