用户名: 密码: 验证码:
春季东亚副热带季风降水的诊断分析和数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用1960到2008年的NCEP-NCAR再分析资料、中国740站点的逐日降水资料,首先分析了中国东部副热带各区域的雨季进退情况,接着对江南和江淮地区春季降水异常的环流背景和外强迫影响因子进行了研究,重点讨论海陆热力差异对降水异常和降水区域的影响;最后利用MM5v3中尺度区域模式、NOAA的CMAP降水资料和再分析资料,研究了东亚及周边海域表面温度差异和地形对春季我国东部西南风降水的影响。得出以下主要结论:
     (1)江南是中国雨季最早出现的地区,14侯进入雨季,4月上旬达到季风雨标准,属于深对流降水。接着华南、江淮、华北地区先后进入雨季。江南春季(3~5月)降水量占全年的比重最大,达到38%。中国南方降水增加的同时,南风开始出现并持续加强。从“风”和“雨”的角度上看,东亚副热带季风爆发。随着纬向海陆热力差异在中国东部副热带地区较早地产生反转,副热带季风发展和降水加强。
     (2)春季江南和江淮多、少雨年的大气环流背景有很大的不同:江南多雨时副高偏强,海陆气压梯度偏大、江南有异常偏南气流和水汽通量输送,低层辐合增加,上升气流明显增强。江淮多雨的主要原因是由于高原和其北部的脊明显偏弱并形成东高西低的异常场,脊前西北气流减小而导致使副高范围明显偏大;副高西部的西南风可以影响到更北的区域,西南风的向北推进可以带来大气环流变化如:低层水汽辐合和上升运动异常区明显偏北,降水正异常中心移到江淮地区。
     西南风和大气环流的变化所造成的江南和江淮降水异常与局地的纬向海陆热力差异有较大的关系,由于纬向海陆热力差异提早向夏季型转变,使同纬度地区的经向风和风的去向区域的西南风加强,进而使降水增加。当纬向热力梯度增加纬度偏南时,长江以南西南风增强,江南降水增加;当纬向热力梯度增加偏北时西南风可以输送到更北的地方,江淮降水增加。
     (3)数值模拟结果印证了分析结果:改变春季东亚表面温度差异对江南西南风降水发生以及向北推进有重要影响;当东亚大陆温度增加和其周边海洋表面温度减小时,冬季型温度梯度更早地向夏季型转换,青藏高原东侧低压以及西太平洋副热带高压都加强,伴随着东部的低层西南风加强;于是,江淮地区的上升运动增强,而江南地区的上升运动减弱,导致春季江淮降水增加,而江南降水减少,使东部雨带出现在江淮,而不是在江南;当热力差异减弱时,我国东部大陆没有雨带出现;在春季热力差异显著增强的情况下,即使没有南海热带季风爆发,春季位于江南的雨带也可以向北推进到江淮地区,形成类似于夏季江淮梅雨期的雨带。
     (4)东亚地形可以加强中国东南部春季的西南风和降水,青藏高原的地形作用使春季降水聚集在江南地区;但没有东亚地形春季副热带季风降水和夏季热带季风仍然能够出现。
We analyzed the rainband moving north and south in subtropical East Asian and then investigated the circulation and the other forcing factors of the spring precipitation anomaly over Southeastern China and Yangtze-Huai River (YHR) area and mainly discussed the influence of land-sea thermal contrast on precipitation area and precipitation anomaly, by use of NCEP–NCAR reanalysis dataset and 740 stations daily rainfall datasets in China from 1960 to 2008. Finally, we using the NOAA’s Climate Prediction Center’s merged analysis of precipitation, studied the impacts of surface temperature differences between East Asian and seas around on the rainfalls for southwesterly winds in spring over Eastern China, by the fifth-generation PSU/NCAR Meso-scale Model version 3 (MM5v3). The major conclusions are as follows:
     (1)The Rainy season first appears at the 14th pentad over Southeastern China, where the precipitation which accounts the largest part ,about 38%, for the rainfall in whole year becomes monsoonal and deep convective in the first third of April, and then over South China and YHR area, North China. As the precipitation in Southeastern China increase, the southwest winds appear and strengthen, which means the outbreak of the East Asian sub-tropical monsoon. Sub-tropical monsoon and precipitation develops and strengthens, with the earlier reversing of the zonal land-sea thermal contrast over sub-tropical Eastern China.
     (2) There is a great difference between the spring circulation in more and less precipitation year over Southeastern China and that over YHR area. In spring rainy years over the Southeastern China, the sub-tropical high is stronger and pressure gradient is shaper, which causes the southerly winds and water vapor flux transmission anomaly and low-level convergence, obvious increase of updraft. More spring rainfall in YHR area is mainly due to the ridge is obviously weak over the Qinghai-Tibet Plateau and its northern area, which reduces the northwest wind in front of the ridge and forms anomaly field that the east higher than the west, that is obvious larger subtropical high. Southwest winds of the western subtropical high can affect the region further north,which can change the circulation that the area of low-level moisture convergence and upward motion is more north than usual, which results in positive anomaly center of rainfall moving to YHR region.
     Rainfall anomalies over Southeastern China and YHR area caused changes southwest winds and atmospheric circulation in by have a lot of thing to do with local anomalies of zonal land-sea thermal contrast. Precipitation increases caused by the southwest winds strengthening in the region of the same and higher latitude, which caused from zonal land-sea thermal contrast varying to the summer feature earlier. When the zonal thermal gradient increase more south than usual, it lead to precipitation enhance in Southeastern China that the south-west wind and water vapor transmission and low-level flow convergence, updraft increasing in Southeastern China. When the zonal thermal gradient increase more north than usual, it results in increased precipitation YHR area that the southwest winds can affect the region further north and flow convergence zone and the center of the upflow are also located in YHR region.
     (3)Numerical simulation result confirms diagnosis that: the surface temperature differences in spring exert strong influence on the occurrence of the southwesterly winds and rainfall over southern China and their northward advances. When surface temperature increases over East Asia and decreases over the oceans around, the temperature gradient with a winter feature earlier changes to that with a summer feature, with the strengthening of the east of the Tibetan Plateau low and the subtropical high over the western Pacific, the lower-tropospheric southwesterly winds over Eastern China. Accordingly, it leads to an increase of spring rainfall over the YHR valleys and a decrease over southern China that the upward motion increases over the YHR valleys and decreases over southern China. Thus, the rain belt over eastern China appears over the YHR valleys but not over southern China. Under a weaker condition of the thermal contrast, the rain belt does not occur over eastern China. When the spring thermal contrast pronouncedly strengthens, the rain belt over southern China may advance northward to the YHR valleys during spring although there is no onset of the tropical monsoon over the South China Sea. This forms a rain belt similar to that of the YHR valleys during the Meiyu period.
     (4)The topography of East Asia can enhance southwest wind and precipitation in spring over Southeastern China. The topography of the Qinghai-Tibet Plateau make spring rainfall more concentrated in the Southeastern China. However, sub-tropical and tropical monsoon rainfall can still appear, without East Asia topography.
引文
[1]朱乾根,何金海,王盘兴. A Study of Circulation Differences between East-Asian and Indian Summer Monsoons Their Interaction. Advances in Atmospheric Sciences, 1986, (04).
    [2]曾庆存,李建平.南北两半球大气的相互作用和季风的本质.大气科学, 2002,(04).
    [3]李建平,曾庆存.一个新的季风指数及其年际变化和与雨量的关系.气候与环境研究, 2005, (03).
    [4]高由禧,徐淑英.东亚季风的若干问题.北京:科学出版社. 1962, pp: 162.
    [5] Flohn H. Large-scale aspects of the“Summer Monsoon”in South and East Asia.J Meteor Soc Jpn, 1957, 75th Ann Vol: 180-186.
    [6] Murakami T, Matsumoto J. Summer monsoon over the Asian continent and western North Pacific. J Meteor Soc, 1994, Jpn 72: 719-745.
    [7]陈隆勋,朱乾根,罗会邦.东亚季风.北京:气象出版社. 1991.
    [8] Lau K-M, Yang S. Climatology and interannual variability of the Southeast Asian summer monsoon. Adv Atmos Sci, 1997, 14: 141-161.
    [9] Wang B, Lin H. Rainy season of the Asian-Pacific summer monsoon. J Clim, 2002, 15: 386-398.
    [10]丁一汇,李崇银,何金海,等.南海季风试验与东亚夏季风.气象学报, 2004, (05).
    [11] Tao S-Y, Chen L-X. A review of recent research on the East Asian summer monsoon in China. In Monsoon meteorology (eds Chang C-P and Krishnamurti TN), New York: Oxford University Press, 1987, pp: 60-92.
    [12]钱永甫,江静,张艳,等.亚洲热带夏季风的首发地区和机理研究.气象学报, 2004, (02).
    [13]曾庆存,张东凌,张铭,等.大气环流的季节突变与季风的建立I·基本理论方法和气候场分析.气候与环境研究, 2005, (03).
    [14]张永生,吴国雄.关于亚洲夏季风爆发及北半球季节突变的物理机理的诊断分析:I季风爆发的阶段性特征.气象学报, 1998, (05).
    [15]张耀存,况雪源.东亚副热带西风急流位置变化与亚洲夏季风爆发的关系.暴雨灾害, 2008, (02).
    [16]顾雷徐予红张启龙吴尚森曹杰黄荣辉.东亚夏季风爆发和北进的年际变化特征及其与热带西太平洋热状态的关系.大气科学, 2005, (01).
    [17] Ping Zhao, Renhe Zhang. Onset of southwesterly wind over eastern China and associated atmospheric circulation and rainfall. Clim Dyn, 2007, 28: 797-811.
    [18] Tian S-F, Yasunari T. Climatological aspects and mechanism of spring persistent rains over central China. J Meteor Soc Jpn, 1998, 76: 57-71.
    [19] Wang Bin. Thrusts and Prospects on Understanding and Predicting Asian Monsoon Climate. ACTA METEOROLOGICA SINICA, 2008, 22: 383-403.
    [20]王遵娅.中国夏季降水的气候变率及其可能机制研究.博士论文,中国科学院研究生院, 2007.
    [21]陈隆勋,李薇,赵平,等.东亚地区夏季风爆发过程.气候与环境研究, 2000,(04).
    [22]陈晓光朱乾根.我国降水自然区域的客观划分.南京气象学院学报, 1992, (04).
    [23]强学民,杨修群.华南前汛期开始和结束日期的划分.地球物理学报, 2008, (05).
    [24]郭其蕴,沙万英.华南前汛期降水变率的分析.应用气象学报, 1998, (S1).
    [25]池艳珍,何金海,吴志伟.华南前汛期不同降水时段的特征分析.南京气象学院学报, 2005, (02).
    [26]梁潇云,刘屹岷,吴国雄.青藏高原隆升对春、夏季亚洲大气环流的影响.高原气象, 2005, (06).
    [27]万日金,吴国雄.江南春雨的气候成因机制研究.中国科学(D辑:地球科学),2006, (10)
    [28]谢义炳.中团夏半年几种降水系统分析研究.中央气象局文集, 1956,第1期.
    [29]陶诗言,赵煜佳,陈晓敏.东亚的梅雨期与亚洲上空大气环流季节变化的关系.气象学报, 29(2).
    [30]高由禧徐淑英.我国季风进退及其日期的确定.地理学报, 1962, (01).
    [31]何金海,祁莉,韦晋,等.关于东亚副热带季风和热带季风的再认识.大气科学,2007, (06).
    [32]祁莉,何金海,张祖强,等.纬向海陆热力差异的季节转换与东亚副热带季风环流.科学通报, 2007, (24).
    [33]廉毅,沈柏竹,枞亭,等.确定东亚-西北太平洋地区夏季副热带季风建立和活动的一种方法.气象学报, 2007, 65 (4): 503-510.
    [34]竺可桢.东南季风与中国之雨量.地理学报, 1934, 1: 1~26.
    [35]涂长望,黄仕松.夏季风进退.气象杂志, 1944 18: 1-20.
    [36]叶笃正,朱抱真.大气环流的若干基本问题.北京:科学出版社. 1958.
    [37]赵平,周自江.东亚副热带夏季风指数及其与降水的关系.气象学报, 2005, (06).
    [38]于淑秋,林学椿,施晓晖.东亚夏季风的年际变化及其与环流和降水的关系.地理学报, 2008, (07).
    [39]杨明,徐海明,李维亮,等.近40年东亚季风变化特征及其与海陆温差关系.应用气象学报, 2008, (05).
    [40]黄荣辉,顾雷,徐予红,等.东亚季风爆发和北进的年际变化特征及其与热带西太平洋热状态的关系.大气科学, 2005, 29: 20-36.
    [41]黄刚,严中伟.东亚夏季风环流异常指数及其年际变化.科学通报, 1999, (04).
    [42]黄荣辉周连童.关于我国夏季气候年代际变化特征及其可能成因的研究.气候与环境研究, 2003, (03).
    [43]周兵,吴国雄,梁潇云.孟加拉湾深对流加热对东亚季风环流系统的影响.气象学报, 2006, (01).
    [44]吴国雄.大气水汽的输送和收支及其对副热带干早的影响.大气科学, 1979,14(1): 53-63.
    [45]赵平,陈隆勋. 35年来青藏高原大气热源气候特征及其与中国降水的关系.中国科学D辑, 2001, 31(4): 327-332.
    [46]陈烈庭.青藏高原冬春季异常雪盖与江南前汛期降水关系的检验和应用.应用气象学报, 1998, (S1).
    [47] Zhu Congwen, Chen Longxun, Yamazaki N. The Interdecadal Variation Characteristics of Arctic Sea Ice Cover-ENSO-East Asian Monsoon and Their Interrelationshipat Quasi-Four Years Time Scale. Adv Atmos Sci, 1999, 16(4): 641-652.
    [48] Wang Huijun, Xue Feng, Zhou Guangqing. The spring monsoon in south china and its relationship to Large—Scale circulation features Advances in Atmospheric Sciences, 2002, (04).
    [49]陈绍东.江南地区汛期降水异常及其与热带海洋海温异常关系的诊断研究.硕士论文,南京气象学院,2001.
    [50]周连童,黄荣辉.我国华北地区春季降水的年代际变化特征及其可能成因的探讨.气候与环境研究, 2006, (04).
    [51]钱永甫张艳.青藏高原地面热源对亚洲季风爆发的热力影响.南京气象学院学报, 2002, (03).
    [52] Kuo H L, Qian Y F. Numerical simulation of the development of mean monsoon circulation in July. Mon Wea Rev, 1982, 110(12): 1879-1897.
    [53]陈晶华,陈隆勋.亚洲南部的海陆分布对亚洲夏季风形成的作用.应用气象学报, 1991, 2(4): 355-361.
    [54]吴国雄.我国青藏高原气候动力学研究的近期进展.第四纪研究, 2004, 24(1): 1-9.
    [55]徐海明,何金海,温敏,等.中南半岛影响南海夏季风建立和维持的数值研究.大气科学, 2002, (03).
    [56]任雪娟,钱永甫.局地海陆热力对比对南海夏季风爆发影响的数值试验.热带气象学报, 2002, (04).
    [57]吴国雄,王军,刘新,等.欧亚地形对不同季节大气环流影响的数值模拟研究.气象学报, 2005, (05).
    [58]梁潇云,刘屹岷,吴国雄.热带、副热带海陆分布与青藏高原在亚洲夏季风形成中的作用.地球物理学报, 2006, (04).
    [59]梁潇云,刘屹岷,吴国雄.青藏高原对亚洲夏季风爆发位置及强度的影响.气象学报, 2005, (05).
    [60]金啟华,何金海,陈隆勋,等.亚洲南部地区海陆分布和南半球陆地对亚洲夏季风影响的数值试验.大气科学, 2006, (05).
    [61]刘宗秀.东亚副热带季风学术研讨会在北京召开.气象学报, 2008, 66(3): 478.
    [62] Ramage CS. Monsoon meteorology. Academic, New York, 1971: 296.
    [63] Ding H, Liu Y-J. Onset and the evolution of the summer monsoon over the South China Sea during SCSMEX field experiment in 1998. J Meteor Soc, 2001, Jpn 79: 1119-1137.
    [64] Chang C-P, Chen G-T. Tropical circulations associated with southwest monsoon onset and westerly surges over the South China Sea. Mon Weather Rev, 1995, 123: 3254-3267.
    [65] Chen L-X, Li W, Zhao P,et al. On the process of summer monsoon onset over East Asia. Acta Meteorol Sin, 2001, 15: 436-449.
    [66]丁一汇,张莉.青藏高原与中国其他地区气候突变时间的比较.大气科学, 2008, (04).
    [67]万日金,吴国雄.江南春雨的时空分布.气象学报, 2008, (03)
    [68]王谦谦钱永甫陈绍东.江南汛期降水基本气候特征及其与海温异常关系初探.热带气象学报, 2003, (03).
    [69]覃武,孙照渤,丁宝善,张爱华.华南4~6月降水异常的环流特征.南京气象学院学报, 1994, (03).
    [70]苗春生,吴志伟,何金海, et al.近50年东北冷涡异常特征及其与前汛期华南降水的关系分析.大气科学, 2006, (06).
    [71]王谦谦邓立平.华南前汛期(4~6月)降水异常特征及其与我国近海海温的关系.热带气象学报, 2002, (01).
    [72]吴恒强覃武蒋伯仁张爱华.南半球大气环流对华南前汛期降雨影响初探.气象, 1997, (08).
    [73] Kai-Hon Lau, An-Yu Wang, Ying-Hwa Kuo,et al. The Evolution of the East Asia Summer Monsoon in June 1994:Numerical Simulations J. Meteor. Soc. Japan,1998, 76(5): 749-764.
    [74]汤剑平,苏炳凯,赵鸣,等.东亚区域气候变化的长期数值模拟试验.气象学报, 2004, (06).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700